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Molecular model for nematic, smectic-A, and smectic-C liquid crystals
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We analyze a molecular model to describe the phase transitions between the isotropic, nematic, smectic-A, and
smectic-C phases. The smectic phases are described by the use of a pair potential, which lacks the full rotational
symmetry because of the cylindrical symmetry around the smectic axis. The tilt of the long molecules inside the
smectic layers is favored by a biquadratic pair potential, which compete with the pair potential of the McMillan
model. The part of the phase diagram showing the first three phases is similar to that of the McMillan molecular
model. The smectic-C phase is separated from the nematic by a continuous phase transition line along which the
tilt angle is nonzero. The tilt angle vanishes continuously when one reaches the line separating the smectic-C
and the smectic-A line.
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I. INTRODUCTION

The phase transition from the most prominent of the liquid
crystal mesophases [1–4], the nematic, to the isotropic phase
is well described by the molecular theory proposed by Maier
and Saupe [5]. The fundamental assumption of their theory
concerns the form of the potential energy of any molecule i,
which they have assumed to be proportional to qSi where Si

is defined by

Si = 1 − 3
2 sin2 θi, (1)

where θi is the angle between the axis of the molecule and one
of the axes of a frame of reference, and q is the mean field due
to the neighboring molecules, given by

q = 〈S j〉, (2)

assumed to be the same for all molecules and understood as
the order parameter of the nematic phase. Maier and Saupe
theory predicts a discontinuous phase transition with a jump
of the order parameter.

The theory of Maier and Saupe was extended to the case
of biaxial nematic phases by Freiser by using a quadrupole
interactions between molecules [6]. The interaction between
two molecules is assumed to be proportional to the trace of
�̂i �̂ j where �̂i is a quadrupole field variable associated to
molecule i, represented by a tensor of the second rank. If
the tensor has three distinct eigenvalues, it describes biaxial
molecules, which is the case of the Freiser model. Following
de Gennes [1], �̂i is chosen to be a traceless tensor so that the
nematic tensor order parameter is

Q̂ = 〈�̂i〉. (3)

The pair interaction, in accordance with the molecular theo-
ries, is assumed the be proportional to the trace of Q̂ �̂i. The
Freiser model predicts a discontinuous phase transition from
the isotropic to each one of the two types of uniaxial nematic

phase, and a continuous phase transition from each one of
the two phases to the biaxial nematic phase. It also predicts
a multicritical point where the four phases meet, known as
Landau point [7]. When two eigenvalues of �̂i become equal,
the model is reduced to the Maier and Saupe model, in which
case �̂i is an axially symmetric traceless tensor describing a
uniaxial nematic phase.

A smectic liquid crystal is structured in layers with nematic
order inside each layer. If the director n, a unit vector that
defines the nematic orientation, in each layer is perpendicular
to the layers, we are faced to a smectic-A structure. A molec-
ular theory for the transition between nematic and smectic
phases was formulated independently by Kobayashi [8,9] and
by McMillan [10] and was based on the molecular theory of
uniaxial nematic of Maier and Saupe [5]. The interaction is set
up by coupling the field variable Si of Maier and Saupe with a
field variable cos ξi describing the modulation in density along
the axis of the smectic layers.

The potential energy of a molecule i within the McMillan
molecular theory is proportional to qSi cos ξi where

σ = 〈S j cos ξ j〉 (4)

is the McMillan order parameter describing the smectic-A
phase [10]. The McMillan theory predicts a continuous tran-
sition between the nematic and smectic-A that ends on a
tricritical point. Beyond this point, the transition between
these two phases is discontinuous. It also predicts discontin-
uous transition lines between the isotropic and smectic-A and
between the isotropic and nematic, which meet at triple point.

If the director in each layer is tilted with respect to the axis
of the layers, the liquid crystal structure is called smectic-
C. The smectic-C phase is appropriately characterized by
the vector s which is the projection of the director n onto
the smectic layer plane and may be understood as the order
parameter of the smectic-C phase [11]. Several molecular
models for the transition between the smectic-C and the
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smectic-A have been proposed [11–21]. These transitions have
also been treated by the Ginzburg-Landau theory [22–28]
and the Landau theory [29–41]. Some of these models pre-
dict a continuous phase transition between the smectic-A and
smectic-C phases. The transition between the nematic and
smectic-C is also continuous but the tilt angle along the tran-
sition line is nonzero and vanishes at the point where the three
phases meet.

In this paper we propose a molecular model for the
smectic-C that is distinct from previous molecular models in
the use of an appropriate treatment of the spatial symmetries
related to the pair potential. In a nematic phase, the pair
potential is symmetric under any spatial rotation, that is, the
interaction

Tr(�̂i �̂ j ) (5)

is invariant under the simultaneous rotation of both �̂i and �̂ j .
The nematic phase arises by a spontaneous symmetry break-
ing of this symmetry. In a smectic phase the pair interaction
should not have the full rotation symmetry due to the presence
of the smectic axis, the axis perpendicular to the smectic
layers, but it holds the invariance under rotation around the
smectic axis. In a smectic-A phase, this cylindrical symmetry
is still present but in a smectic-C phase it is spontaneously
broken.

If the invariance of the pair potential is valid only for
rotations around the smectic axis then the appropriate form
of the pair potential is either

(�̂i �̂ j )xx + (�̂i �̂ j )yy, (6)

or

(�̂i �̂ j )zz, (7)

where indices x, y, and z are used to denote the correspond-
ing Cartesian components of the tensor �̂i �̂ j , and we have
elected the z axis of a frame of reference to be the smectic
axis.

Considering that the pair potential in the smectic phases
should hold the cylindrical symmetry, induced by the presence
of the smectic axis, we develop here a molecular theory for
the emergence of the smectic-C phase and its transitions to
the smectic-A and the nematic phases. The pair potential is
assumed to be a combination of two competing forces. One
of these favors the alignment with the smectic axis and the
other favors a tilt of the director with respect to this axis, and
is chosen to be a term quadratic in the tensors.

II. MOLECULAR APPROACH

A molecular field theory is set up as follows. To each
molecule one associates a field variable, with one or more
component, such as a scalar, a vector, or a tensor. We denote
by X i

ν the several scalar variables that one associates to the
molecule i, which might be the components of a vector or of
a tensor field, or a combination of them.

The energy of interaction between two molecules i and j is
taken to be a sum of terms of the type ai j

ν X i
νX j

ν . The strength
of the interaction ai j

ν depends on the distance, and the total

energy function H will be a sum over all pairs i j

H = −
∑

i j

∑
ν

ai j
ν X i

νX j
ν . (8)

We are assuming that ai j
ν is nonzero only when the molecules

of a pair belong to a small neighborhood of each other, and
take the same value aν . The molecular approach we consider
here consists of using an approximation in which the product
X i

νX j
ν is replaced by the expression

X i
ν

〈
X j

ν

〉 + 〈
X i

ν

〉
X j

ν − 〈
X i

ν

〉〈
X j

ν

〉
. (9)

We further assume that the system is homogeneous so that
the average 〈X i

ν〉 = Aν is the same for all molecules, and
expression (9) becomes(

X i
ν + X j

ν

)
Aν − A2

ν . (10)

The resulting expression for the total energy function will
be a sum of terms of the type

Hi = −
∑

ν

aν

(
X i

νAν − 1

2
A2

ν

)
(11)

for each molecule, that is,

H =
∑

i

Hi, (12)

and aν � 0 so that the pair potential is attractive. Since H be-
comes a sum of statistically independent terms Hi, it suffices
to treat just one molecule whose energy function is given by
Eq. (11). On account of this reduction we may drop the index
i of the molecule, and write the molecule energy function (11)
as

H = −
∑

ν

aν

(
XνAν − 1

2
A2

ν

)
, (13)

and

Aν = 〈Xν〉. (14)

It is useful to write the molecule energy function as com-
posed of two parts, H = � − E , where

� = −
∑

ν

aνXνAν, (15)

which we call the pair potential, and

E = −1

2

∑
ν

aνA2
ν, (16)

which is half the average of the pair potential, E = �/2. This
quantity is in fact the average energy per molecule E = 〈H〉,
a result that can be verified by taking the average of Eq. (13)
and using Aν = 〈Xν〉.

The thermodynamic properties of equilibrium is deter-
mined by using the probability Gibbs distribution

P(x) = 1

Z
e−β�(x), (17)

where x is the space of states over which the field variables
Xν are defined, and β is proportional to the inverse of the
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temperature. The normalization factor Z is

Z =
∫

e−β�dx, (18)

where dx = 	ν dxν and xν are the components of x.
The free energy per molecule F is obtained from the parti-

tion function

Z∗ =
∫

e−βH dx, (19)

and is given by F = −(1/β ) ln Z∗, or by

F = −E − 1

β
ln Z, (20)

and will depend on temperature and on Aν .
The first derivative of F with respect to Aν gives

∂F

∂Aν

= −aν (〈Xν〉 − Aν ). (21)

On account that Aν is the mean value of Xν , it follows at once
that

∂F

∂Aν

= 0. (22)

The second derivative of F is

∂2F

∂A2
ν

= −βa2
ν

(〈
X 2

ν

〉 − 〈Xν〉2
) + aν . (23)

From the result (22), the free energy F may be interpreted
as a functional of a set of parameters Aν with respect to
which it should be minimized. To check whether the solution
is indeed a local minimum one may determine the second
derivative by means of Eq. (23), if necessary. When there
is more than one solution, that is, when there is more than
one local minima, one should choose the one that gives the
lowest value of the free energy F . In an equivalent manner,
we may say that the actual free energy is the convex hull [42]
of expression (20).

III. MAIER AND SAUPE MODEL

We start by considering the Maier and Saupe model that de-
scribes the transition from the nematic to the isotropic phase.
To each molecule we associate a field variable which is the
axially symmetric traceless tensor

�̂ = mm − 1
3 I, (24)

where I stands for the identity matrix and m is the vector

m = m1x + m2y + m3z, (25)

with Cartesian components

m1 = sin θ cos φ, m2 = sin θ sin φ, m3 = cos θ, (26)

where θ is the polar angle and φ is the azimuthal angle that
defines the unit vector m in spherical coordinates.

Following the molecular approach above we write the pair
potential of the Maier and Saupe model as

� = −aTr(Q̂ �̂), (27)

and the energy as

E = − 1
2 aTr(Q̂2), (28)

where a > 0 is the strength of the interaction and

Q̂ = 〈�̂〉. (29)

In each phase, the probability distribution as well as the
tensor order parameter Q̂ reflect the symmetry of the phase. In
the isotropic phase, the full rotational symmetry takes place
and Q̂ will vanish. In the nematic phase, the full rotational
symmetry is broken but the cylindrical symmetry still re-
mains. The probability distribution will be invariant under the
rotation about a certain axis and the the order parameter Q̂
can be assumed to be an axially symmetric traceless tensor,
represented by

Q̂ = q
(
nn − 1

3 I
)
, (30)

where n is a unit vector, the director, and q is the nematic
order parameter. Both properties, the vanishing of the trace of
Q̂ and the rotational symmetry of Q̂ around n are preserved
by the process of taking the average. The average 〈�̂〉 is
traceless because �̂ is traceless. The second property is a
consequence of the invariance of the probability distribution
under the rotation around the axis determined by n.

Taking into account that the pair potential � is invariant
under a spatial rotation of both n and m, the director n
may emerge in any direction. We choose the z direction in
which case n = z, and Q̂ = qzz − (q/3)I, which replaced into
Eqs. (27) and (28) gives the simple expressions

� = −aqS, (31)

where we are using the abbreviation

S = m2
3 − 1

3 = cos2 θ − 1
3 , (32)

and

E = − 1
3 aq2. (33)

The free energy is

F = 1

3
aq2 − 1

β
ln Z0, (34)

where

Z0 =
∫

eβaqS sin θdθdφ. (35)

Differentiating F with respect to q and equating the result to
zero yields

q = 3
2 〈S〉, (36)

an equation that should be solved to find q, where the average
should be taken by using the probability distribution P(m) =
P(θ, φ),

P = 1

Z0
eβaqS. (37)

The phase transition from the isotropic phase, q = 0, to the
nematic phase, q �= 0, is discontinuous. The transition occurs
when the free energy of the two phases becomes equal, a
condition given by the equation

1
3βaq2 = ln Z0. (38)
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The numerical solution of Eqs. (36) and (38) give the tran-
sition point at a temperature T = 1/βa = 0.146796 and the
jump on the order parameter at the transition equal to q =
0.429029.

IV. MCMILLAN MODEL

A. Pair potential

The McMillan model is described as follows. In addition to
the tensor field variable �̂, we associate to a molecule another
field variable cos ξ describing the variation in density along
the axis perpendicular to the smectic layers, which we take
to be the z axis of a frame of reference. Along this axis, the
density of the system is periodic, with a variation in density
characterized by an amplitude of modulation and by a phase
ξ . According to de Gennes, the order parameter of the smectic
phase can be understood as a two-dimensional vector perpen-
dicular to the axis of modulation with Cartesian components
being cos ξ and sin ξ . The description of the smectic-A phase
is obtained by coupling the two field variables, �̂ and cos ξ .
Accordingly, the molecule pair interaction is assumed to be

�b = −b Tr(�̂ �̂) cos ξ, (39)

where b is the strength of the McMillan interaction, and the
energy is

Eb = − 1
2 b Tr(�̂2), (40)

where �̂ = 〈�̂ cos ξ 〉, which implies that �̂ is a traceless
tensor.

The pair potential � of the McMillan model is defined as
the sum of the pair potential �b and the nematic pair potential
given by expression (27),

� = −aTr(�̂ Q̂) − b cos ξTr (�̂ �̂), (41)

and the energy is the sum of Eqs. (40) and (28),

E = − 1
2 aTr(Q̂2) − 1

2 bTr(�̂2). (42)

Owing to the invariance of the potential � under a simulta-
neous rotation of Q̂, �̂, and �̂ around any axis, we may choose
the tensors Q̂ and �̂ to be uniaxial tensors. Accordingly, we
choose Q̂ to have the form we have already used, given by
Eq. (30),

Q̂ = q
(
nn − 1

3 I
)
. (43)

sThe tensor �̂ is chosen to have the same form,

�̂ = σ
(
nn − 1

3 I
)
, (44)

where σ is the order parameter of the smectic-A phase. Again,
the director may arise in any direction due to the full rotational
symmetry of the pair potential, and we choose the z direction
in which case n = z. Using these results, expressions (41) and
(42) acquire the forms

� = −(aq + bσ cos ξ )S, (45)

where we recall that S = m2
3 − 1/3, and

E = − 1
3 (aq2 + bσ 2). (46)
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FIG. 1. Phase diagram of the McMillan model showing the
isotropic (I), the nematic (N), and the smectic-A phases, in the plane
temperature T versus the parameter α. The dashed and solid lines
represent discontinuous and continuous transitions, respectively. The
triangle and the full circle represent triple point and a tricritical point,
respectively. The phase diagram corresponds also to the anisotropic
model when c = 0.

The free energy per molecule is

F = 1

3
(aq2 + bσ 2) − 1

β
ln Z, (47)

where

Z =
∫

eβ(aq+bσ cos ξ )S sin θdθdφdξ . (48)

Minimizing F with respect to the order parameters q and σ ,
we find the relations

q = 3
2 〈S〉, (49)

and

σ = 3
2 〈S cos ξ 〉, (50)

where the averages are calculated using the probability distri-
bution P(m, ξ ) = P(θ, φ, ξ ),

P = 1

Z
eβ(aq+bσ cos ξ )S. (51)

B. Phase transitions

The McMillan model has two order parameters, q and σ ,
associated to the nematic and smectic-A phases, respectively,
and the parameters a, b, and β. Considering Eq. (47), the free
energy F can be renormalized by the parameter a, so that the
relevant parameters can be chosen to be the temperature T =
1/βa and the ratio α = b/a. The phase diagram expressed
in terms of these two parameters is shown in Fig. 1. It was
obtained by solving Eqs. (49) and (50), and by using the free
energy (47) to find the absolute minimum.

The phase diagram shows the three regions, each one asso-
ciated to a different phase:

(a) isotropic, q = 0, σ = 0,
(b) nematic, q �= 0, σ = 0,
(c) smectic-A, q �= 0, σ �= 0.
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The transition from the isotropic to the nematic phase
is a discontinuous transition. The line is found by setting
σ = 0 in Eq. (47), the free energy becomes independent
of b and is reduced to the free energy Eq. (34). In other
words, the McMillan model is reduced to the Maier and
Saupe model when σ = 0. As we have seen above a transition
from isotropic to the nematic is discontinuous and occurs at
T = 0.146796, and is thus represented by a horizontal line in
the phase diagram of Fig. 1. A transition from the isotropic
to the smectic-A phase is also possible and the transition is
discontinuous, as can be seen in Fig. 1.

The transition line between the nematic and smectic-A
phases has a tricritical point and is continuous up to this point
becoming discontinuous beyond it. The continuous portion is
obtained by setting σ = 0 in equation (49), which gives

q = 3
2 〈S〉0, (52)

and by taking the limit σ → 0 of the nonzero solution of
equation (50). This task is accomplished by dividing the left
and right hand side of equation (50) by σ and taking the limit
σ → 0. The result is

1

βb
= 3

4
〈S2〉0. (53)

The two averages above are calculated by using the prob-
ability distribution (37). The elimination of q in these two
equations gives the critical line. A numerical calculation give
the critical line shown in Fig. 1.

To find the tricritical point we observe that in the neighbor-
hood of this point, both σ and the deviation v = qa − q of the
nematic order parameter of the smectic-A phase from its value
in the nematic phase are small quantities. This observation
allows us to use an expansion of the free energy in powers of
σ and v. In our analysis it suffices to write down an expansion
up to fourth order in σ and up to second order in v because it
turns out that v is of the order of σ 2.

Performing the expansion of the free energy we find

F = Fn + a1v
2 + a2σ

2 + a3v σ 2 + a4σ
4, (54)

where Fn and the coefficients a1, a2, a3, and a4 depend on q.
If we differentiate F with respect to v and set the result to
zero, we find v = −a3σ

2/2a1, showing that v is of the order
of σ 2. Replacing this result into the free energy (54), we get an
expansion in σ which has only the powers σ 2 and σ 4. When
the coefficient of σ 2 vanishes we get the condition for the
critical line, which is the condition (53) already found. The
condition for the tricritical point is found when the coefficient
of σ 4 vanishes. This condition together with the equations
(53), and (52) give the location of the tricrital point. A nu-
merical calculation gives the location of the tricritical point,
T = 0.12765, r = 0.70701, and the value of q = 0.65778 at
this point.

V. ANISOTROPIC MODEL

A. Modified McMillan potential

The pair interaction Tr(�̂i �̂ j ) between two neighboring
molecules is invariant under a simultaneous rotation of �̂i

and �̂ j . When the invariance is broken, as in the nematic
phase, the director may arise in any direction due to the full

rotational invariance of the pair potential. If one wishes to
describe the smectic-A phase, the director should arise in the
direction of the modulation. In this case the pair potential
cannot have the full rotational symmetry but should hold the
rotational symmetry around the smectic axis as is the case of
the pair potential (�̂i �̂ j )zz. In accordance with the molecular
theory this potential is replaced by (�̂ �̂)zz. Thus instead of
the interaction (39) we consider the following pair interaction

�b = −b̄ cos ξ (�̂ �̂)zz. (55)

Accordingly, the corresponding energy is

Eb = − 1
2 b̄(�̂2)zz. (56)

Using the expression (55), the pair interaction of the mod-
ified McMillan model becomes

� = −aTr(Q̂ �̂) − b̄ cos ξ (�̂ �̂)zz, (57)

and the corresponding energy becomes

E = − 1
2 aTr(Q̂2) − 1

2 b̄(�̂2)zz. (58)

Assuming that the director will arise in the z direction, as
desired, the tensors Q̂ and �̂ have the forms

Q̂ = q
(
zz − 1

3 I
)
, (59)

�̂ = σ
(
zz − 1

3 I
)
, (60)

and the pair potential (57) and the energy (58) become

� = −(aq + bσ cos ξ )
(
m2

3 − 1
3

)
, (61)

E = − 1
3 (aq2 + bσ 2), (62)

where b is related to b̄ by b̄ = (3/2)b. Notice that these two
expressions are identical to the expressions for the pair poten-
tial and energy of the McMillan model that we have discussed
above and given by Eqs. (45) and (46), respectively. These
results allow us to say that the modification just introduced
does not change the results obtained for the McMillan model,
reproducing the same phase diagram.

It is worth mentioning that the model as defined originally
by McMillan is represented by the pair potential in the form
(45), which is identical with Eq. (61). Since this expression
can be derived from the pair potential either in the form (41)
or in the form (57), each one of these two forms can be said
to represent the McMillan model. However, the form (57)
induces the appearance of the director in the z direction, which
defines a smectic-A phase, whereas the form (41) does not do
that and the director may arise in any direction. In this case
the phase is smectic-A only by a declaration. In any case, it
is immaterial whether we call the McMillan model the one
represented by the pair potential in the form (41) or in the
form (57).

B. Biquadratic pair potential

The pair potential (55) induces the appearance of the di-
rector in direction of the smectic axis, an thus the emergence
of the smectic-A phase. The smectic-C may emerge if one
introduces a pair potential which favors the tilting of the
molecules with respect to the smectic axis, the z direction.
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Govind and Madhusudana [21] have proposed a mechanism of
tilt in smectic-C layers based on the relative shift of molecules
due to presence of off-axis lateral dipoles in the molecules.
This mechanics is represented by a pair potential which con-
tribute with an energy that decreases with increasing tilt and is
relevant only when the smectic layers are presence, implying
that the tilt potential should be coupled to the smectic order
parameter.

A second requirement concerns the rotational symmetry
of the pair potential. Induced by the existence of an axis of
symmetry, the pair potential should be invariant by a rotation
around the axis but not by any rotation, as is the case of the
pair potential (�̂i �̂ j )zz considered above. This pair potential,
however, yields only a tilt of ninety degrees. In order to obtain
a tilt other than ninety degrees, we propose a biquadratic pair
potential of the type (�̂i �̂ j )2

zz, which also holds a cylindrical
symmetry.

In accordance with these considerations the pair potential
describing the smectic phase will be a sum of two competing
terms. The first is the pair potential (55), which favors the
molecules to be in the z direction, which we write more
explicitly as

�b = −b̄ cos ξ (�xz�xz + �yz�yz + �zz�zz ), (63)

where �μν and �μν are the elements of the matrices �̂ and �̂,
respectively, which are related by

�μν = 〈�μν cos ξ 〉. (64)

The corresponding energy is

Eb = − 1
2 b̄

(
�2

xz + �2
yz + �2

zz

)
. (65)

The second term, which favors the tilt of the molecules
with respect to the z direction is the biquadratic potential
introduce above, which, in accordance with the molecular
theory, is given by,

�c = c̄ cos ξ
(
Lxx�

2
xz + Lyy�

2
yz + Lzz�

2
zz

+ 2Lxy�xz�yz + 2Lxz�xz�zz + 2Lyz�yz�zz
)
, (66)

where

Lμν = 〈�μz�νz cos ξ 〉. (67)

The corresponding energy is

Ec = 1
2 c̄

(
L2

xx + L2
yy + L2

zz + 2L2
xy + 2L2

xz + 2L2
yz

)
. (68)

The pair potential � of the anisotropic model is

� = �a + �b + �c, (69)

which is the sum of �c given above with the pair potential of
the modified McMillan model �b, given by Eq. (55), and the
pair potential of the Maier and Saupe model,

�a = −a(Qxx�xx + Qyy�yy + Qzz�zz

+ 2Qxy�xy + 2Qyz�yz + 2Qxz�xz ), (70)

where

Qμν = 〈�μν〉. (71)

The corresponding energy is

E = Ea + Eb + Ec, (72)

which is the sum of Ec given above, the energy (56), and the
energy of the Maier and Saupe model,

Ea = − 1
2 a

(
Q2

xx + Q2
yy + Q2

zz + 2Q2
xy + 2Q2

xz + 2Q2
yz

)
. (73)

The free energy is

F = −Ea − Eb − Ec − 1

β
ln Z, (74)

Z =
∫

e−β(�a+�b+�c ) sin θdθdφdξ, (75)

and the averages (64), (67), and (71) are determined by using
the probability density P(m, ξ ) = P(θ, φ, ξ ), given by

P = 1

Z
e−β(�a+�b+�c ). (76)

The pair potential �c compels the director to be tilted with
a certain angle ω, which is the polar angle of the director
with respect to the z direction. However, due to the rotational
invariance of � around the z direction, the director may arise
with any azimuthal angle. We choose the azimuthal angle in
such a way that the director will lie in the xy plane. As a
consequence, some of the quantities Qμν , �μν , and Lμν vanish
and the pair potentials acquire the simpler forms

�a = −a(Qxx�xx + Qyy�yy + Qzz�zz + 2Qxz�xz ), (77)

�b = −b̄ cos ξ (�xz�xz + �zz�zz ), (78)

�c = c̄ cos ξ
(
Lxx�

2
xz + Lzz�

2
zz + 2Lxz�xz�zz

)
. (79)

The corresponding energies will be

Ea = − 1
2 a

(
Q2

xx + Q2
yy + Q2

zz + 2Q2
xz

)
, (80)

Eb = − 1
2 b̄

(
�2

xz + �2
zz

)
, (81)

Ec = 1
2 c̄

(
L2

xx + L2
zz + 2L2

xz

)
. (82)

C. Phase transitions

The present anisotropic model is defined by the pair poten-
tial � = �a + �b + �c and has three parameter a, b̄, c̄, and
β. For convenience we define ā = (3/2)a and c = (2/3)c̄, be-
cause the factor 3/2 appears very often. Considering Eq. (74),
the free energy F can be renormalized by the parameter a, so
that the relevant parameters can be chosen to be the tempera-
ture T = 1/βa, and the ratios α = b/a and c/a. The quantities
related to the order parameters are Qxx, Qyy, Qzz, Qxz, and �zz,
�xz, and Lxx, Lzz, Lxz, which are averages given by Eqs. (71),
(64), and (67). The averages are determined self-consistently
by using the probability distribution (76).

The order parameter q of the nematic phase and the tilt
angle are determined from Q by the representation

Q̂ = q1nn + q2yy + q3pp, (83)

as explained in the Appendix, where the director n is related
to the tilt angle by

n = x sin ω + z cos ω. (84)

In accordance with the choice we have made above, the direc-
tor n is chosen to lie in the xz plane. From q1, one obtains the
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ω
 =

 π
/2

ω = 0

SC

A
S

N
c

0
b0

FIG. 2. Ground state or zero temperature phase diagram showing
the nematic (N) and the two smectic phases. The smectic-C occurs
between the two solid lines. The dashed lines are lines of constant tilt
angle ω. In the region between the dot-dashed line and the solid line
the tilt angle is ω = π/2.

nematic order parameter

q = 3
2 q1. (85)

The order parameter s of the smectic-C is related to the tilt
angle by

s = sin ω. (86)

In an analogous way the tensor � is represented by

�̂ = σ1n′n′ + σ2yy + σ3p′p′, (87)

and the order parameter σ is obtained from

σ = 3
2σ1. (88)

The four phases predicted by the present model are as
follows:

(a) isotropic, q = 0, σ = 0,
(b) nematic, q �= 0, σ = 0,
(c) smectic-A, q �= 0, σ �= 0 s=0;
(d) smectic-C, q �= 0, σ �= 0, s �= 0.
At zero temperature, the possible thermodynamic phases

are obtained by the minimization of the energy (72) whose
results are shown in Fig. 2. If c is nonzero, the two smectic
phases as well as the nematic phase may be present depending
on the value of the parameter b. The transition between the
smetic-A and smectic-C is described by the straight line c =
(9/8)b, whereas that of the transition between the smectic-
C and the nematic is c = 9b. in the region between the lines
c = (9/2)b and c = 9b, the tilt angle is π/2.

When c = 0, the anisotropic model reduces to the McMil-
lan model, and the phase diagram is that shown in Fig. 1,
which shows no smectic-C phase. As the parameter c becomes
nonzero, the smectic-C phase emerges as can be seen in Fig. 3
for the case of c/a = 2.

The transition from the isotropic to the nematic is obtained
by setting �μν = 0 and Lμν = 0. The pair potential becomes
independent of b and c and the model reduces to the Maier
and Saupe. The transition from nematic to the isotropic is
independent of the parameter b and c and is represented by
a horizontal straight line in the phase diagram of Fig. 3.

The transition lines from the smectic-A to the isotropic and
from the smectic-A to the nematic are obtained by taking into

0 0.5 1.0 1.5 2.0
α

0

0.05

0.10

0.15

0.20

T

I

N SA

SC

FIG. 3. Phase diagram of the anisotropic model showing the
isotropic (I), the nematic (N), the smectic-A, and the smectic C
phases, in the plane temperature T versus the parameter α for c/a =
2. The heavy dashed line and the solid line represent discontinuous
and continuous transitions, respectively. The triangle and the full
circle represent a triple point and a tricritical point, respectively,
whereas the square represents a Lifshitz point. The light dashed
lines are lines of constant tilt angle ω. Along the line separating
the smectic-C and the smectic-A, ω = 0. Along the critical line
separating the N and SC phases the tilt angle ω decreases from
ω = π/2 at the empty circle to ω = 0 at the Lifshitz point. In the
smectic-C domain, the triangle region with the open circle has tilt
angle ω = π/2.

account that in the smectic-A phase, Q̂ and �̂ will be uniaxial
of the form

Q̂ = q
(
nn − 1

3 I
)
, (89)

�̂ = σ
(
nn − 1

3 I
)
, (90)

as we have considered in the case of the McMillan model.
In an equivalent form we may say that the probability distri-
bution (76) is independent of φ. As a consequence, Qxz = 0,
�xz = 0, and Lxz = 0, and the pair potential becomes

� = −(āQzz + b̄ cos ξ�zz )�zz

+ c̄ cos ξ
(
Lxx�

2
xz + Lzz�

2
zz

)
, (91)

and the corresponding energy is

Ea = − 1
2 āQ2

zz − 1
2 b̄�2

zz + 1
2 c̄

(
L2

xx + L2
zz

)
. (92)

The transition from the nematic to the smectic-A is similar
to that of the McMillan model. It has a tricritical point and is
continuous up to this point, becoming discontinuous beyond
it as shown in Fig. 3. The continuous portion, which occurs
when σ vanishes continuously, can be found by a manner
similar to that employed in the case of the McMillan model.
The other transition lines shown in Fig. 3 are obtained by
solving numerically Eqs. (71), (64), and (67). To locate the
discontinuous transition one compares the free energy of each
phase.

The phase diagram of the anisotropic model differs from
the phase diagram of the McMillan model by the presence of
the smectic-C region. The smectic-C phase is separated from
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the nematic phase by a continuous transition. As one crosses
the transition line from the smectic-C region, where the tilt
angle is nonzero, the order parameter σ vanishes continuously.
However, the tilt angle approaches a nonzero value except
at the Lifshitz point. Along the transition line the tilt angle
is nonzero and vanishes as one reaches the Lifshitz point. A
Lifshitz point is here understood as the point at which both σ

and s vanish and is located at the point where the three phases,
nematic, smectic-A, and smectic-C, meet.

The transition from the smectic-C to the smectic-A phase
is also continuous. As one crosses this line coming from the
smectic-C region the tilt angle ω vanishes continuously so that
the whole transition line is a line of ω = 0.

VI. DISCUSSION AND CONCLUSION

We have considered a molecular model for the phase
transitions between the isotropic, nematic, smectic-A, and
smectic-C phases. The part of the phase diagram showing the
first three phases is similar to that of the McMillan molecular
model. The transition from the smectic-A phase has a contin-
uous and a discontinuous portion with a tricritical point. The
transition from the nematic to the isotropic is discontinuous
as well as from the smectic-A to the isotropic phase. The
smectic-C region of the phase diagram occurs between the
nematic and smectic-A phases, that is, the smectic-C borders
the nematic and the smectic-A phase.

As one crosses the transition line from the smectic-C to the
nematic region, the order parameter σ vanishes continuously
but the tilt angle has a finite value at the transition, with the
exception of the Lifshitz point at which the tilt angle vanishes.
As one crosses the transition line from the smectic-C to the
smectic-A the tilt angle vanishes continuously and the order
parameter σ remains finite, except at the Lifshitz point at
which σ vanishes.

The tilt angle of the director in the smectic-C phase may
take any value, depending on the value of the parameters. If
one varies the parameters T and α in such a way that the
tilt angle remains constant, a line is described, as shown in
Fig. 3. However, if the tilt angle is 90◦, as one varies the
parameters, an extended region is described. This region is
shown in Fig. 3 as the triangle with an empty circle. In other
words, a smectic-C phase with a tilt angle of 90◦ is stable
against arbitrary variation of the parameter.

To understand how the smectic-C phase emerges, it is help-
ful to analyze the Landau free energy that one would obtain
from the present molecular model by an expansion of the free
energy in powers of the order parameter. If such an expansion
is performed one finds, up to fourth order in σ ,

F = Fn + (a0 + a1s2 + a2s4)σ 2 + a3σ
4, (93)

where Fn and the coefficients a0, a1, a2, may depend on q but
not on s and a3 may depend on q and s. At the transition from
the smectic-C to the nematic phase, the value of s, which is
related to the tilt angle by s = sin ω, is determined by the min-
imum of the expression that multiply σ 2. Due to the presence
of the term a4s4, the value of s may be distinct from zero,
giving rise to the smectic-C phase. In the present molecular
model this crucial term is a consequence of the use of the
biquadratic pair potential (�i� j )2

zz. It is worth mentioning

that if the biquadratic pair potential is replaced by (�i� j )zz

then the expression multiplying σ 2 would have only the two
terms a0 + a1s2, in which case the minimum would be either
s = 0 (ω = 0) or s = 1 (ω = π/2), and we would not get a
smectic-C phase with a tilt distinct from 90◦.

The phase diagram of Fig. 3 has the same topology of the
phase diagrams obtained by other authors but is particularly
similar to the one obtained by Drossinos and Ronis [16]
by a molecular-field approach distinct from ours. The main
similarities include the presence of the tricritical point on
the line separating the smectic-A and smectic-C phases and
the presence of the NAC point with the following geometric
properties. Near the point NAC, the lines NA and NC belong
to the same straight line whereas the line AC meet this line
at a nonzero angle. It should be mentioned that a biaxial,
but translationally disordered phase has been predicted by a
dislocation-loop theory, which is located near the NAC point
and interposed between the nematic and smectic-C phases
[43].

As a final remark, the results obtained here should be
understood as valid within a mean field theory, which ne-
glects fluctuations. If one goes beyond mean field theory, and
includes fluctuations effects, some qualitative results might
change. For instance, if fluctuations are taken into account, the
phase transition from an isotropic state to a periodic structure
turns out to be a discontinuous phase transition [44,45].

APPENDIX: TENSOR REPRESENTATION

A symmetric tensor Q̂ can be represented by

Q̂ = q1nn + q2rr + q3pp, (A1)

where n, r, and p are three mutually perpendicular unit vectors
such that n × r = p, and hold the property

nn + rr + pp = I, (A2)

where I is the identity matrix. It is easily shown that the unit
vectors are the eigenvector of Q̂ and q1, q2, and q3 the cor-
responding eigenvalues. It suffices to observe that Q̂n = q1n,
Q̂r = q2r, and Q̂p = q3p, which follows from the orthogonal-
ity of the unit vectors.

If the three eigenvalues are distinct, the tensor is a biaxial
tensor. If two eigenvalues are equal and distinct from the third,
the tensor is a uniaxial tensor. In this case, letting q3 = q2, the
representation becomes

Q̂ = (q1 − q2)nn + q2I, (A3)

where we used the property (A1). This tensor is invariant
under rotation around the vector n and for this reason it is
also called an axially symmetric tensor.

If Q̂ is traceless, which means that q2 = −q1/2, the repre-
sentation becomes

Q̂ = q
(
nn − 1

3 I
)
, (A4)

where q = 3q1/2.
If the tensor has the three eigenvalues equal, in which case

q3 = q2 = q1, then it is represented by

Q̂ = q1I, (A5)
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and if in addition it is traceless then q1 = 0, and the tensor
vanishes identically.

Let us consider a traceless tensor such that one of its
eigenvector has the y direction, that is,

Q̂ = q1nn + q2yy + q3rr, (A6)

where q1 + q2 + q3 = 0, and

n = x sin ω + z cos ω, (A7)

r = x cos ω − z sin ω. (A8)

The Cartesian components Qxy = Qyx = Qyz = Qzy = 0 of
the tensor Q̂ vanish and the other are

Qxx = q1 sin2 ω + q3 cos2 ω, (A9)

Qzz = q1 cos2 ω + q3 sin2 ω, (A10)

Qyy = q2, (A11)

Qxz = Qzx = (q1 − q3) sin ω cos ω. (A12)

The eigenvalues q1, q2, and q3, and the angle ω are obtained
from the relation

q1 = 1
2

(√
(Qzz − Qxx )2 + 4Q2

xz − Qyy
)
, (A13)

q3 = − 1
2

(√
(Qzz − Qxx )2 + 4Q2

xz + Qyy
)
, (A14)

q2 = Qyy, (A15)

tan 2ω = 2Qxz

Qzz − Qxx
. (A16)

We recall that

Qxx + Qyy + Qzz = 0, (A17)

and remark that

Tr(Q̂2) = Q2
xx + Q2

yy + 2Q2
xz + Q2

zz = q2
1 + q2

3 + q2
2. (A18)

[1] P. G. de Gennes, The Physics of Liquid Crystals (Oxford Uni-
versity Press, Oxford, 1974).

[2] S. Chandrasekhar, Liquid Crystals (Cambridge University
Press, Cambridge, 1977).

[3] G. Vertogen and W. H. de Jeu, Thermotropic Liquid Crystals,
Fundamentals (Springer, Berlin, 1988).

[4] A. M. F. Neto and S. R. Salinas, The Physics of Lyotropic Liquid
Crystals (Oxford University Press, Oxford, 2005).

[5] W. Maier and A. Saupe, Z. Naturforsch. A 13, 564 (1958); 14,
882 (1959); 15, 287 (1960).

[6] M. J. Freiser, Phys. Rev. Lett. 24, 1041 (1970).
[7] R. A. Sauerwein and M. J. de Oliveira, J. Chem. Phys. 144,

194904 (2016)
[8] K. K. Kobayashi, Phys. Lett. A 31, 125 (1970).
[9] K. K. Kobayashi, J. Phys. Soc. Jpn. 29, 101 (1970)

[10] W. L. McMillan, Phys. Rev. A 4, 1238 (1971).
[11] F. Giesselmann and P. Zugenmaier, Phys. Rev. E 55, 5613

(1997).
[12] W. L. McMillan, Phys. Rev. A 8, 1921 (1973).
[13] A. Wulf, Phys. Rev. A 11, 365 (1975).
[14] M. Matsushita, J. Phys. Soc. Jpn. 50, 1351 (1981).
[15] M. Matsushita, Mol. Cryst. Liq. Cryst. 68, 1 (1981).
[16] Y. Drossinos and D. Ronis, Phys. Rev. A 33, 589 (1986).
[17] W. J. A. Goossens, Europhys. Lett. 3, 341 (1987).
[18] L. Mederos and D. E. Sullivan, Phys. Rev. A 39, 854 (1989).
[19] E. Velasco, L. Mederos, and T. J. Sluckin, Liq. Cryst. 20, 399

(1996).
[20] L. Hu and R. Tao, Phys. Rev. E 58, 7435 (1998).
[21] A. S. Govind and N. V. Madhusudana, Eur. Phys. J. E 9, 107

(2002).
[22] A. V. Emelyanenko and A. R. Khokhlov, J. Chem. Phys. 142,

204905 (2015).

[23] J.-h. Chen and T. C. Lubensky, Phys. Rev. A 14, 1202 (1976).
[24] K. C. Chu and W. L. McMillan, Phys. Rev. A 15, 1181

(1977).
[25] G. Grinstein and R. A. Pelcovits, Phys. Rev. A 26, 2196

(1982)
[26] K. Rosciszewski, Physica A 127, 634 (1984).
[27] B. S. Andereck and B. R. Patton, J. Phys. France 48, 1241

(1987).
[28] L. Chen and J. Toner, Phys. Rev. E 87, 042501 (2013).
[29] D. Johnson, D. Allender, R. deHoff, C. Maze, E. Oppenheim,

and R. Reynolds, Phys. Rev. B 16, 470 (1977).
[30] L. Benguigui, J. Phys. Colloq. 40, C3-419 (1979).
[31] L. Benguigui, J. Phys. France 44, 273 (1983).
[32] J. Katriel, G. F. Kventsel, G. R. Luckhurst, and T. J. Sluckin,

Liq. Cryst. 1, 337 (1986).
[33] G. Barbero and G. Durand, Mol. Cryst. Liq. Cryst. Incorp.

Nonlin. Opt. 179, 57 (1990).
[34] A. Kallel and Y. Mlik, Phase Trans. 33, 261 (1991).
[35] E. S. Larin, Phys. Solid State 46, 1560 (2004).
[36] K. Saunders, Phys. Rev. E 77, 061708 (2008).
[37] P. Biscari, M. C. Calderer, and E. M. Terentjev, Phys. Rev. E

75, 051707 (2007).
[38] A. K. Das and P. K. Mukherjee, J. Chem. Phys. 128, 234907

(2008).
[39] P. K. Mukherjee, Eur. Phys. J. E 33, 175 (2010).
[40] D. Izzo and M. J. de Oliveira, Liq. Cryst. 43, 1230 (2016).
[41] D. Izzo and M. J. de Oliveira, Liq. Cryst. 47, 99 (2020).
[42] M. J. de Oliveira, Equilibrium Thermodynamics (Springer, Hei-

delberg, 2013).
[43] G. Grinstein and J. Toner, Phys. Rev. Lett. 51, 2386 (1983).
[44] S. A. Brazovskiı̌, Sov. Phys. JETP 41, 85 (1975).
[45] J. Swift, Phys. Rev. A 14, 2274 (1976).

052701-9

https://doi.org/10.1515/zna-1958-0716
https://doi.org/10.1515/zna-1959-1005
https://doi.org/10.1515/zna-1960-0401
https://doi.org/10.1103/PhysRevLett.24.1041
https://doi.org/10.1063/1.4948627
https://doi.org/10.1016/0375-9601(70)90186-6
https://doi.org/10.1143/JPSJ.29.101
https://doi.org/10.1103/PhysRevA.4.1238
https://doi.org/10.1103/PhysRevE.55.5613
https://doi.org/10.1103/PhysRevA.8.1921
https://doi.org/10.1103/PhysRevA.11.365
https://doi.org/10.1143/JPSJ.50.1351
https://doi.org/10.1080/00268948108073547
https://doi.org/10.1103/PhysRevA.33.589
https://doi.org/10.1209/0295-5075/3/3/015
https://doi.org/10.1103/PhysRevA.39.854
https://doi.org/10.1080/02678299608032053
https://doi.org/10.1103/PhysRevE.58.7435
https://doi.org/10.1140/epje/i2002-10060-x
https://doi.org/10.1063/1.4921684
https://doi.org/10.1103/PhysRevA.14.1202
https://doi.org/10.1103/PhysRevA.15.1181
https://doi.org/10.1103/PhysRevA.26.2196
https://doi.org/10.1016/0378-4371(84)90047-5
https://doi.org/10.1051/jphys:019870048080124100
https://doi.org/10.1103/PhysRevE.87.042501
https://doi.org/10.1103/PhysRevB.16.470
https://doi.org/10.1051/jphyscol:1979384
https://doi.org/10.1051/jphys:01983004402027300
https://doi.org/10.1080/02678298608086667
https://doi.org/10.1080/00268949008055356
https://doi.org/10.1080/01411599108207737
https://doi.org/10.1134/1.1788795
https://doi.org/10.1103/PhysRevE.77.061708
https://doi.org/10.1103/PhysRevE.75.051707
https://doi.org/10.1063/1.2940349
https://doi.org/10.1140/epje/i2010-10658-3
https://doi.org/10.1080/02678292.2016.1164253
https://doi.org/10.1080/02678292.2019.1631968
https://doi.org/10.1103/PhysRevLett.51.2386
https://doi.org/10.1103/PhysRevA.14.2274

