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Translational and rotational velocities in shear-driven jamming of ellipsoidal particles

Yann-Edwin Keta1,2,3 and Peter Olsson 1

1Department of Physics, Umeå University, 901 87 Umeå, Sweden
2Département de Physique, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France

3Département de Physique, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France

(Received 22 October 2019; revised 9 June 2020; accepted 5 November 2020; published 30 November 2020)

We study shear-driven jamming of ellipsoidal particles at zero temperature with a focus on the microscopic
dynamics. We find that a change from spherical particles to ellipsoids with aspect ratio α = 1.02 gives dramatic
changes of the microscopic dynamics with much lower translational velocities and a new role for the rotations.
Whereas the velocity difference at contacts—and thereby the dissipation—in collections of spheres is dominated
by the translational velocities and reduced by the rotations, the same quantity is in collections of ellipsoids
instead totally dominated by the rotational velocities. By also examining the effect of different aspect ratios we
find that the examined quantities show either a peak or a change in slope at α ≈ 1.2, which thus gives evidence
for a crossover between different regions of low and high aspect ratio.
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I. INTRODUCTION

Dense collections of circular disks in two dimensions (2D)
and spheres in 3D with contact interaction at zero temperature
have been studied extensively during the past decades with
the aim to understand the jamming transition. Since ordi-
nary molecular dynamics that automatically explores phase
space does not work at zero temperature one has mainly used
two other computational methods. The first is what we call
isotropic jamming, which is the generation of particle pack-
ings with energy-minimization methods in various ways [1–6]
and the second is to model a shear flow by steadily shearing
the system, either quasistatically [7–9] or at different constant
shear rates [10–16].

Since real particles are seldom perfectly spherical an inter-
esting generalization of this model with obvious experimental
relevance is the change from spherical to aspherical particles.
It has already been argued that the spherical limit is singu-
lar [17–20] and the purpose of the present paper is to explore
further consequences of this change to aspherical particles.

In the present paper we do shearing simulations of both
spherical and ellipsoidal particles to examine how the as-
phericity affects the microscopic dynamics. We do find
dramatic effects. Focusing first on aspect ratio α = 1.02, we
find that the ellipsoidal particles have considerably lower
translational velocities and that their rotational motion gets
a different role. Since the quartic modes found in static pack-
ings are primarily rotational in character [21,22] we believe
that these effects are consequences of the quartic modes on
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the shear-driven dynamics. Our work thus focuses on quan-
tities that have not been examined before in the context of
shear-driven elongated particles, which until now have mostly
been analyzed with focus on possible ordering of the parti-
cles [17,20,23] and macroscopic quantities [19,24,25]. When
doing simulations also with a set of larger aspect ratios we find
several quantities to have features at α ≈ 1.2, which suggests
the existence of different regions of high and low aspect ratio.

The organization of this paper is as follows. In Sec. II we
start with an explanation of the origin of the quartic modes
that have been found in packings of nonspherical particles;
we then describe the model and the simulations behind the
results in this paper. In Sec. III we consider almost spherical
particles—particles with aspect ratio α = 1.02—where the
key finding is that already such a small asphericity gives a very
different behavior. In Sec. IV we examine the dependency
on α and present evidence that several different quantities
show a change in behavior at α ≈ 1.2. A summary and some
concluding remarks are given in Sec. V.

Finally, in the Appendixes, we consider several related
matters. In Appendix A we consider the effect of a certain
modification of our model which has been argued to make
it more physical; we find the effect to be very small. In
Appendix B we give some more details behind the behavior
of a key quantity of the paper. In Appendix C we extract
a correlation coefficient from some data presented in one of
the main sections to simplify comparisons with results in the
literature. In Appendix D we present figures that illustrate the
extrapolations to the low shear rate limit for some of the key
quantities in the paper.

II. MODEL AND SIMULATIONS

A. Ellipses and quartic modes

A key result from the study of jamming of spherical par-
ticles is that jamming occurs when the average number of
contacts per particle is just enough to stabilize the degrees of
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FIG. 1. Discussion of ellipses and the quartic modes. The thick
solid lines are the ellipses, whereas the dashed line is a circle with
radius r0.

freedom, according to the isostatic condition, z = 2d f [26,27].
Since rotations become relevant for aspherical particles we
find d f = 6 for general ellipsoids and d f = 5 for ellipsoids
with a symmetry axis (spheroids), which is the kind of par-
ticles studied in the present work. If the isostatic conjecture
were always valid one would expect a jump in z already for a
slight deviation from the spherical limit. It has however long
been known that there is no jump in z [28] and that the systems
are thus hypostatic at jamming, i.e., have a smaller number of
contacts than number of degrees of freedom.

To see how a hypostatic packing can be jammed it is
helpful to consider a contact between two ellipses that barely
touch at their respective waists. (We here consider ellipses for
simplicity but the same reasoning should apply to ellipsoids.)
This contact will then not only hinder the motion of the el-
lipses toward each other but will also hinder their respective
rotations, thus affecting two different degrees of freedom for
each particle. Whereas the interaction energy will be quadratic
in the position coordinate it will instead be quartic—to the
fourth power—in the angle coordinates. To show this, Fig. 1
shows a closeup of two ellipses, x2 + a2y2 = r2

0 , with a < 1,
touching at their waists. The dashed curve is a part of a circle
with radius r0. To show that the relative distance between the
circle and the ellipsoid depends quadratically on the angle
θ , r(θ )/r0 − 1 ∼ θ2, we note that x2 = r2

0 − a2y2 in r2(θ ) =
x2 + y2 becomes

r2(θ ) = r2
0 + (1 − a2)y2.

For a small θ such that y = r0θ this becomes

r2(θ )/r2
0 = 1 + (1 − a2)θ2,

which finally gives

r(θ )/r0 ≈ 1 + 1
2 (1 − a2)θ2. (1)

The fourth power follows since the energy is in turn quadratic
in the overlap. For a jammed collection of particles this mech-
anism leads to a set of quartic vibrational modes [21,22,29],
beside the ordinary modes for which the energy is quadratic
in the displacements. [For a particle with several contacts, not
at their waists, r(θ ) for each contact also has a term linear in
the rotation θ . In force-balanced jammed packings we expect
these linear terms to cancel each other out, such that only the
θ2-dependence remains.] From studies of static packings it has

been found that the number of quartic modes exactly matches
the deviation in contact number from the isostatic value [21].

B. Model and simulations

Our system is a bidisperse collection of particles with
nominal diameters db = 1.4ds, in equal proportion. The par-
ticles are prolate spheroids, i.e., ellipsoids with two equal
minor axes with d (1) > d (2) = d (3). The aspect ratio is α =
d (1)/d (2) > 1. To make the particle volume independent of α

we take the semiaxes to be given by d (1) = α2/3d and d (2) =
d (3) = α−1/3d , where d = db, ds for big and small particles.
The method used to check for particle overlaps is described in
Ref. [17]. For overlapping ellipsoids we define a scale factor
δ < 1 such that the ellipsoids are just barely touching when
they are rescaled by δ, keeping the center of mass position
fixed. The elastic force between overlapping particles is then
given by Fel

i j = keδ(1 − δ)n̂i j/[(ri − r j ) · n̂i j], where n̂i j is a
unit vector pointing inwards to particle i at the point of contact
with particle j.

We take a purely collisional dynamics where dissipation
takes place at the particle contacts. With rC

i, j ≡ rC
j,i the position

of the point of contact of particle i with particle j—a point on
the rescaled ellipsoids—the velocity of the surface of particle
i at this point is

vi
(
rC

i, j

) = vi + vR
i

(
rC

i, j

)
, (2)

where vi is the center of mass translational motion and
vR

i (rC
i, j ) = ωi × (rC

i, j − ri ) is the velocity at the point of con-
tact due to ωi, the rotational velocity of particle i. The velocity
difference at that point is vC

i j = vi(rC
i, j ) − v j (rC

i, j ) and the dis-
sipative force is given by Fdis

i j = −kd vC
i j . The equations of

motion are

miv̇i =
∑

j

[
Fel

i j + Fdis
i j

]
, (3)

Ii · ω̇i =
∑

j

(
rC

i, j − ri
) × [

Fel
i j + Fdis

i j

]
, (4)

where Ii is the moment of inertia tensor. We take ke = 1 and
kd = 1/2 and simulate with N = 1024 particles. The density
(filling factor) is φ = N (d3

s + d3
b )π/(12L3). We take the unit

of length to be equal to ds, the unit of energy to be ke, and the
unit of mass to be ms, and let the particle mass be proportional
to the particle volume. The unit of time is t0 = ds

√
ms/ke.

This model is one of the simplest with a reasonable dy-
namics but it is unusual in that it has no coupling between
the tangential dissipative force and the strength of the elastic
force. In dry friction the tangential dissipative force is related
to the normal elastic force through the relation F dis

t � μF el

and it is interesting to check if a finite μ changes the behavior.
(Our model corresponds to an infinite μ.) However, as shown
in Appendix A, the introduction of a finite μ only gives mi-
nor changes, at the densities of interest, simply because the
dissipating forces are anyway typically much smaller than the
elastic ones.
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FIG. 2. Shear viscosity for spheres, α = 1.00, and ellipsoids,
α = 1.02. Panel (a) shows direct comparisons for shear strain rates
γ̇ = 10−8, 10−6, and 10−4, which show that a small asphericity only
has significant effects at low shear strain rates. Panel (b), which
is the same data plotted vs φ/φJ (α), where φJ (1.00) = 0.648 and
φJ (1.02) = 0.652, shows that the change in σ/γ̇ at small γ̇ can be
understood as an effect of a shift in jamming density. This has also
been found to be the case for spherocylinders in 2D [19].

III. RESULTS FOR A SMALL ASPHERICITY, α = 1.02

A. Crossover for slightly aspherical particles

At high shear rates the particle overlaps are sizable and
could well be comparable to the typical deviation of the par-
ticle surface from the spherical shape. When that is the case
one expects aspherical particles to behave very similarly to the
spherical ones. This is no longer the case at low shear strain
rates where the overlaps are much smaller and the particles
have time to rotate to pack more densely. That there are clear
differences at low shear strain rates is also seen in the jamming
density—which is a quantity that is characterized by the be-
havior in the limit of small shear strain rates—which has been
found to increase linearly with the distance from the spherical
point, φJ (α) − φJ (1) ∼ |α − 1|, in isotropic jamming [28].
One then expects the main effect of the asphericity close to
jamming to be to shift the curves to (somewhat) higher φ [19].

This leads to the expectation of a crossover as the shear
strain rate decreases, from a behavior as in spherical particles
to a different behavior where the asphericity plays a role.
This expection is confirmed in Fig. 2 which is shear viscosity

for spheres and slightly aspherical particles, α = 1.02, for
different shear strain rates, γ̇ . The figure shows that these
two cases behave essentially the same at high γ̇ but become
quite different at lower γ̇ . The shear viscosity of the ellipsoids
at lower γ̇ is somewhat lower than for spheres, which is
consistent with the jamming transition taking place at a higher
density. Figure 2(b) shows that a rescaling of the density can
accommodate this change, by displaying this data vs φ/φJ (α).
We do however stress that this is not the full story. A key
message of the present paper is that there are big differences
in the microscopic dynamics in spite of the small differences
in certain macroscopic quantities.

B. Translational and rotational velocities

A study of the microscopic dynamics shows that the onset
of particle asphericity also gives other effects than a shift of
the jamming transition. A simple and direct way to investi-
gate the dynamics is to determine the ratio of the nonaffine
translational velocity and the rotational velocity, v/ω. v and ω

are here the root-mean-square nonaffine translational velocity
vna

i = vi − γ̇ yix̂ and the root-mean-square rotational velocity

ωi, i.e., v = √〈(vna
i )2〉 and ω =

√
〈ω2

i 〉. Figures 3(a) and 3(b)
show the ratio v/ω vs φ for spherical and ellipsoidal parti-
cles at several different shear rates. For spherical particles,
panel (a), this ratio is to a good approximation independent of
γ̇ and takes values from 0.4 through 0.9 in the density window
of the figure. For ellipsoidal particles, panel (b), the behavior
is similar to that of spheres at low densities but becomes
very different at higher densities, with a dramatic shear rate
dependence and a big drop. The ratio v/ω changes by a factor
of about five for our range of shear rates. As this is for an
asphericity ≡α − 1 of only 2%, the effect is surprisingly big.
As shown in Appendix B the decrease in this ratio is largely
an effect of a smaller v but there is also a contribution from an
increase in ω.

To study the dependence on α in more detail we want to
compare data at the respective jamming densities, φJ (α). For
α = 1.00 we take φJ (1.00) ≈ 0.648 [30] and for α = 1.02 we
take φJ (1.02) = 0.652. The estimate of φJ (α) is discussed in
Sec. IV A. These are approximate values but it turns out that
the (small) uncertainties in φJ (α) are not of any big concern
since the studied quantities depend only slowly on φ.

With the pronounced decrease of v/ω with decreasing γ̇

in Fig. 3(b) it becomes interesting to try to extrapolate to the
limit of vanishing shear rate. At φJ (1.02) = 0.652—which is
also the density where v/ω has its minimum—we fit to con-
stant plus algebraic behavior, v(φJ , γ̇ )/ω(φJ , γ̇ ) = [v/ω]0 +
aγ̇ b. As shown in Fig. 3(c) the fit is good and suggests that
the limiting value is a finite constant, [v/ω]0 ≈ 0.11. This
quantity is also shown for general α in Fig. 6(b).

C. Rotations around different axes

Slowly sheared spherical particles close to jamming dis-
play erratic translational displacements which are needed to
fit into a constantly changing environment. The lower transla-
tional velocity of the ellipsoidal particles suggests a picture
where this translational motion is largely replaced by rota-
tions. Since only the rotations around the minor axes can help
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FIG. 3. Measures of translational and rotational particle veloc-
ities for spheres, α = 1.00, and ellipsoids with α = 1.02. Panels
(a) and (b) show v/ω vs φ for spheres and ellipsoids. [Legends for the
different γ̇ are in panel (d).] For spheres this quantity only depends
slowly on φ but for ellipsoids it decreases in a dramatic way, and even
more so for the lower shear rates. The vertical dashed lines are the
respective φJ . Panel (c) shows an extrapolation of v/ω at φJ (1.02) to
the γ̇ → 0 limit, giving [v/ω]0 ≈ 0.11. Panel (d) shows W , which
is the ratio of the root-mean-square rotational velocities along the
minor axes and the major axis, as described in the main text. The
figure shows that the rotations are predominantly around the minor
axes, which are the ones that can help the particles fit in with their
neighbors.

the particles fit in with their neighbors, one expects these rota-
tions to be more prominent than the rotations around the major
(symmetry) axis. With the rotation vector in the body frame
given by ω̃ = (ω̃(1), ω̃(2), ω̃(3) ), where the major axis is direc-
tion “1,” Fig. 3(d) shows W ≡ [ω̃(2)

rms + ω̃(3)
rms]/2ω̃(1)

rms—from the
respective root-mean-square values—vs φ for different γ̇ . At
low densities this quantity is close to unity, indicating that the
rotations are equally strong around the different semiaxes, but
it increases to higher values around the jamming density. This
increase is small for high γ̇ , reaches more than a factor of two
for our lowest γ̇ , and an extrapolation at φJ , again by fitting
to constant plus algebraic behavior, suggests the γ̇ → 0 limit
W0 = 2.25.

D. Velocity difference at particle contacts

Whereas the quantities discussed above are single-particle
quantities, we now turn to the velocity difference at particle
contacts, and, more specifically, the role of rotations and
translations for these velocity differences. Since the velocity
difference is related to the dissipation, and thereby to the
shear viscosity, this is a quantity with a more direct physical

FIG. 4. Contributions of the different terms of Eq. (5) to (vC
i j )

2—
and thus to the dissipation—for both spheres (open circles, γ̇ =
10−5, no significant γ̇ dependence) and ellipsoids for many different
shear rates, γ̇ = 1 × 10−8, 2 × 10−8, 5 × 10−8, ..., 10−4. The figure
shows the difference between spheres and ellipsoids in two ways. (i)
For spheres the velocity difference is mainly due to the translational
velocity difference and the effect of the rotations—panels (b) and
(c)—is to reduce the velocity difference at contacts. (ii) For ellipsoids
at densities around φJ (1.02) = 0.652 and in the limit of small shear
rates (crosses for γ̇ = 10−8) the velocity difference is mainly due
to the rotational velocity. The translational velocity—panels (a) and
(b)—gives a very small contribution.

relevance than the single particle velocities, and it is also
the quantity that most clearly shows the difference between
spherical and aspherical particles.

For the analysis we use the notation in and after Eq. (2)
and write the contact velocity difference as the sum of
translational and rotational parts, vC

i j = vi j + vR
i j . The contact

velocity difference squared then becomes

(
vC

i j

)2 = v2
i j + 2

〈
vi j · vR

i j

〉 + (
vR

i j

)2
. (5)

The relative contributions of these three terms are shown in
Fig. 4 both for spheres (where the behavior is independent of
γ̇ ) and for ellipsoids at several different γ̇ . We then compare
the behavior of ellipsoids for the lowest γ̇ with the behavior
of spheres. For spheres vC

i j is dominated by the translational
velocities, vi j , and reduced by the rotations, vR

i j , which is seen
by panels (b) and (c) together giving a negative contribution.
The relative contributions of the three terms in Eq. (5) at φ =
0.648 are 1.57, −1.13, and 0.56.

For the ellipsoids the main contribution is from the rota-
tions, vR

i j , and the contribution from vi j is very small. This
is seen by the crosses, which are data for α = 1.02 and γ̇ =
10−8, in the three panels at φJ being close to zero and unity,
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FIG. 5. Determination of our approximate φJ (α). Panel
(a) shows p(γ̇ ) for spheres (big open circles) and 10 different α > 1
at the respective φJ (α) chosen such that each data set is algebraic in
γ̇ to a decent approximation. Panel (b) is φJ (α).

respectively. After extrapolating the three terms of Eq. (5) at
φJ (1.02) = 0.652 to γ̇ → 0 their relative contributions are
found to be 0.04, −0.02, and 0.98, which shows that it is
the rotations that totally dominate the velocity difference.
The translations only contribute 4% of the dissipated power,
whereas the rotations, when including the negative mixed
term, contribute the remaining 96%.

A different way to analyze the data of Fig. 4(b) is given
in Appendix C. The focus is there on the correlation coeffi-
cient which is obtained with a different normalization of the
same data, and it is found that the system changes from vi j

and vR
i j being almost perfectly anticorrelated at low densities,

φ < 0.58, to a very weak anticorrelation at φJ .

IV. SEVERAL DIFFERENT ASPECT RATIOS

For meaningful comparisons of the behavior for several
different aspect ratios we need to examine the behavior at their
respective φJ (α). We therefore first consider the determination
of φJ (α) before turning to analyses of the dependence on the
aspect ratio.

A. Approximate determinations of φJ (α)

The determination of φJ (α) is a difficult task and this is
especially so for small asphericities. Our determination of the
jamming density relies on the fact that the jamming density
is the density where pressure and shear stress at small γ̇

decay algebraically with γ̇ . This simple recipe is however
difficult to use due to both corrections to scaling, finite size
effects, and—especially for the case of small asphericities—a
crossover from spherical behavior at larger shear rates to the
true ellipsoidal behavior, as illustrated in Sec. III A above.
Reliable determinations of φJ need to take all these effects into
account. We here chose to neglect all these complications and
instead determine approximate values of φJ (α) as the densi-
ties where p(γ̇ ; α) behave similarly to p(γ̇ ; 1.00). Behind this
is the assumption that the exponent q in p ∼ γ̇ q for ellipsoids
is not altogether different from the value for spheres; it does
not entail the assumption that the models are in the same
universality class.

FIG. 6. Dependency on the aspect ratio, α. All quantities are ob-
tained after extrapolating to the γ̇ → 0 limit at the respective φJ (α).
Panels (a) and (b) are W0 and [v/ω]0 from Fig. 3. Panel (c) relates
to Fig. 4 and shows the relative contribution to the dissipation of the
three terms in Eq. (5) vs α. (The points for α = 1.00 are not included
since they are far off and would only clutter the figure.) The data in
panel (d) are particle rotations [ωz/γ̇ ]0 due to the shearing. These
figures suggest a crossover to different behaviors at α ≈ 1.2.

Figure 5(a) shows p vs γ̇ both for spheres—big open
circles—and for ten different α > 1 at the determined jam-
ming densities φJ (α). We note that each p(γ̇ , α) is algebraic
and to a decent approximation behaves the same as p(γ̇ , 1).
Panel (b) is φJ (α).

B. Dependence on aspect ratio

We now examine four different quantities at the differ-
ent φJ (α) and extrapolated to the γ̇ → 0 limit, as shown
in Appendix D. Figure 6(a) shows that W0(α)—the relative
rotation around the minor axes—first increases with increas-
ing α, reaches a maximum at α ≈ 1.2, then starts decreasing
and is close to unity at α = 2.5. It is interesting to note
that this peak in W0(α) does not coincide with the maximum
jamming density, which is at α ≈ 1.5 both in determinations
from isotropically jammed packings [28,29] and in the present
study. In panel (b) [v/ω]0 shows a change from one linear
region to another at α ≈ 1.2. In panel (c) which shows the rel-
ative contribution of the different terms in Eq. (5)—excluding
α = 1, which is altogether different—a similar change is also
present, though not equally sharp. Panel (d) shows that the
rotational velocity around the z axis (of the laboratory frame)
associated with the shearing, which is −[ωz/γ̇ ]0 = 1/2 for
spheres, first stays almost constant but then starts decreasing
for α > 1.2. The very low rotational velocity at α = 2.5 is
presumably due to the difficulty for very elongated particles to
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find room to rotate in dense configurations. A decrease of ωz

with increasing asphericity has also been found in simulations
of spherocylinders [20].

The conclusion of a change in behavior at α ≈ 1.2 may
actually also be drawn from Fig. 5(a), which is p vs γ̇ for
several α at their respective φJ (α). By focusing on p at any
constant γ̇ it then appears that p first increases, then reaches a
maximum at α = 1.2 or 1.3, and eventually decreases as α in-
creases further. This is thus in agreement with the conclusions
of Fig. 6. It should however be mentioned that this analysis of
p is not quite as conclusive since pressure is a quantity that
does depend strongly on φ, which means that our uncertainty
in the φJ (α) could be important. This means that we cannot
rule out the possibility of a differently looking curve if the
data had instead been taken at the true φJ (α) rather than at the
φJ (α) from our approximate determination.

V. SUMMARY AND DISCUSSION

To summarize, we have shown that a change from spherical
to slightly ellipsoidal particles with aspect ratio α = 1.02
gives an altogether different microscopic dynamics. Compar-
ing spheres and ellipsoids close to jamming it is found that
the translational velocity is reduced by 80%, and that the rota-
tions get a different role for the ellipsoids, contributing to the
particles ability to fit together. The dramatic difference is also
seen when separating the dissipation into contributions from
the translational and the rotational velocities. For spheres the
dissipation is dominated by the translational motion, whereas
the dissipation in the ellipsoids is instead dominated by the
rotations.

What can now be concluded about the relation between
this different dynamics and the quartic modes? To settle
that question beyond possible doubt would require a study
where both the quartic modes and the microscopic dynamics
were determined simulataneously, which is well beyond the
scope of the present work. When trying to find an explana-
tion for the present findings from properties of isotopically
jammed systems, it does however seem that the presence
of quartic modes is a natural candidate simply because they
are the outstanding difference between packings of ellipsoids
and packings of spheres. What gives additional credibility
to such a conclusion is the observation that this different
dynamics very strongly affects the rotations, which is in agree-
ment with the quartic modes being primarily rotational in
character [21,22]. We therefore conclude that there is strong
evidence for considering the very different dynamics in shear-
driven ellipsoids to be effects of the quartic vibrational modes
on the shear-driven systems.

A second finding is the change in behavior of several
quantities at α ≈ 1.2, which suggests a crossover at this aspect
ratio. We believe that this is an effect of a competition between
two different mechanisms, where the first would give an in-
crease of the rotational motion with increasing α as a means
of fitting into the constantly changing environment and the
second is related to the difficulty of very elongated particles
to find room to rotate in dense packings, which would give a
decrease in the rotational velocity for larger α.

FIG. 7. Comparison of different kinds of dissipative forces. In
dry friction the tangential dissipative force is limited through F dis

t �
μF el. We here compare our data from the main simulations—which
may be described as being produced with μ = ∞—with simulations
with μ = 0.1. At and close to the transition at φ ≈ 0.652 there are
very small changes, though some differences start to be visible below
φ = 0.62.
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APPENDIX A: TANGENTIAL DISSIPATION AS
IN DRY FRICTION

Our model is a generalization of the model in Ref. [31]
to noncircular particles. This model is one of the simplest
possible that includes both contact dissipation and rotation.
An undesired feature of this model is however that the tan-
gential part of the dissipation at a given contact may jump
discontinuously to zero when the particles lose contact. With a
parameter μ that controls the maximum size of the dissipation,
F dis

t � μF el, as in dry friction, our model may be described
as having μ = ∞ since any contact, however weak, will be
able to sustain an arbitrarily big dissipative force, given by the
velocity difference at the point of contact.

Since the model with μ = ∞ can be argued to be unphysi-
cal we have performed additional simulations with finite μ. It
was then found necessary to take a value as low as μ = 0.1
to get any clearly visible changes. Figure 7 is therefore a
comparison of v/ω obtained with μ = 0.1 and the data in the
paper, which are for μ = ∞. Even with such a small μ there
are no significant differences at the density of interest in our
studies, which is around φ = 0.65. The only notable differ-
ence is a dip in v/ω below φ = 0.62, which is well outside of
our region of interest. Looking into the reason for this weak
dependence on μ, one finds that the tangential dissipative
forces are typically much smaller than the elastic forces, at the
densities of interest, which means that taking μ = 0.1 only
affects a small fraction of contacts with the weakest elastic
forces. We therefore conclude that the results and the analyses
of the present paper would not be significantly affected by
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FIG. 8. Translational and rotational velocities for ellipsoidal and
spherical particles. The data are shown at their respective φJ ,
φJ (1.00) = 0.648 and φJ (1.02) = 0.652. Panel (a) shows that the
nonaffine translational velocity at low shear strain rates is much
lower for ellipsoids than for spheres. The rotational velocity, panel
(b), is in contrast somewhat higher for ellipsoids than for spheres.
These behaviors of v and ω together give a dramatic decrease in v/ω,
shown in Figs. 3(b) and 3(c).

instead using a model that couples the elastic and the dissipa-
tive forces.

APPENDIX B: TRANSLATIONAL AND ROTATIONAL
VELOCITIES

To look into the origin of the dip in v/ω in Fig. 3(b)
we now examine v and ω for spheres and ellipsoids with
α = 1.02 at the densities φJ (1.00) = 0.648 and φJ (1.02) =
0.652. Figures 8(a) and 8(b) show v/γ̇ and ω/γ̇ and we
first note that these quantities—open circles in panels (a) and
(b)—behave the same for α = 1.00, which is consistent with
v/ω being essentially independent of γ̇ . In comparison, for
α = 1.02—open squares in panels (a) and (b)—v/γ̇ increases
more slowly than ω/γ̇ , which explains the decrease of v/ω.
The figure shows that it is the lower translational velocity
which is the main reason for the small v/ω of the ellipsoids.

The velocities in Fig. 8 are single-particle quantities. To
complement this, Fig. 9(a) shows the root-mean-square ve-
locity difference at contact, vC

i j , which can be argued to be
a physically more relevant quantity than the single-particle
velocities due to the relation to shear viscosity from power
balance, Nkd (z/2)(vC

i j )
2 = σ γ̇V [32]. Panel (a) shows these

quantities at their respective φJ (α). vC
i j , and thus also the

shear viscosity, is found to be slightly bigger for ellipsoids
than for spheres. (The contact number z, which enters the
relation to the shear viscosity, is also different for the two
cases, but these differences are too small to significantly affect
the comparison.) Figure 9(b) is the same quantity at the same
density, φ = 0.648, for comparison, which shows that the
shear viscosity at the same density and small γ̇ is indeed
lower for the ellipsoids, consistent with expectations since
φJ (1.02) > φJ (1.00).

APPENDIX C: ANTICORRELATION OF vi j AND vR
i j

Figure 4 shows an analysis of the dissipation at contact-
ing particles which was done by splitting up the velocity

FIG. 9. Velocity difference at the point of contact. This is a
quantity which is related to the dissipation and thereby to the shear
viscosity. Panel (a) shows the behavior of spheres and ellipsoids at
their respective φJ . Panel (b) which is data at the same φ for both
cases is included to show that the ellipsoids, at a given density, have
lower contact velocities than the spheres, and thereby also a lower
shear viscosity.

difference on translational and rotational velocity differences.
We here make use of the same data to extract information in a
different way.

The quantity in focus is the correlation coefficient, which is
obtained from the second term in Eq. (5), but with a different
normalization,

gRT =
〈
vi j · vR

i j

〉
vi j vR

i j

. (C1)

Here vi j and vR
i j are the root-mean-square values.

Figure 10 shows that both spheres and ellipsoids have a
region with almost perfect anticorrelation, gRT ≈ −0.996, for

FIG. 10. Correlations between different contributions to the con-
tact velocity difference for both spheres (one set of open circles)
and ellipsoids for several different shear rates. The figure shows
the (anti)correlations between the translational contribution vi j and
the rotational contribution vR

i j to the velocity difference at contacts.
It is found that vi j and vR

i j are almost perfectly anticorrelated at
low densities, φ < 0.58, which means that the rotations almost en-
tirely compensate for the translational velocity differences. For the
spherical particles vi j and vR

i j remain strongly anticorrelated but, for
the aspherical particles at the lowest shear rates, these correlations
almost vanish and the two contributions are almost independent.
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FIG. 11. Extrapolations behind the data in Figs. 6(a), 6(b),
and 6(d).

φ < 0.58. (Note the different density range; φ in Fig. 4 only
extends down to φ = 0.60.) In this region there is Bagnold
scaling, p ∼ γ̇ 2, and the particles have on average less than
two contacts, which means that rotations can almost altogether
compensate for the translational velocity differences. There is
then a jump to a region with Newtonian behavior, p ∼ γ̇ , and a
larger number of contacts, z > 4. It is then no longer possible
for the particles to eliminate the velocity differences by rota-
tions, and the anticorrelation is weaker, down to −gRT ≈ 0.6
around the jamming density. Just as in the other quantities
discussed above, there is essentially no γ̇ dependence for the
spherical particles, and the correlation coefficient is therefore
shown for γ̇ = 10−5, only.

In Ref. [31], Fig. 21, this correlation was explored in a
2D model by means of a scatter plot which suggested an
essentially perfect anticorrelation at low densities [panel (a)]
changing to a weaker anticorrelation at higher densities [panel
(b)]. (In the notation of Ref. [31] Vi j,T is the tangential compo-
nent of the translational velocity difference, which is almost
the same as the full translational velocity difference, here
denoted by vi j .)

As jamming is approached the behavior of ellipsoids again
differs considerably from the behavior of spheres; the corre-
lation coefficient drops dramatically. An extrapolation to the
γ̇ → 0 limit by fitting gRT at φJ to an algebraic behavior
plus a constant gives −gRT

0 = 0.045, which implies that vi j

and vR
i j are almost entirely decoupled from each other, in

sharp contrast to the essentially perfect anticorrelation at low
densities.

APPENDIX D: EXTRAPOLATIONS TO THE γ̇ → 0 LIMIT

Figure 11 shows extrapolations of three different quantities
by fitting to constant plus algebraic behavior. The corre-
sponding constants, W0, [v/ω]0, and [ω/γ̇ ]0, are shown in
Figs. 6(a), 6(b), and 6(d).

A remark is in order regarding the determination of ωz/γ̇

shown in Fig. 11(c): the constant shearing of the system in
the x-y plane leads to a rotational velocity around the z axis
which for spheres is given by ωz = −γ̇ /2. This rotation does
however turn out to be a small signal compared to the erratic
particle rotations, and this makes precise determinations of
ωz difficult. To handle this we have here taken data from
some additional runs with N = 65536 particles that give better
statistics. These runs have however only been done for a few
different α, and this is the reason why there are only five
curves in Fig. 11(c).
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