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Laboratory rivers adjust their shape to sediment transport
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An alluvial river builds its own bed with the sediment it transports; its shape thus depends not only on its
water discharge but also on the sediment supply. Here we investigate the influence of the latter in laboratory
experiments. We find that, as their natural counterpart, laboratory rivers widen to accommodate an increase
of sediment supply. By tracking individual particles as they travel downstream, we show that, at equilibrium,
the river shapes its channel so that the intensity of sediment transport follows a Boltzmann distribution. This
mechanism selects a well-defined width over which the river transports sediment, while the sediment remains
virtually idle on its banks. For lack of a comprehensive theory, we represent this behavior with a single-parameter
empirical model which accords with our observations.
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I. INTRODUCTION

The bed of an alluvial river is made of mobile sediment,
such as sand or gravel [1]. Its shape results from the action
of water on this granular bed: The flow entrains superficial
grains and deposit them further downstream, thus deforming
the channel that confines it. With time, this coupling selects
the size and shape of the river.

The width of a river typically scales with its water dis-
charge. Specifically, it follows the empirical law of Lacey: It is
proportional to the square root of the discharge [2]. At leading
order, this relationship indicates that the river bed is near the
threshold of motion [3]. Indeed, if we assume that each grain
of the bed surface is steady, but about to move, then the river’s
cross section should form a cosine of prescribed dimensions
[4]. Laboratory analogues of rivers conform to this theory, for
both turbulent and laminar flows [5,6].

Most rivers, however, carry some sediment, and their
bed is therefore above the threshold of motion [7,8]. These
“active” rivers are generally wider, shallower, and steeper than
predicted by the threshold theory and destabilize into braids
beyond a critical sediment load [9,10]. Although water dis-
charge is the prime control on their size, sediment discharge
also affects the shape of an alluvial river [11,12].

Yet the role of sediment transport in alluvial rivers remains
obscure. Its investigation has proven challenging in the labo-
ratory, because most experiments generate braids, as a result
of the unhindered growth of bedforms [13,14]. Some experi-
menters prevent this instability by adding cohesive sediment
[14] or by growing riparian vegetation [15]. How necessary
these ingredients are, however, remains a matter of debate
[16]. Reitz et al. [17] and Delorme et al. [18] produced active
rivers with moderate sediment supply but focused on the al-
luvial fan they deposit rather than on their internal dynamics.
Ikeda et al. [19] also maintained an active single channel in
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the laboratory by splitting it into halves with a vertical wall,
but they did not measure the sediment discharge.

To investigate sediment transport per se, it is easier to con-
fine the flow in a canal or a pipe [20–24]. This configuration,
usually referred to as a “flume” experiment, typically provides
a relation between the intensity of the sediment flux and the
shear the fluid exerts on the bed, τ . It is customary to express
this relationship in terms of the Shields parameter, defined as
the ratio of the fluid force to the weight of a grain [25]:

θ = τ

(ρs − ρ f )gds
. (1)

When the fluid force overcomes the weight of the grain, the
Shields parameter exceeds its threshold value θt , and bedload
transport starts. It then increases linearly with the excess stress
(at least for moderate transport):

qs = q0 (θ − θt ), (2)

where q0 and θt depend on the fluid and sediment properties.
At moderate shear stress, the particles move by rolling,

sliding, and bouncing, while gravity maintains them close to
the bed surface. The layer of entrained grains, or “bedload
layer,” is only a few grain-diameters thick [20]. When the
shear stress becomes more intense, grains can be suspended
in the bulk of the flow [24], where they can diffuse across the
stream [26]. Here we focus on bedload transport. In laboratory
flumes that transport sediment as bedload, the traveling grains
collide with the rough sediment bed underneath [27,28]. Par-
ticle tracking shows that these collisions turn their trajectories
into random walks across the stream. Collectively, bedload
particles thus diffuse from areas where their population is
dense toward less crowded ones [29]—much like suspended
particles.

For the bed to reach equilibrium, another flux must oppose
this diffusive flux. Gravity, which pulls the moving grains
toward the channel’s center, plays this role in laboratory
flumes [30] and most likely in natural rivers [7]. The balance
between gravity and diffusion then sets the bed’s shape and,
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surprisingly, its downstream slope. This statistical equilibrium
takes the form of a Boltzmann distribution, according to which
the sediment flux qs decreases exponentially with the bed
elevation h [30]:

qs

〈q〉g
= exp

(
−h − 〈h〉a

λB

)
, (3)

where 〈·〉a and 〈·〉g are the arithmetic and geometric means,
respectively, and λB is the length that measures the relative
importance of diffusion and gravity. To our knowledge, the
latter was measured only once experimentally, for plastic
grains entrained by a viscous fluid flowing in a flume (λB =
0.12 ± 0.02 ds, where ds is the grain size) [30].

The same mechanism likely occurs in laboratory rivers
which, unlike confined flumes, can adjust their width. If so,
then it should account for the entire shape, too. To test this
hypothesis, we generate single-thread rivers of which we vary
the sediment discharge (Sec. II). We then measure the bed
elevation and the cross-stream profile of the sediment flux
by tracking individual grains (Secs. III and IV). Finally, we
observe that this distribution selects the width of a river, which
increases with sediment discharge (Sec. VI).

II. EXPERIMENTAL SETUP

To generate our laboratory rivers, we use an inclined plane
(90 × 190 cm), covered with a 5-cm-thick layer of plastic
grains [30] (Fig. 1). All grains have the same density and
size (density ρs = 1490 g/l; median diameter ds = 0.82 ±
0.19 mm), but they come in a variety of colors. We will use the
latter to track the traveling grains and measure the sediment
flux (Sec. IV).

At the beginning of an experiment, we level the sediment
bed with a rake and carve a straight channel into it, from the
inlet to the outlet. The initial slope of the sediment bed is about
10−3, but we cannot accurately fix this value. We then inject
a mixture of glycerol and water (density ρ f = 1160 ± 5 g/l,
viscosity ν = 10 cP). A tank placed above the experimental
setup delivers a constant discharge Qw in the range 0.1–3
l/min. We measure the density of the fluid every hour and
infer its viscosity from this measurement. During a run, we
regularly add water to the mixture to compensate for its evap-
oration. The Reynolds number of the river remains close to
10; the flow is therefore laminar.

We also feed the river with sediment using an industrial
feeder (Gericke GLD 87), the screw of which pushes grains
into the funnel that guides them toward the inlet. The rotation
speed of the screw controls the sediment discharge in the
range 0.2–20 g/min. Grains then settle down and concentrate
near the bed, as they begin their travel downstream.

During the first hour of a run, the flow spreads over the
entire bed, and forms an almost uniform sheet of fluid. Over
the next few hours, though, the flow carves a channel, usually
along the one we have incised initially. During this transient,
the river continuously entrains more grains than it deposits
and thus erodes its bed. As a result, the sediment discharge
in the channel is larger than the one we impose at the inlet
(Fig. 2). Gradually, the sediment flux returns to steady state,
until it eventually matches the input Qs.

FIG. 1. Experimental setup. (a) Laboratory river, with a top-view
camera and inclined laser sheet. Qw and Qs denote the flow and the
sediment discharges, respectively. (b) Close view on the river bed.
White dashed lines materialize banks. A few grain trajectories are
plotted in pink.

FIG. 2. Evolution of the sediment discharge in a laboratory river.
Blue dots: Sediment discharge measured with particle tracking (10-
min average). Dashed line: Exponential relaxation with 45-min time
constant (fitted to data). Sediment supply is 0.6 ± 0.1 g/min.
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TABLE I. Experimental parameters.

Sediment Fluid Tracking Number of
Run supply input duration trajectories
label (g min−1) (l min−1) (min) longer than 4 ds

1 0 1.00 — —
2 0.78 0.99 72 15 332
3 0.42 1.00 144 10 538
4 0.22 0.87 177 8177
5 1.04 0.98 108 29 696

At equilibrium, the flow forms a straight, single-thread
channel, a few centimetres wide [Fig. 1(b)]. This equilibrium
is dynamical: Grains are constantly dislodged from the bed,
while new ones get deposited by the flow. On average, the
sediment discharge is constant, and the river bed does not
change much. Moving grains, however, indicate that the bed
remains above the threshold of entrainment, in contrast with
rivers that are not fed with sediment [5].

At the beginning of each experiment, we set the slope of the
frame. However, the layer of sediment is thick enough for the
river to later adjust its own slope. The slope is thus chosen by
the system and not a control parameter. If the frame’s slope
is too steep, then the river incises a gorge into the sediment
bed, until it reaches its equilibrium slope. Conversely, if the
frame’s slope is too shallow, then the river deposits its load
near the inlet, where the sediment accumulates into an alluvial
fan [18]. To hasten the transient, we adjust the frame’s slope
to match equilibrium. This procedure largely relies on the
experimenter’s intuition.

Beyond a sediment supply of about 1.5 g/min, the river
destabilizes into a braid of intertwined, active channels. This
instability, which tightly bounds the sediment supply in our
experiments, might explain why active single-thread rivers are
so sparse in the literature [6,32]. Its origin remains debated
[33,34], and this question would require a dedicated investi-
gation.

Overall, the equilibrium shape of our single-thread rivers
depends on two inputs, the fluid and the sediment discharges.
To investigate the influence of the latter on the river’s shape,
we perform a series of experimental runs with the same fluid
discharge (about 1 l/min) but for different values of the sedi-
ment supply (Table I).

III. CROSS SECTION

After the river has reached steady state, we measure its
cross section with an inclined laser sheet projected onto its
bed (Fig. 1). We first locate the laser line, whose position
is shifted by the fluid. Then we stop the fluid and sediment
inputs and let the fluid drain out of the channel. The traveling
grains settle down within a few seconds, and the bed’s surface
appears to freeze. After the fluid has drained out, we detect
the location of the laser line on the bare surface of the bed.
The combination of the two laser lines, with and without fluid,
provide us with the bed elevation and the flow depth D within
an accuracy δD = 0.5 mm, which is slightly less than a grain
diameter (see Addendum for details).

Figure 3 shows the cross section of three laboratory rivers.
For a vanishing sediment supply, the river’s cross section
looks rounded [Fig. 3(a)]. This feature accords with the ob-
servations of Seizilles et al. [5], who interpreted them in terms
of the threshold theory. According to this theory, a river that
transport no sediment maintains its bed at the threshold of
motion. Its cross section should then be [5]

D(y) = D0 cos

(
yS0

L

)
, (4)

where D0 is the maximum depth of the river and S0 its down-
stream slope. L is a characteristic length depending on the
properties of the sediment and the fluid. It reads:

L = θt

μt

(ρs − ρ f )ds

ρ f
, (5)

where μt is the friction coefficient of the grains and θt is their
threshold Shields number. The threshold theory prescribes not
only the river’s shape but also its downstream slope, which
depends on the fluid discharge Qw:

S0 =
(

4gμ3
t L4

9νQw

)1/3

. (6)

Likewise, the depth of the threshold river depends on its fluid
discharge through

D0 = μt L

S0
. (7)

In the absence of sediment supply, our experimental river
accords with this threshold theory, without fitting any parame-
ter [Fig. 3(a), dashed line with L = 0.06 ds and S0 = 0.0046].

More intriguingly, when the sediment supply increases, the
river widens and shallows [Figs. 3(c) and 3(e)]. A sediment
supply of 1 g/min, for instance, doubles the aspect ratio of the
river. The flat cross section of these active laboratory rivers
resembles that of a natural river—more so than the rounded
shape of Fig. 3(a) [7]. As they adjust to the sediment supply,
our laboratory rivers thus adopt a more realistic shape.

When setting up a new experimental run, we need to man-
ually adjust the inclination of the frame to match the expected
slope of the river. As the sediment input increases, we need to
steepen the frame more and more. This observation suggests
that the equilibrium slope of our rivers increases with sedi-
ment discharge, in accordance with previous measurements
[18,35]. Unfortunately, the river slope, of the order of 0.005
in our experiments, induces a change of bed elevation of
the order of 5 mm per meter of river, a value far below the
detection range of our experimental setup.

In the next section, instead, we focus on the mechanism by
which a river adjusts its cross section.

IV. SEDIMENT-FLUX PROFILE

Based on previous observations in confined canals [30],
we suspect that the balance between bedload diffusion and
gravity sets the shape of our rivers. To test this hypothesis, we
first need to measure the local sediment flux qs. To do so, we
track individual grains entrained by the flow using the method
described in Abramian et al. [30]. With the top-view camera,
we first record a 1 h-long movie of the grains traveling over
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FIG. 3. Bed elevation and sediment-flux profile for runs 1, 4, and 5 (sediment supply increases from left to right). (a) River bed in the
absence of sediment supply. Dashed line: Cosine shape predicted by the threshold theory for L = 0.06 ds and S = 0.0046 [Eq. (4)]. [(c) and
(e)] River beds with sediment supply. Dashed line: Theory of Sec. VI. [(b), (d), and (f)] Experimental sediment-flux profiles. Dashed line:
Empirical model of Sec. VI. Brown arrows in (c) and purple arrows in (d) illustrate gravity and diffusion sediment fluxes, respectively. Data
are available in the supplemental material [31].

the bed surface (50 fps, see the movie in the supplemental
material [31]). We then track independently the motion of the
blue, red, and orange grains, based on their color [Fig. 4(a)],
and reconstruct their trajectories [Table I, Fig. 1(b)].

For each run, and for each grain color, we then calculate
the cross-stream profile of the sediment flux. To account for
the proportion of each color in the sediment, we normalize
each profile so that its integral matches the sediment input Qs.

The three independent measurements are consistent
[Fig. 4(b)], with a variability of less than about 15%
[Fig. 4(b)]. The uncertainty about their average depends on
the number of trajectories but remains below 5% [30].

FIG. 4. (a) Histogram of pixel hue in a single frame for run 3.
(b) Sediment-flux profile for different grain colors (red, blue, and
orange). Dashed black line: Average.

Repeating this procedure with different experimental runs,
we find that the shape of the sediment-flux profile varies with
Qs [Figs. 3(d) and 3(f)]. Its maximum, always near the center
of the channel, increases with the total sediment discharge,
meaning that bedload transport intensifies. For a high sed-
iment discharge, it is almost uniform in the center of the
channel, where the bed is virtually flat [Fig. 3(f)]. Bedload
transport then quickly vanishes near the banks.

Equation (2) provides an estimate for the Shields parameter
in our rivers, based on the sediment flux. We find that the
latter exceeds its threshold value by less than 0.3 θt , indicating
that our rivers stay well within the linear regime of the trans-
port law. In other words, our experimental rivers select their
shape such that the shear stress remains close to its critical
value—another instance of self-organized criticality, at least
in the loose sense of a system that spontaneously approaches
its critical point [36].

V. BOLTZMANN EQUILIBRIUM

In our laboratory rivers, like in a flume, the sediment-flux
profile and the bed’s shape adjust to the sediment discharge.
Following Abramian et al. [30], we now test whether this
adjustment brings the sediment flux to the Boltzmann equi-
librium, as expressed by equation (3). To do so, we plot the
bed elevation with respect to its own arithmetic mean 〈h〉a,
as a function of the sediment flux, divided by its geometric
mean 〈qs〉g [Fig. 5(b)]. We find that, regardless of the sediment
discharge, the data points gather around the same line in the
semilogarithmic space. The profiles being symmetric, they
trace this line twice for each river. The slope of each line
is comparable to the one measured in a confined flume [30]
[black dashed line, Fig. 5(b)].

This observation shows that, in a laminar river, sediment
transport converges to the same statistical equilibrium as in a
confined flume. This equilibrium sets both the cross section
of the bed, and the sediment-flux profile. In addition, labora-
tory rivers adjust their width. We interpret this adjustment as
follows: As Parker [7] first noted, gravity pulls the traveling
grains toward the center of the channel and thus tends to
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FIG. 5. Boltzmann distribution in our rivers. Colors correspond
to runs (Table I). Black line shows Eq. (3) without fitting parameter
(λB = 0.12 ds after Ref. [30]).

widen the river. Bedload diffusion counters this widening by
pushing grains toward the banks, where transport is weaker.
The resulting balance sets the equilibrium shape of the river.

Despite its simplicity, however, the mathematics of this
coupling remains elusive. Most of the difficulty lies in the fluid
flow, of which the lubrication approximation provides only
a poor representation [34,35]. Below, instead, we propose a
semiempirical model that, hopefully, delineates the problem.

VI. RIVER BED MODEL

Figure 5 shows that our laboratory rivers adjust their shape
so that diffusion and gravity can balance each other. We now
wish to relate this grain-scale mechanism to the morphology
of the river: its width, its aspect ratio, and its slope.

Boltzmann statistics provides a relation between the sedi-
ment flux and the river depth. In addition, the sediment flux is
related to the flow-induced shear stress through the transport
law. To close this system of equations, we need an additional
relation: The momentum balance that yields the flow-induced
force that moves the grains. In other words, we need to com-
pute the flow in the river. This is not an easy task, though: As
we do not know the shape of the river a priori, we need to
solve a two-dimensional, free-boundary problem.

The simplest way to bypass this problem is to invoke the
lubrication approximation [[35], chap. 4]. In this framework,
one assumes that the shear stress τ is simply proportional to
the flow depth:

τ = ρgDS. (8)

Supplemented with Boltzmann statistics and the transport law,
this expression yields a first-order, ordinary differential equa-
tion for the flow depth. This equation reproduces qualitatively
our experimental observations—for example, the fact that a
river widens as it transports more sediment [[35], chap. 4].
However, it overestimates the increase of the width by a factor
of more than 3. We suspect that this discrepancy results from
the lubrication approximation. Indeed, it can only provide a
rough estimate of the shear stress, and therefore of the Shields

FIG. 6. Model of an active river (Sec. VI). (a) Cross section.
Blue: River flow. Brown: Sediment bed. (b) Sediment-flux profile.

parameter θ . Since the river is near the threshold (θ ≈ θt ),
the transport law (2) amplifies the slightest error on the shear
stress into a major change of the river’s shape [[35], chap. 4].

For lack of a better theory, we propose here a simpler,
semiempirical model which eschews the complete calculation
of the fluid flow. Inspired by the cross sections of Fig. 3, and
by previous work [7,37], we decompose the cross section of a
river into three parts: the central part, which we assume to be
flat, and the two banks that bound it [Fig. 6(a)]. We consider
the central part as an active segment of width WT , where the
river uniformly transports sediment [Fig. 6(b)].

On this active segment, we replace the depth, the sediment
flux, or any other quantity f by its average f̄ , weighted by the
local intensity of sediment transport:

f̄ = 1

Qs

∫ +∞

−∞
f qsdy. (9)

The limits of the above integral are infinite in principle, but
they reduce to the river’s width in practice. This average,
devised with the Boltzmann equilibrium in mind, differs from
the ensemble means denoted with brackets in Sec. V. Whereas
the latter gives equal weight to every measurement point, the
average of Eq. (9) winnows the active section of the river from
its steady parts, the banks.

Finally, we assume that the banks are at the threshold of
motion, and therefore approximate their shape with a cosine
(restricted to a quarter of its period). These banks, however,
adjust their downstream slope to that of the active segment.
We also allow them to adjust their size accordingly. In other
words, we assume that each bank is half a threshold river, with
a slope that matches that of the total river.

In the next section, we relate the parameters of this model
(the slope, width, and depth of the river), to the sediment and
water discharges. To do so, we first establish an empirical
relationship between the transport width and the sediment
discharge. Using the transport law (2), we then estimate the
slope of the river and its entire cross section.
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A. Sediment transport

In the simple model sketched above, the sediment-flux pro-
file is a rectangle, of width WT and height q̄s, where q̄s is the
average intensity of sediment transport, defined by equation
(9) [Fig. 6(b)]. To estimate the transport width, we require the
area of this rectangle to be the sediment discharge Qs, that is,

WT = Qs

q̄s
. (10)

We also assume that WT vanishes with Qs, that is, in a river
exactly at threshold.

A convenient feature of the average defined by Eq. (9)
is that it is based on our most reliable measurement: the
sediment-flux profile. This makes quantities such as q̄s and WT

experimentally robust. We find that the simplified sediment
profile they define resemble the original [Figs. 3(d) and 3(f),
dashed lines].

Following Seizilles et al. [5], we normalize the intensity
of sediment transport with θt/μt q0, where q0 is the prefactor
of the transport law [Eq. (2)]. For our grains and fluid, q0 =
544 ± 48 grains/cm/s and θt = 0.167 ± 0.003 [30]. Sim-
ilarly, we define for later convenience the characteristic
sediment discharge Q∗

s as [18]:

Q∗
s = ds

θt q0

μt
, (11)

Physically, Q∗
s can be interpreted as the characteristic dis-

charge of grains across a segment of one grain size. This
quantity depends on the fluid and sediment properties only,
which we did not vary in our experiments. It is 9.5 ±
1.5 grains/s. Finally, in accordance with the above choices,
we normalize the width WT by the grain size ds.

We now plot WT and q̄s as functions of the sediment dis-
charge [Figs. 7(a) and 7(b)]. As expected, these two quantities
increase with the sediment discharge of the river. By fitting
power laws on these observations, we find:

WT

ds
∝

(
Qs

Q∗
s

)α

and
q̄sds

Q∗
s

∝
(

Qs

Q∗
s

)β

(12)

with α = 0.6 ± 0.1 and β = 0.4 ± 0.1. As the two exponents
are about 0.5, we expect the active width WT to be proportional
to the intensity of sediment transport q̄s. If so, the rectangle
that represents the sediment flux in our model should preserve
its aspect ratio as the sediment discharge varies [Figs. 3(d)
and 3(f)]. To check this, we plot the rectangle’s height as a
function of its width, and find that the linear relation

q̄sds

Q∗
s

= cT
WT

ds
(13)

fits our data best for cT = (8.5 ± 0.9) × 10−3 [Fig. 7(c)]. We
expect that the value of this parameter depends on the water
discharge, which we did not vary in our experiments.

For simplicity, we now assume that the exponents α and β

are exactly 0.5, that is [dashed lines, Figs. 7(a) and 7(b)]:

q̄sds

Q∗
s

=
√

cT
Qs

Q∗
s

and
WT

ds
=

√
1

cT

Qs

Q∗
s

. (14)

This assumption enables us to estimate the active width of a
river, based on its sediment discharge Qs only. We do not know

FIG. 7. Average intensity and width of the sediment-flux profiles.
(a) Active width of the channel WT as a function of the sediment
discharge. Blue points: Experimental rivers. Dashed line: Equation
(14) fitted to data. (b) Average sediment flux q̄s as a function of
sediment discharge. Blue points: experimental rivers. Dashed line:
Equation (14) fitted to data. (c) Average intensity of the profile as a
function of the active width of the channel. Blue points: Experimental
rivers. Dashed line: Equation (13) fitted to data.

the physical origin of this relation. In the following, we use it
as an empirical result and investigate how it sets the river’s
cross section.

B. Cross section and slope

Once we know the active width of a river, WT , and the
average intensity of sediment transport, q̄s, we can calculate
the average depth D̄ of the active segment based on the trans-
port law (2). We first invoke the shallow-water approximation,
which translates mathematically into the shear stress being
proportional to D̄. Expressed in terms of the Shields param-
eter, this proportionality reads

θ̄ = ρ f D̄S

(ρs − ρ f )ds
. (15)

Introducing this expression in Eq. (2) and replacing q̄s with
Eq. (14), we get the depth of the active segment,

D̄

D0
= S0

S

(
1 + 1

μt

√
cT

Qs

Q∗
s

)
, (16)

where S0 and D0 are the slope and the depth of the threshold
channel that conveys the same fluid discharge [Eqs. (6) and
(7)]. By definition, these quantities do not depend on the
sediment discharge. Instead, they encapsulate the dependence
of the river’s cross section on the fluid discharge. In Eq. (16),
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however, the actual slope S of the river is still unknown, and,
most likely, depends on the sediment supply. To calculate this
slope, we first write the fluid discharge as the sum of the dis-
charge associated to the active segment, with that associated
to the banks:

Qw = UD̄WT +
∫

banks
UDdy. (17)

To calculate the first term, we replace WT with Eq. (14),
D̄ with Eq. (16), and invoke the lubrication approximation,
according to which the vertical velocity profile is that of a
Poiseuille flow, namely,

U = gD̄2S

3ν
. (18)

The error induced by the shallow-water approximation is far
less critical for the discharge than for the shear stress.

The second term is the contribution of the banks, which are
at the threshold of entrainment. Their shape therefore obeys
Eq. (4), where we replace the threshold slope S0 by the slope
S of the active segment, that is, the slope of the river. The
downstream slope at the banks thus matches that of the active
segment. Following this assumption, we get:

D = DB cos

(
yS

L

)
, with DB = S0D0

S
. (19)

Equation (19) sets the depth DB, and the width πL/S, of
the banks. Both are proportional to the inverse of the slope
and thus decrease with with the sediment discharge. Finally,
Eq. (19) allows us to calculate the contribution of the banks to
the water discharge in Eq. (17), using the lubrication approxi-
mation again [Eq. (18)].

We finally combine Eqs. (16), (17), and (19) to relate the
river’s slope to its water and sediment discharges. In the result-
ing expression, the slope S depends on Qs and Qw implicitly:

(
S

S0

)3

=
⎡
⎣1 + 3

4

dsS

L

√
1

cT

Qs

Q∗
s

(
1 + 1

μt

√
cT

Qs

Q∗
s

)3
⎤
⎦Qw

Q∗
w

.

(20)

According to the above equation, the slope increases with
Qs, in agreement with our qualitative observation [Fig. 8(a)].
Unfortunately, this slope is too small for us to measure it in
our experiments. Nevertheless, Delorme et al. [18] observed a
trend that accords with Eq. (20), although for different grains
in a more viscous fluid.

Using Eq. (20), we can now determine the entire cross
section of our rivers. We find a good qualitative agreement
between the empirical model and our experimental profiles
[Figs. 3(c) and 3(e), dashed lines]. In Sec. VI D, we quan-
titatively compare the river’s width and depth to the present
model. Before that, however, we detail how the banks connect
with the active segment.

C. Junction with the banks

The model exposed in the previous sections implicitly as-
sumes that the profile is discontinuous at the junction between
the banks and the active segment, with a gap of amplitude
δ = D̄ − DB [Fig. 6(a)]. This unrealistic feature results from

FIG. 8. Width and depth of laboratory rivers. (a) Slope as a
function of sediment discharge [Eq. (20)]. (b) Depth as a function of
sediment discharge. Gray line: Banks depth DB [Eq. (19)]. Pink line:
Transport depth D̄ [Eq. (21)]. Points: Experiments. Inset: Disconti-
nuity δ as a function of the sediment discharge [Eq. (22)]. (c) Width
as a function of sediment discharge. Gray line: Total width predicted
by the model of Sec. VI. Gray points: Experimental width. Pink line:
active width [Eq. (14)]. Purple points: Experimental active widths.

our inability to evaluate the continuous variation of the shear
stress along the river bed. Of course, there is no discontinuity
in our experiments, but the above definition of δ still holds.
In practice, it corresponds to a gradual change of depth across
the river, of which the theoretical discontinuity is but a rough
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representation. Using the above definition, Eq. (16) reads:

D̄ = DB

(
1 + δ

DB

)
(21)

with

δ

DB
= 1

μt

√
cT

Qs

Q∗
s

. (22)

When the sediment discharge vanishes, the difference of depth
between the bank and the river’s center vanishes as well
(δ = 0). After equation (22), it increases with Qs, and should
reach about 1.5 ds at most in our experiments [Fig. 8(b),
inset]. Unfortunately, we cannot test this equation directly in
our experiment, because we cannot measure the banks depth,
DB, with decent accuracy. To do so, one would need to fit a
cosine to the banks—a procedure far too unreliable for our
noisy profiles. Instead, in the next section, we turn to the depth
and width of our laboratory rivers.

D. Comparison with experiments

Apart from their discontinuity at the banks, the approx-
imate cross sections we propose look like those of our
laboratory rivers [Figs. 3(c) and 3(e), dashed lines].

To confirm this impression, we compare the depth of our
experiments with their estimate. In our experiments, the trans-
port depth D̄ is indistinguishable from the bank depth DB. The
former, being averaged over the cross section, is measured
with a better precision than the latter. It is therefore the mea-
sured value of D̄ that we compare to the theoretical estimates
provided by Eqs. (19) and (21) [Fig. 8(b)]. We find that most
data points lie between DB and D̄. Within the uncertainty of
our measurements (about 5 ds, Sec. III), the experiments thus
conform to our semiempirical theory.

We now turn our attention to the width of our experimental
rivers. The most intuitive way to measure this quantity is to
locate the points where the river depth vanishes. In practice,
however, this method is sensitive to measurement noise. To
reduce the latter, we prefer to define the width W of a river
as the ratio of its cross-section area to the transport depth D̄,
such that:

W = 1

D̄

∫
D dy (23)

(this width is distinct from the active width, WT , defined in
Sec. VI A: It includes that of the banks). We then rescale WT

with respect to that of the threshold channel, W0, and plot
it as a function of the sediment discharge [dashed gray line,
Fig. 8(c)]. This ratio is 1 for a vanishing sediment discharge,
and increases with sediment discharge, in accordance with
our observations [gray points, Fig. 8(c)]. Within the range of
sediment discharge explored in our experiments, the width of
the river only increases by about 20%.

Equation (23) has the advantage of being linear with re-
spect to the depth profile. Returning to the model of Sec. VI A,
this allows us to decompose the total width of a river into
the sum of the transport width and the width of the banks

[Fig. 8(c)], that is:

W = WT + 2L

S
. (24)

Based on this decomposition, we propose the following inter-
pretation of a river’s adjustment to sediment transport. When a
river transports more sediment, its active segment widens, and
shallows. The banks adjust their depth to this shallowing, and,
their aspect ratio being constant, also narrow as the sediment
discharge increases. As a result, the total width of the river
depends only weakly on the sediment discharge: the narrow-
ing of the banks counters the widening of the active part.
Accordingly, the total width of our laboratory rivers barely
varies with their sediment discharge [Fig. 8(c)].

VII. CONCLUSION

At first order, active laboratory rivers adjust the shape of
their bed so that the flow-induced shear stress remains close to
the threshold of sediment transport. In nature, the shear stress
on the bed of a river seldom exceeds the threshold by more
than 10%, suggesting that natural rivers adjust their cross
section in a similar fashion [38].

The cross section and the sediment flux of our laboratory
rivers organize themselves into a Boltzmann distribution of
which only the partition function depends on the sediment
discharge. We interpret this observation as the macroscopic
signature of the balance between cross-stream diffusion and
gravity [30]. We believe that this statistical equilibrium con-
trols the shape of the river, but we do not, at this point,
understand how this happens.

Anyhow, we find that, in our experiments, a river accom-
modates a larger sediment discharge by widening its center,
where transport occurs, while narrowing its banks. These two
adjustments counteract each other, resulting in a weak varia-
tion of the total width of the river. If this trend holds in the
field, then the width of a river is not a good proxy for its
sediment discharge. We suggest that the aspect ratio is a better
one, because the shallowing and the widening of the river
conspire to amplify its response to sediment transport. In our
experiments, the aspect ratio of the river increases by a factor
2.5 over the range of sediment discharge we have investigated
(Fig. 9).

Although the experiments presented here unambiguously
show that the river maintains the statistical equilibrium of
sediment transport, the process by which this translates into its
morphology still eludes us. How the Boltzmann statistics sets
the river’s cross section, and therefore its aspect ratio, remains
an open question. As a first step, we propose here a simple
model, based on geometrical arguments, which reduces the
problem to a single empirical relation: The transport width is
proportional to the square root of the sediment discharge.

The discontinuous model we built upon this observation
is at odds with the Boltzmann distribution of the traveling
grains, according to which the intensity of sediment transport
decreases continuously toward the banks. If the two are to be
reconciled, then we will need to estimate more accurately the
shear stress the flow exerts on the river bed. This could be
improved by taking into account two-dimensional effects in
the flow—the purpose of current research.
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FIG. 9. Aspect ratio of laboratory rivers as a function of their
sediment discharge. Each point corresponds to an experimental run,
for which we divide the total width of each river [Eq. (23)], by its
depth. Colors are those of Fig. 5. Numbers correspond to experimen-
tal runs. Dashed line: Prediction of the model developped in Sec. VI.
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ADDENDUM
To measure the cross section of our laboratory rivers, we

project a laser sheet on the bed’s surface and infer the shape of
the latter based on its deviation. Doing so in an active channel,
and then in a drained-out one, provides us with the two inde-
pendent measurements we need to calculate the elevations of
the bed and of the water surface.

Pictures from a camera placed above the channel show the
intersection of the laser sheet with the bed’s surface (Canon
700 D). As we do not know the inclination φlaser of the laser
sheet accurately, we first calibrate this setting by holding alu-
minium stairs in the field of view of the camera [the shape of
this machined piece is known accurately: Each step is 1.0 cm
wide and 2.0 mm high, Fig. 10(a)]. After locating the laser
sheet’s projection onto each step [Fig. 10(b), green line], we
relate it to the stairs’ elevation h. The coefficient of this linear

FIG. 10. Calibration of the bed-elevation measurement. (a) Laser
sheet on calibrated stairs. (b) Laser line on the stairs (green) and its
numerically found location (green line). (c) Linear relation between
the height of a step and the corresponding laser deviation [Eq. (25)].

FIG. 11. Measurement of bed elevation and water depth. (a) Side
view of the laser sheet projected onto the river bed. Flow from left
to right. When the channel is bare, the laser line is located on xlaser .
When it is filled with fluid, the laser is deviated to x′

laser by the air-
liquid interface. (b) Location of the laser line while the bed is filled
with fluid (green line). (c) Location of the laser line on a bare bed
(green line). (d) Cross section. Brown: Sediment bed. Blue: Fluid.

relation is the tangent of the laser angle:

h = tan φlaser xlaser. (25)

For the run of Fig. 10, we find φlaser = 27.54◦ ± 0.02◦.
We then remove the stairs to let the laser intersect the

channel’s bed. As the channel is filled with fluid, refraction
deviates the laser line to the position x′

laser [Figs. 11(a) and
11(b)]. The laser line flickers as transported grains cross it.
To mitigate these fluctuations, we record a short movie with
the top-view camera, and average the resulting images over a
few seconds. We then locate the laser line with image analysis
[Fig. 11(b), green line].

At this point, we still have only one measurement (x′
laser),

and two unknown quantities (h and the water depth). We
thus switch off the flow and stop the sediment feeder. As a
result, traveling grains settle within a few seconds, while water
slowly drains out of the channel. Now, the laser line intersects
the bare river bed at xlaser [Figs. 11(a) and 11(c)], from which

053101-9



ABRAMIAN, DEVAUCHELLE, AND LAJEUNESSE PHYSICAL REVIEW E 102, 053101 (2020)

we calculate the bed elevation h using Eq. (25). In practice,
we spatially average the bed elevation by scanning the channel
over about one centimetre streamwise (the channel curves too
much to average the cross section over a longer distance).

Finally, the deviations of the laser line by the fluid, x′
laser −

xlaser, allows us to compute the flow depth,

D = xlaser − x′
laser

1/ tan φlaser − 1/ tan φ′
laser

, (26)

within an accuracy δD = 0.5 mm—slightly less than a grain
diameter. According to the the Snell-Descartes law, the angle

of refraction φ′
laser of the laser line reads:

φ′
laser = π

2
− arcsin

(
1

n
sin

(
π

2
− φlaser

))
, (27)

where n, the refractive index of the water-glycerol mixture, is
1.41 at 20◦C. For run 4, equation (27) yields φ′

laser = 38.9◦.
The position of the flow surface appears noisier than that

of the bed [Fig. 11(d)]. To reduce this uncertainty, we average
the position of the free surface over the channel width, thus
assuming it is horizontal (Fig. 3).
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