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Free-energy landscapes of intrusion and extrusion of liquid in truncated and inverted truncated
conical pores: Implications for the Cassie-Baxter to Wenzel transition
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As the simplest model of transition between the superhydrophobic Cassie-Baxter (CB) and Wenzel (W) states
of a macroscopic droplet sitting on a microscopically rough or corrugated substrate, a substrate whose surface is
covered by identical truncated or inverted truncated conical pores is considered. The free-energy landscapes of
the intrusion and extrusion processes of a liquid into single pore are analyzed when the liquid is compressed or
stretched so that the liquid phase is either stable or metastable relative to the vapor phase. Therefore, this model
is also relevant to the stability of the superhydrophobic submerged substrates. In this study, the macroscopic
classical capillary theory is adopted. Even within this simplified model, two simple geometries of truncated
and inverted truncated cones lead to completely different free-energy landscapes. A simple criterion for the
stability of the CB state based on Laplace pressure is shown not to be sufficient to understand the destruction
and recovery of the CB state. The free-energy landscapes indicate that a gradual and an abrupt destruction of CB
state is possible, which depends on the orientation of the conical pore and whether the liquid is compressed or
stretched. The extensions of these theoretical results to more complex geometries are briefly discussed.
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I. INTRODUCTION

Intrusion and extrusion of a liquid in microscale and
nanoscale pores is a fundamental problem of thermodynamics
of liquid in confined space [1–5]. This problem is related to
the wetting and drying of a small pore and heterogeneous
nucleation from a metastable liquid or vapor phase. Recently,
there has been growing interests in addressing this problem
because it is relevant to the engineering [6–9] of the so-called
superhydrophobic (SHP) substrates, which are realized from
the Cassie-Baxter (CB) state [10] of a surface. To fabricate an
SHP Cassie-Baxter (SHP-CB) state, pores of various shapes
randomly or regularly distributed are engraved artificially on
the surface of the substrate to make the substrate rough. If
these pores are completely dry and filled with vapor, then the
liquid on the surface is supported by the cushion formed by
the vapor insides the pores. Furthermore, the substrate shows
superhydrophobicity which is characterized by a contact angle
larger than 150◦ and a small contact angle hysteresis [6–9].

The superhydrophobicity exhibited by the substrate can
deteriorate due to the wetting transition in a pore from a
completely dry CB state to a completely wet Wenzel (W)
[11] state [6–9]. In the W state, all the pores are completely
wet and filled with liquid. Therefore, preventing the wetting
transition of the pore is crucial to achieve a sustainable super-
hydrophbicity. For this reason, the CB to W wetting transition
has attracted considerable attention for the last two decades.
Moreover, the W to CB drying transition is important to un-
derstand the restoration of the SHP-CB state [6,12–17].
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Early theoretical studies [18,19] were based on the clas-
sical Cassie-Baxter model [10] and the Wenzel model [11]
of the apparent contact angle. In these models, the wetta-
bility represented by the intrinsic Young’s contact angle and
the solid-liquid and solid-vapor surface areas, determines the
apparent contact angle, which can be more hydrophobic or
hydrophilic compared to the original Young’s contact angle.
Later, not only the surface area but also the geometrical shape
of the pore is found to be important [6–9,20–22]. The SHP-CB
state can be stabilized by pinning a liquid-vapor interface
(edge effect) at the inlet of a pore and it can be destroyed
by the sagging mechanism [23,24]. However, the simple in-
trusion and extrusion of a liquid into a pore is found to be the
most basic process of the transition between the CB and W
states [6,12–17]. Therefore, the knowledge of the free-energy
landscape and the energy barrier [6,12–17,22,25–29], which
separates both the CB and W states, would be crucial to
understand the stability and recovery of the SHP-CB state.

So far, we have used the CB state and the superhydrophobic
SHP-CB state interchangeably. From now on, we will use
the CB state to represent the completely dry single pore and
the SHP-CB state to represent the superhydrophobic state of
substrate to distinguish between the wetting transition of the
individual pore and that of the substrate.

In this paper, we theoretically study the free-energy land-
scape between the CB and W states of a single pore. In
particular, we assume that the liquid volume above the sub-
strate is large enough to model the CB to W wetting transition
from the intrusion and extrusion of the liquid into a single
pore. Therefore, our model can be used to study the stability of
underwater superhydrophobicity of the substrate [8,16,19,30].
We adopted the classical capillary model for truncated
and inverted truncated conical pores, which are typical
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FIG. 1. Two rotationally symmetric conical pores of (a) a trun-
cated cone with a narrowing radius and (b) an inverted truncated
cone with a widening radius. The opening radius and the depth of the
conical pores are R0 and H , respectively. The rotational axis is the z
axis, and the inner wall has a constant slope a that is represented as
f (z) = R0 ± az.

geometries to extract the effect of pore shape [12,16,17,25].
A detailed atomistic process, which is beyond the scope of
our classical capillary model, will be studied only numer-
ically using the atomic simulations [5,14–16,26,27], or the
microscopic density-functional theory [13,17]. To make our
model as simple as possible, we assume a flat liquid-vapor
interface [21,28]. The line tension [4,28,29,31,32] at the
liquid-vapor-solid triple line is neglected. These two effects
will be discussed briefly at the end of the next section.

II. CLASSIC CAPILLARY MODEL OF PORE WETTING

A. Classical capillary model

We consider the simplest wetting or drying transition by
the intrusion and extrusion of liquid into a truncated conical
pore [9,12,16,28], as shown in Fig. 1(a), and an inverted trun-
cated conical pore [9,17,33] with an overhanging structure,
as shown in Fig. 1(b). We do not consider a more complex
scenario of wetting and drying in which a liquid droplet or
a vapor bubble nucleates independently at the corner of the
pore wall [14,16,26,34]. The nucleation of a liquid droplet or
a vapor bubble is possible when the vapor pressure is high,
or the liquid is highly stretched and metastable under negative
pressure [1].

Free-energy landscape is obtained from the grand potential
G, which describes the thermodynamics of the liquid-vapor-
solid (pore wall) system and depends on the chemical
potential μ and on the temperature T [14,26], as:

G = F − �pV, (1)

by assuming a plausible transition pathway, where V is the
liquid volume inside the pore and �p is the pressure dif-
ference between the liquid and the vapor phase. In fact, the
vapor pressure can be the air pressure by adding the partial
pressure of various gases in air to the vapor pressure of liquid.
Those gases trapped under the liquid will play an important
role in the timescale of the CB to W transition which will
be controlled by the diffusion of those gases. However, we
will not consider the effect of gases or air explicitly since the
free-energy landscape remain the same as long as the total
pressure difference �p remains the same [22,34].

The first term in Eq. (1) given by

F = γlvSlv − γlv cos θYSsl (2)

is the surface free energy, where γlv and Slv are the liquid-
vapor surface tension, surface area, respectively, and Ssl is the
solid-liquid (wet) surface area. The angle θY is the intrinsic
Young’s contact angle defined by the Young’s equation,

cos θY = γsv − γsl

γlv
, (3)

where γsv and γsl are the solid-vapor and solid-liquid surface
tensions, respectively.

Bulk pressure difference �p between the liquid and vapor
phases measures the relative stability of these two phases.
A positive pressure difference �p > 0 corresponds to the
pressurized compressed liquid, which is more stable than the
metastable vapor, while a negative pressure difference �p <

0 corresponds to the stretched metastable liquid and the vapor
is stable [1,2]. A typical example of the former is the CB to W
wetting transition on a underwater SHP substrate [7–9], and
the latter is bubble nucleation, called cavitation, in stretched
liquids [1,2].

We consider a pore with a rotationally symmetric shape
around the z axis, whose surface profile is given by

f (z) = R0 + d (z), (4)

where R0 is the opening radius of the pore and d (z) with
d (0) = 0 represents the surface topology of the pore wall
(Fig. 1).

In this work, we consider the simplest topology of a
straight inclined wall with d (z) = ±az which gives a trun-
cated cone with a narrowing radius [Fig. 1(a)] and an inverted
truncated cone with a widening radius [Fig. 1(b)] character-
ized by

f (z) = R0 ± az, (5)

where a > 0 is the slope of the wall. The negative sign (−)
corresponds to the narrowing pore shown in Fig. 1(a) and the
positive sign (+) corresponds to the widening pore shown in
Fig. 1(b). The slope of a simple cylinder with a vertical wall
is zero, i.e., a = 0.

The truncated cone becomes a simple cone [16,35–37]
when a = R0/H . This conical pore has been attracted special
attentions [35–37] since the wetting transition called the fill-
ing transition can occur. Due to the special geometry of the
two-dimensional wedge and the three-dimensional cone, the
cost of the surface free energy to move a flat liquid-vapor
interface vanishes. Then, the interface will be delocalized
and move to infinity if the liquid and the vapor phases are
thermodynamic equilibrium. The thickness of the liquid layer
adsorbed at the bottom of the wedge or cone will grow to
infinity, and the complete wetting transition is realized. Since
the contact angle between the flat interface and the pore wall
remains finite, this complete wetting transition with nonzero
contact angle is called filling transition [35–37].

In fact, the same filling transition can occur in our truncated
cone when the liquid-vapor interface becomes flat. Therefore,
the filling transition from the bottom of truncated cone can
occur at exactly the same contact angle as in the simple cone.
Similarly, the intrusion of liquid from the top of turncated
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cone occurs without the cost of surface free energy. However,
those transition occurs at the liquid-vapor thermodynamic
equilibrium. Although, those wetting transition can also de-
stroy CB state [14,16,26], we will concentrate on the simple
intrusion and extrusion of liquid under the thermodynamic
nonequilibrium condition �p �= 0 by the compression or the
depression of liquid.

We consider the free-energy landscape of the liquid in-
trusion in (or extrusion from) the pore by assuming the
following. (1) The pinning of the liquid meniscus at the edge
of the pore opening is not considered [23,24], (2) the liquid
does not condense separately at the pore bottom [16,26,38],
and (3) the liquid-vapor meniscus is flat and horizontal
[21,28]. Corrections due to nonflat meniscus and line tension
at the triple line will be qualitatively considered later.

Our model, however, is too simplified for hydrophilic sub-
strates because the pore wall is always wet and covered by a
thin liquid layer [36]. Also, the assumption of a flat meniscus
is less accurate as the contact angle is low. The interaction
between the intruding liquid with the wetting layer enhanced
by the curved meniscus will make our model less reliable, in
particular, in the late stage of wetting when the pore is almost
filled by the liquid.

We first consider the narrowing pore when the position of
the liquid-vapor meniscus in the pore is z (see Fig. 1). The
liquid volume V in Eq. (1) is given by

V (z) = π

∫ z

0
f (z′)2dz′ = π

(
R2

0z − R0az2 + 1

3
a2z3

)
, (6)

and the solid-liquid and the liquid-vapor surface areas are
given by

Ssl = 2π

∫ z

0
f (z′)

√
1 +

(
df

dz′

)2

dz′

= 2πR0

√
1 + a2

(
z − 1

2

a

R0
z2

)
, (7)

and

Slv = π f (z)2 = π (R0 − az)2, (8)

which gives the grand potential

G = γlvπR2
0g(z̃) (9)

from Eq. (1) with the scaled free energy,

g(z̃) =
[

(1 − αz̃)2 − 2 cos θY

√
η2 + α2

(
z̃ − 1

2
αz̃2

)]

− p̃

[
z̃ − αz̃2 + 1

3
α2z̃3

]
, (10)

where

z̃ = z

H
, (0 � z̃ � 1) (11)

and

p̃ = H�p

γlv
, α = aH

R0
, η = H

R0
. (12)

Therefore, the free-energy landscape is characterized by the
scaled pressure p̃, and the shape of the pore is characterized

by two parameters α and η, which represents the steepness of
the wall, and the depth of the pore relative to the size of the
opening, respectively (see Fig. 1).

It is straightforward to study the inverted truncated cone
with a widening radius [Fig. 1(b)] characterized by

f (z) = R0 + az, (13)

from Eq. (5). We can use the formulas derived above for the
inverted truncated cone with a widening radius by changing
the sign of α to negative. A positive α (α > 0) corresponds
to the narrowing pore and a negative alpha (α < 0) to the
widening pore.

As the reference state, we consider the CB state when
z = 0, whose free energy gCB is

gCB = g(0) = 1, or GCB = πγlvR2
0, (14)

and the free-energy difference �G(z) is

�G(z) = G(z) − GCB = γlvπR2
0�g(z̃), (15)

when �g > 0 the CB state is the most stable state and when
�g < 0 the CB state would be metastable. The scaled free
energy �g(z̃) from Eq. (10) becomes a cubic polynomial of z̃,

�g(z̃) = g1z̃ + g2z̃2 + g3z̃3, (16)

where

g1 = −(2α + 2 cos θY

√
η2 + α2 + p̃), (17)

g2 = α(α + cos θY

√
η2 + α2 + p̃), (18)

g3 = − 1
3α2 p̃. (19)

Although the free energy described in Eq. (9) is correct
as long as the liquid-vapor interface does not touch the pore
bottom at z̃ = 1. Once the liquid-vapor meniscus reaches the
pore bottom, the free energy of the filled state given in Eqs. (9)
and (10) does not represent the free energy of the correct W
state since the wetting of the pore bottom is not considered.
Therefore, our model assumes that the bottom surface is cov-
ered with a microscopic vapor layer, which might be true only
when the bottom surface is strongly hydrophobic. We call the
state characterized by the free energy in Eqs. (9)–(19) with
z̃ = 1 as the filled (F) state to distinguish it from the W state.
To consider the W state, we add the following correction

δG = (γls − γsv − γlv )Slv(H ) (20)

to the free energies in Eqs. (9) and (10), where Slv(H ) is the
liquid-vapor surface area at the bottom given by

Slv(H ) = π (R0 − aH )2 (21)

from Eq. (8). Therefore, we have to add the following
correction:

δgW = −(cos θY + 1)(1 − α)2 (22)

to the scaled free energy �gF = �g(z̃ = 1) of the F state to
obtain the scaled free energy �gW of the W state:

�gW = �gF + δgW. (23)

The correction δgW can be interpreted as the adsorption en-
ergy of liquid at the bottom wall. Apparently the adsorption
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energy δgW is always negative since the liquid-vapor interface
disappears. This adsorption energy δgW vanishes only when
the substrate is SHP with θY = 180◦. The F state always has
higher free energy than the W state since δgW < 0. Since the
F state always acts as the free-energy barrier for the W state,
the CB to W and the F to W transitions are always irreversible
in our capillary model.

Therefore, the transition to the W state cannot be described
properly in our model because the free energy is singular
and jumps at z̃ = 1 [12,39]. A more microscopic description
[12,16,26,38] than the macroscopic capillary model to trace
the process of wetting of the bottom wall is necessary to
describe the W state.

It is also possible to study the final stage of wetting or the
initial state of dewetting of the pore bottom using the classical
capillary model by assuming the liquid or vapor nucleation,
for example, from the bottom corner of the pore [17,34,38].
In particular, the macroscopic theory of the filling transition
[35–37] can be applicable when the pore is rectangular and
the bottom corner is the wedge formed by three orthogonal
planes. In our work, however, We only focus on the global
free-energy landscape between the CB and F states.

B. Critical pressure and critical Young’s contact angle

The stability limit of the SHP-CB state is determined from
d�g/dz̃ = 0 or g1 = 0 at z̃ = 0, which gives the critical pres-
sure p̃c:

p̃c = −(2α + 2 cos θY

√
η2 + α2), (24)

which is written as

�pc = −2γlv(a + cos θY

√
1 + a2)

R0
(25)

using the original unit from Eq. (12). When the pore is a
cylinder with straight vertical wall, we obtain the well-known
formula of the force balance of the Laplace pressure,

�pc = −2γlv cos θY

R0
, (26)

by setting a = 0 in Eq. (25).
Figure 2(a) shows the critical pressure p̃c as a function of

Young’s contact angle θY for various shape factors α when
η = 1.5 (H = 1.5R0). The SHP-CB state becomes unstable
when p̃ > p̃c. The submerged pore under the compressed
pressurized liquid corresponds to p̃c > 0, while that under
the decompressed metastable stretched liquid corresponds to
p̃c < 0. The critical pressure becomes positive, i.e., p̃c > 0
only when θY > θc (critical Young’s contact angle), where

θc = cos−1 −α√
η2 + α2

(27)

is determined from p̃c(θY) = 0 in Eq. (24). This critical angle
is the lower bound of θY for which the CB state is stable under
the compressed liquid since the CB state is stable as long
as p̃c > p̃ > 0 [Fig. 2(a)]. This critical angle is alway larger
than 90◦ in the narrowing pore with α > 0, while it is always
smaller than 90◦ in the widening pore with α < 0 in Fig. 2(a)
[see also Fig. 3(a)].
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FIG. 2. The critical pressure p̃c as a function of Young’s contact
angle θY. The CB state will be unstable above these curves when
p̃ > p̃c. (a) For various slope factors α, the bottom two curves with
α > 0 correspond to the narrowing pores, the top three curves with
α < 0 correspond to the widening pores, and α = 0 corresponds
to a straight cylindrical pore. (b) For various depths η, the bottom
three curves correspond to the narrowing pores, and the top three
curves correspond to the widening pores. For a large θY, the critical
pressure will be positive and large. It becomes positive even when
θY < 90◦ for the widening pores with α < 0, which means that the
SHP-CB state will be possible under compressed liquid even when
the substrate is hydrophilic. The critical Young’s contact angle θc in
Fig. 3 is determined from the zero of p̃c = 0.

Therefore, a hydrophobic surface with θY > θc > 90◦ is
always necessary to achieve the SHP-CB state under the com-
pressed liquid in the narrowing pore, while even a hydrophilic
surface with 90◦ > θY > θc is possible in the widening pore
[8,19]. Further, the larger the magnitude of the slope |α| the
higher the critical pressure p̃c in the widening pore. Therefore,
an ink-bottle shape with a narrow neck and a wide bottom
would be favorable for the stability of the SHP-CB state
[8,9,19].

Figure 2(b) shows the critical pressure p̃c as a function of
θY for various pore depths η when α = 0.5 and α = −0.5. The
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FIG. 3. The critical Young’s contact angle θc defined by p̃c = 0
as a function of (a) the shape factor α and (b) the pore depth η. The
CB state would be stable under the hydrostatic pressure with p̃ < p̃c

[see Fig. 2(a)] when θY > θc. The critical angle θc is always smaller
than 90◦ when α < 0 (widening pore), while it is always larger than
90◦ when α > 0 (narrowing pore). It approaches the neutral contact
angle 90◦ when the pore depth or η approaches infinity.

critical pressure is more sensitive to θY when the parameter
η is large or the pore is deep. Apparently, a deep (η = 1.5)
widening pore (α = −0.5) of hydrophobic substrate (θY >

90◦) is the most favorable to increase the critical pressure p̃c.
Figure 3(a) shows the critical contact angle θc as a func-

tion of the shape factor α for varying depths η. The critical
pressure becomes positive p̃c > 0 when θY > θc. The critical
contact angle θc is always larger than 90◦ when α > 0, while
it can be smaller than 90◦ when α < 0. Therefore an inverted
truncated cone (α < 0) can sustain the CB state even when the
substrate is hydrophilic with θc < θY < 90◦. The critical angle
is less sensitive to α when the pore is deep (e.g., η = 3.0)
while it is more sensitive to α when the pore is shallow (e.g.,
η = 0.3).

Figure 3(b) shows the critical contact angle θc as a function
of the pore depth of η. Apparently θc > 90◦ for α > 0 and
θc < 90◦ for α < 0. A shallow (small η) inverted truncated

pore (α < 0) with a large |α| is favorable to reduce θc and
stabilize the CB state under compressed liquid even when the
substrate is hydrophilic.

C. Free-energy landscape

The critical pressure p̃c and, the critical contact angle θc

only indicate the stability of the CB state. It does not nec-
essarily mean that when p̃ > p̃c, the CB state is absolutely
unstable and the completely wet W state is absolutely stable.
For instance, it could be possible to obtain an incompletely
filled pore. Moreover, even when the CB state loses its sta-
bility, it can remain metastable through a free-energy barrier.
Therefore, the information on the free-energy landscape and
the free-energy barrier between the CB and the W states would
be necessary to evaluate the stability of the CB state. This
would be helpful in designing sustainable SHP.

Since the free-energy difference in Eq. (16) is a cubic
polynomial of z̃ given by

�g(z̃) = ( p̃c − p̃)z̃ − α

(
p̃c

2
− p̃

)
z̃2 − 1

3
α2 p̃z̃3, (28)

it has two extrema at z̃1 and z̃2 determined from d�g/dz̃ = 0.
They are

z̃1 = 1

α
, (29)

which is unphysical because z1 � 1 when 1 � α � 0 and z1 �
0 when α � 0, and

z̃2 = z̃ex = 1

α

(
1 − p̃c

p̃

)
, (30)

which is a physically meaningful extremum, i.e., z̃ex = z̃2 if
p̃ > p̃c when α > 0 and p̃ < p̃c when α < 0. Therefore, the
free energy in Eq. (28) has only one extremum at z̃ex where
the free energy becomes

�gex = − ( p̃ − p̃c)2(2 p̃ + p̃c)

6α p̃2
, (31)

which corresponds to the minimum when �gex < 0 and the
maximum when �gex > 0. Note that �g = 0 when z̃ = 0 (CB
state).

At the extremum given by Eq. (30), the radius of the circu-
lar contact line Rex = f (z̃ex) is given by

Rex = R0(1 − αz̃ex) = R0
p̃c

p̃
, (32)

which gives an equation similar to that of the Laplace pressure

Rex = −2γlv(a + cos θY

√
1 + a2)

�p
(33)

in the original unit in Eq. (12).
Figure 4(a) shows the free-energy landscape between z̃ = 0

(CB state) and z̃ = 1 (F state and not exactly the W state) of
a truncated conical pore with a narrowing radius of α = 0.3
and η = 1.5. Further, the pore wall is made up of a hydropho-
bic nonwettable substrate with θY = 120◦ > θc = 101.3◦. The
free energy �gW = �gF + δgW of the W state is always lower
than that of the F state �gF = �g(z = 1) by the amount
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FIG. 4. The free-energy landscape between z̃ = 0 (CB state)
and z̃ = 1 (F state) of a truncated cone with α = 0.3 and η =
1.5 when the substrate is (a) hydrophobic (θY = 120◦ > θc =
101.3◦) and (b) hydrophilic (θY = 60◦ < θc = 101.3◦). The adsorp-
tion energy in (a) is δgW = −0.245 and in (b) is δgW = −0.735
indicated by the down arrow at z̃ = 1. Therefore, the free energy
of the W state �gW is always lower than that of the filled F
state with �gF = �g(z̃ = 1). In (a) the applied pressure is p̃ =
p̃c(0.930), 1.00, p̃e(1.08), 1.20, p̃s(1.33), and in (b) the applied
pressure is p̃ = p̃s(−3.04), −2.70, p̃e(−2.48), −2.30, p̃c(−2.13)
from the top to the bottom.

δgW = −0.245 from Eq. (22), which is large in the scale of
Fig. 4(a).

By compressing the liquid from zero pressure, the CB state
becomes unstable at the critical pressure p̃c = 0.930. Even
at this pressure, the free energy of the F state is positive
[�gF = �g(z̃ = 1) = 0.112]; however, the free energy of the
W state becomes negative (�gW = �gF + δgW = 0.112 −
0.245 = −0.113). Therefore, the W state has a lower free
energy as compared to that of the CB state. Therefore, the
free energy of the F state acts as the energy barrier to prevent
the CB to W transition [Fig. 4(a)].

As the pressure p̃ increase, the liquid starts to intrude into
the pore but does not completely fill the pore. Instead, the
liquid-vapor meniscus is trapped at the free-energy minimum

[Fig. 4(a)] given by Eq. (30). With the further increased in
pressure, the liquid further intrude into the pore. Then the free
energies at z̃ = 0 (CB state) and at z̃ = 1 (F state) become
equal at p̃e = 1.08 when �gF = �g(z̃ = 1) = 0, which gives

p̃e = 3(2 − α)

2(3 − 3α + α2)
p̃c. (34)

Equation (34) does not represent the pressure when the free
energies of the CB state and W states become equal. This
pressure p̃CB−W is determined from �gW = 0 in Eq. (23),
which gives

p̃CB−W = p̃e − 3(cos θY + 1)(1 − α)2

3 − 3α + α2
. (35)

Note that we always have p̃e � p̃CB−W. The equality p̃e =
p̃CB−W holds only when θY = 180◦. Figure 4(a) indicates that
the W state cannot be attained even at pe because the F state
acts as the energy barrier.

Figure 4(a) indicates that there is a possibility of the first-
order phase transition to the W state not from the completely
dry CB state but from the partially filled CB state at the
free-energy minimum ze given by Eq. (30). The pressure
p̃ where this transition become possible will be determined
from �gW = �gex from Eqs. (23) and (31), which leads to
the cubic equation for the pressure p̃ and the solution which
satisfies p̃c < p̃ < p̃s corresponds to the pressure at which the
first-order transition from the partially filled CB state to the
completely filled W state take place. We will not consider this
problem further and will concentrate on the global character
of the free-energy landscape.

The depth of the free-energy minimum near z̃ = 0.5 can be
estimated from Eq. (31) which gives �gex � −0.034 at p̃e =
1.08 in the scaled unit and |�Gex| = 0.034πγlvR2

0 in the origi-
nal unit [Eq. (15)]. Suppose R0 = 10 nm and γlv = 73 mJm−1

(water), we then obtain |�Gex| � 7.8 × 10−19 J, which is two
orders of magnitude larger than the thermal energy kT . As
a result, the thermal fluctuation of the liquid-vapor interface
would be small and the interface would be trapped at the
free-energy minimum.

When the applied pressure p̃ increases beyond p̃e = 1.08,
the liquid-vapor interface moves toward z̃ = 1; however it is
still trapped at the free-energy minimum given by Eq. (30).
Finally, when the position of the minimum reaches the pore
bottom and z̃ex = 1 in Eq. (30), which is realized by the
pressure p̃s given by

p̃s = p̃c

1 − α
, (36)

the CB state reaches the real stability limit; thus the F state
with z̃ = 1 will be realized. Subsequently, the pore bottom
would be wet, and the F to W transition would occur. Con-
sequently, the CB to W transition would occur because the W
state always has a lower free energy that the F state (�gW <

�gF). Hence, the pore would be completely filled and wet.
The pressure p̃s is higher for a larger α [Eq. (36)] and

becomes infinitely large for a conical-shaped pore [16] with
α = 1. The free-energy landscape in Fig. 4(a) provides a com-
plete picture of the intrusion of the liquid into the truncated
conical pore. In other words, it describes the collapse of the
SHP-CB state from the applied pressure. The CB state does
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not collapse suddenly at p̃c, which is indicated by the classic
formula in Eq. (25). Rather, the collapse occurs by the gradual
intrusion of the liquid-vapor meniscus. The completely filled
and wet W state might be realized at p̃s > p̃c but not at
p̃c. This collapse of the CB state is irreversible because the
adsorption energy δgW acts as the energy barrier in the W to
F dewetting transition.

Figure 4(b) shows the free-energy landscape between z̃ =
0 (the CB state) and z̃ = 1 (the F state) of a truncated coni-
cal pore with a narrowing radius α = 0.3 and made up of a
hydrophilic wettable substrate with θY = 60◦ < θc = 101.3◦
and η = 1.5. The free energy of the W state is always lower
than that of the F state by the amount δgW = −0.735 obtained
from Eq. (22), which has magnitude larger than that of the
hydrophobic substrate in Fig. 4(a) (−0.245).

The convex free-energy landscape shown in Fig. 4(b) is
completely different from the concave landscape in Fig. 4(a).
When the liquid is weakly decompressed, the F state remains
stable; however, the unstable CB state becomes metastable
at p̃c = −2.13. When the liquid is further decompressed, a
free-energy barrier between the CB and F states starts to
develop. The free energies of the CB and F states become
equal at p̃e = −2.70 [Fig. 4(b)]. However, there remains a
free-energy barrier of height similar in magnitude to the depth
of the free-energy well shown in Fig. 4(a). Since the free
energy of the W state is always lower than that of the CB state,
the W state is stabler than the CB state at p̃e. As the pressure
p̃ becomes more negative, the CB state becomes more stable
compared to the F state; however, the W state remains the
most stable.

Finally, the free-energy barrier between the CB and F
states vanishes, and the F state has a higher free energy
�gF = �g(z̃ = 1) = 0.411 than that of the CB state at p̃s =
−3.04, which is similar to the spinodal of the first-order phase
transition [1,2]. However, the free energy of the W state is
�gW = 0.411 − 0.735 = −0.324; hence, the W state is still
more stable than the CB state. Therefore, the spontaneous
transition from the W state to the CB state will not occur, and
the SHP-CB state will not be recovered.

Figure 5 shows the three pressures p̃c, p̃e, and p̃s [Eqs. (24),
(34) and (36)], which characterize the free-energy landscape,
for the truncated cone with α = 0.3 [Fig. 5(a)] and the
inverted truncated cone with α = −0.3 [Fig. 5(b)]. These
pressures are positive when θY > θc and negative when θY <

θc. The former condition corresponds to the pore under the
compressed liquid, and the latter condition corresponds to
the pore under the decompressed liquid. The orders of these
three pressures change at θY = θc, which lead to the inverted
free-energy landscape shown in Figs. 4(a) and 4(b). Moreover,
the orders for the narrowing pore (α = 0.3) and that for the
widening pore α = −0.3 are reversed, which will further lead
to the inverted free-energy landscape for the inverted trun-
cated cone, as shown in Fig. 6. In addition, Fig. 5 shows the
pressure p̃CB−W [Eq. (35)], where the free energies of the CB
and the W states becomes equal.

Figure 6(a) shows the free-energy landscape for the ink-
bottle shaped inverted truncated conical pore with a widening
radius of α = −0.3 and η = 1.5. The pore wall is made up
of a nonwettable substrate with θY = 120◦ > θc = 78.7◦. In
this case, the critical Young’s contact angle is θc = 78.7◦,
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FIG. 5. Three pressures p̃c, p̃e, and p̃s, which characterize the
free-energy landscape, and p̃CB−W for (a) the truncated cone with
α = 0.3 and (b) the inverted truncated cone with α = −0.3 (upper
three curves) when η = 1.5. Three pressures are always positive
when θY > θc and negative when θY < θc. Their order also changes
at θc. The different order of those three pressures leads to the com-
pletely different and inverted free-energy landscapes in Figs. 4 and
6. The pressure p̃CB−W is generally smaller than the three pressures.

therefore, the hydrophilic pore (θY < 90◦) can sustain the
CB state under the positive pressure p̃ > 0 as far as θY > θc.
The evolution of convex free-energy landscape in Fig. 6(a) is
completely different from concave one in Fig. 4(a); however,
it is similar to the free-energy landscape in Fig. 4(b). The
orders of the three pressures p̃c, p̃e, and p̃s are reversed (see
also Fig. 5, upper tree lines). The free energy of the W state
�gW is lower than that of the F state �gF = �g(z̃ = 1) by
δgW = −0.845 [Eq. (22)], which is almost the entire energy
scale of Fig. 6(a).

When the pressure p̃ increases, the unstable filled F state
at z̃ = 1 becomes metastable at p̃s = 1.64 while the CB state
remains stable relative to the F state. In fact, the W state
has a much lower free energy �gW = �gF + δgW = 0.270 −
0.845 = −0.575 as compared to that of the CB state. As
a result, the W state is absolutely stable and the CB state
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FIG. 6. The free-energy landscape between z̃ = 0 (CB state) and
z̃ = 1 (F state) of the inverted truncated cone with α = −0.3 and
η = 1.5 when the substrate is (a) hydrophobic (θY = 120◦ > θc =
78.7◦) and (b) hydrophilic (θY = 60◦ < θc = 78.7◦). The adsorp-
tion energy in (a) is δgW = −0.845 and in (b) is δgW = −2.535.
Therefore, the free energy of the W state �gW is always lower
than that of the F state �gF = �g(z̃ = 1). In contrast to Fig. 4,
they are beyond the scale of the figure. In (a) the applied pressure
is p̃ = p̃s(1.64), 1.75, p̃e(1.84), 2.00, p̃c(2.13), and in (b) the ap-
plied pressure is p̃c(−0.930), −0.850, p̃e(−0.804), −0.750, p̃ =
p̃c(−0.715) from the top to the bottom.

is metastable. As the pressure is further increased, the free
energy of the F state decreases and the free-energy barrier
develops between the CB and the F states. When the ap-
plied pressure reaches p̃e = 1.84, the free energies of the
completely filled F and completely empty CB states become
equal. However, the free-energy barrier exists between the CB
and the F states. The magnitude of the free-energy barrier at
p̃e = 1.84 in Fig. 6(a) and that at p̃e = −2.48 in Fig. 4(b)
are on the same order of magnitude. Therefore, the CB state
would remain stable compared to the F state as long as the
free-energy barrier remains larger than the thermal energy.

Finally, at the critical pressure p̃c = 2.13, the CB state
becomes completely unstable and the F state is realized. Sub-

sequently, the bottom surface becomes wet spontaneously and
the completely filled W state is realized. In contrast to the
narrowing pore in Fig. 4(a) where the CB state collapses
continuously, the collapse would occur abruptly at p̃c in the
widening pore in Fig. 6(a). The prediction of the critical
pressure p̃c in Eq. (25) is correct in this widening pore.

Figure 6(b) shows the free-energy landscape for the wet-
table substrate with θY(= 60◦) < θc(= 78.7◦), α = −0.3, and
η = 1.5. The critical pressure p̃c = −0.93 and it is negative;
hence, the liquid must be decompressed and metastable [1,2].
The evolution of the free-energy landscape in Fig. 6(b) is very
similar to that in Fig. 4(a). The free energy of the W state �gW

is lower than that of the F state �gF by δgW = −2.535 [from
Eq. (22)], which is beyond the scale of Fig. 6(b).

Since the substrate is wettable, the W and F states are more
stable than the CB state at a positive pressure. As the liquid
is decompressed to a negative pressure, the F state becomes
metastable at p̃s = −0.715. As the liquid is further decom-
pressed, a free-energy minimum appears between the F state
at z̃ = 1 and the CB state at z̃ = 0, which moves toward the
CB state. Finally, when the pressure p̃c = −0.930, the local
minimum reaches the top of the pore at z̃ = 0. Although the
F state has a higher energy as compared to that of the CB
state, the free energy of the W state is �gW = �gF + δgW =
0.167 − 2.535 = −2.368; hence, the W state is more stable
than the CB state. The CB state cannot be recovered simply
by deep decompression. In fact, the adsorption energy δgW

always acts as the free-energy barrier to prevent the W to F
dewetting transition.

D. Discussion

When the size of the pore is in nanoscale, the line tension
in addition to the surface tension might play some role in the
evolution of free-energy landscape [4,28,29,31,32]; therefore,
the line tension τ need to be included in the free energy, which
is written as

F = γlvSlv − γlv cos θYSsl + τLslv, (37)

instead of Eq. (2), where Lslv is the perimeter of the three-
phase contact line. In our truncated conical pore with a
narrowing radius, for example, the last term of Eq. (37)
becomes

τLslv = τ2π f (z) = 2πτR0(1 − αz̃), (38)

which gives a correction to the first-order term of z̃ in the
scaled free energy in Eq. (10), and Eq. (17) is modified to

g1 = −[2α(1 + τ̃ ) + 2 cos θY

√
η2 + α2 + p̃] (39)

with

τ̃ = τ

γlvR0
. (40)

If τ̃ � 1, then the effect of line tension can be safely ne-
glected. Suppose R0 = 10 nm, γlv = 73 mJm−1 (water), and
τ = 10−11 N (typical magnitude), we find τ̃ ∼ 0.014. There-
fore, this effect can be safely neglected. Even when the effect
of line tension cannot be neglected, the line tension only
affects the critical pressure in Eq. (24) from Eq. (39). The
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FIG. 7. Correction due to the spherical liquid-vapor surface,
which contributes to the volume V and the surface area Slv. However,
the free energy remains a cubic polynomial of z̃.

line tension will not change the main characteristics of the
free-energy landscape �g(z̃) because it will remain a cubic
polynomial of z̃.

In our model we assumed a flat liquid-vapor interface
[21,28]; however, it is possible to consider a spherical surface.
The volume collection �V due to the truncated sphere shown
in Fig. 7 is given by

�V = π

3
f (z)3 (1 − cos φ)2(2 + cos φ)

sin3 φ
, (41)

and the liquid-vapor surface area will be modified such that

Slv = 2π f (z)2 1 − cos φ

sin2 φ
, (42)

where φ is the angle between the liquid-vapor meniscus and
the horizontal plane (Fig. 7). It is related to Young’s contact
angle θY through

φ = θY − ψ, (43)

where ψ is the angle of the bottom corner of the pore (Fig. 7).
Even with the two corrections in Eqs. (41) and (42), the free
energy is still described by a cubic polynomial of z̃. The
qualitative feature of the free-energy landscapes in Figs. 4(a)
and 4(b) and Figs. 6(a) and 6(b) will not change.

When the size of the pore is truly nanoscale, the disjoining
pressure (DJP) or the surface potential has to be included
[28]. Then, we need to determine the liquid-vapor meniscus
by solving the Euler-Lagrange equation [12]. A more micro-
scopic approach, such as molecular simulations [5,14,15,26]
or microscopic density-functional calculation [13,17] would
also be necessary. Certainly, not only quantitative but also a
qualitative difference between the microscopic calculations
and our macroscopic model would emerge. For example,
due to the DJP, the atomic-scale wetting film always exists
[40–42]; hence, the apparent pore space would be narrower.
There is also a possibility to observe heterogeneous nucle-
ation of droplets [16,26] and bubbles [15] at the bottom
corner of the pore. The singularity of the W state and the
discontinuous transition from the F state to W state would be
naturally resolved by the effect of the DJP. These topics are
certainly important when the pore size is truly nanoscale and

(b) (c)(a)

Cassie-Baxter wetting

Wenzel wetting

FIG. 8. (a) Truncated cylindrical pore with rough inner wall with
the microscopic Cassie and the Wenzel wettings. [(b) and (c)] Two
reentrant structures made from two truncated cylindrical pores.

the pressure is high; however, they are beyond the scope of
our macroscopic capillary model.

Finally, we consider the extension of our simplest con-
ical pore models briefly. To achieve SHP state, it is well
recognized that the hierarchical structure, which increases
the solid-liquid surface area, would be advantageous when
the substrate is hydrophobic [9,17,21,28,43]. It is possible to
extend our simplest model and introduce substructures [17]
as shown in Fig. 8(a). For instance, the wetting of these
microscopic structures is modeled by the microscopic wetting
models [10,11] [Fig. 8(a)] with the apparent averaged contact
angles. If the vapor is trapped in those substructures and we
can average the contact angle over the rough surface, then the
Young’s contact angle θY should be replaced by the apparent
contact angle θCB given by

cos θCB = −1 + fs(cos θY + 1) (44)

of the traditional CB model [7,10,43], where fs < 1 is the
fraction of wet surface area. Alternatively, we assume that the
liquid fill these substructures [25]. The Young’s contact angle
θY should be replaced by the apparent contact angle θW given
by

cos θW = r cos θY (45)

of the traditional W model [7,11,44], where r > 1 is the so-
called roughness factor. Then Young’s contact angle θY of the
previous subsections must be replaced by either θCB or θW.
Indeed, it is possible to consider a microscopic intermediate
wetting state between the CB and the W models [7].

Therefore, an inherently hydrophobic pore wall with θY >

90◦ (cos θY < 0) becomes more hydrophobic with cos θW <

cos θY < 0 [7,44] and cosCB < cos θY < 0 [7] (Fig. 9). Both
the CB and the Wenzel models of the microstructures make
the pore wall more hydrophobic; therefore, the models are
advantageous for the stability of the SHP-CB state. In con-
trast, when the substrate is hydrophilic (cos θY > 0), only
the CB model of the pore wall makes the apparent contact
angle more hydrophobic (cosCB < 0); therefore, the stability
of the SHP-CB state will be enhanced. Thus, the roughness
of the pore wall or the so-called hierarchical structure could
be advantageous to achieve the SHP-CB substrate particularly
when the wall is intrinsically hydrophobic.

Of course, the prediction of the W and CB model needs
to be considered carefully since the apparent contact angels
in Eqs. (44) and (45) of the W and the CB models are the
averaged angle which does not take into account the micro
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FIG. 9. The cosine of the apparent contact angle θCB of the
Cassie-Baxter model given by Eq. (44) when fs = 0.6 and θW of the
Wenzel model given by Eq. (45) when r = 1.6.

structure of the roughness. In fact, it is well recognized that
the hydrophobic substrate from hydrophilic materials requires
roughness with reentrant structure [14,45]. The Wenzel and
the Cassie-Baxter models are macroscopic model so that the
range of applicability is certainly limited.

It is also possible to consider the reentrant structures shown
in Figs. 8(b) and 8(c). The evolution of the free-energy land-
scape will be the combination of that of the interface trapping
in Figs. 4(a) and 6(b) and that of the barrier crossing in
Figs. 4(b) and 6(a). For example, the free-energy landscape
for the hydrophobic reentrant structure in Fig. 8(b) would be
the combination of Figs. 4(a) and 6(a). Therefore, as the liquid
intrudes into the pore, the liquid-vapor interface advances by
the interface trapping followed by the barrier crossing. How-
ever, for the hydrophobic reentrant structure in Fig. 8(c), the
order of the free-energy landscape changes to that in Fig. 6(a)
followed by Fig. 4(a).

Similarly, the free-energy landscape for the hydrophilic
reentrant structure in Fig. 8(b) would be the combination
of Figs. 4(b) and 6(b). On the other hand, the free-energy

landscape for the hydrophilic reentrant structure in Fig. 8(c)
would be the combination of Figs. 6(b) and 4(b). Therefore,
more complex free-energy landscape will be expected for the
reentrant structure whose components are simple truncated
cones.

III. CONCLUSION

In this study, we considered the intrusion and extrusion
of liquid into a truncated conical pore [9,16,28] and an in-
verted truncated conical pore [9,17,33]. The intrusion of liquid
corresponds to the destruction of the SHP-CB state, and the
extrusion of liquid corresponds to the destruction of the W
state and the recovery of the SHP-CB state. We found that
the simple criterion of the stability of CB state based on the
classical Laplace pressure cannot describe the details of these
processes.

In the truncated conical pore with hydrophobic substrate
under the compressed liquid, the destruction of SHP-CB oc-
curs gradually by the movement of the liquid-vapor interface
as the liquid is pressurized. When the substrate is hydrophilic,
and the liquid is decompressed, the recovery of the SHP-CB
cannot occur since the adsorption energy of liquid on the
bottom wall of the pore always prevent the dewetting.

In contrast, in the inverted truncated conical pore with
hydrophobic substrate under the compressed liquid, the
destruction of SHP-CB state occurs abruptly since the free-
energy barrier exists. However, the recovery of SHP-CB state
under the decompressed liquid cannot occur as the adsorption
energy always prevent the dewetting. Therefore, the geometry
of the pore will strongly influence the intrusion and extrusion
processes of the liquid in the pore. These knowledge would be
useful to understand and design functional superhydrophobic
substrates.
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