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Active nematics with quenched disorder
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We introduce a two-dimensional active nematic with quenched disorder. We write the coarse-grained hydrody-
namic equations of motion for slow variables, viz. density and orientation. Disorder strength is tuned from zero

to large values. Results from the numerical solution of equations of motion as well as the calculation of two-point
orientation correlation function using linear approximation shows that the ordered steady state follows a disorder
dependent crossover from quasi-long-range order to short-range order. Such crossover is due to the pinning of
+1/2 topological defects in the presence of finite disorder, which breaks the system in uncorrelated domains.
Finite disorder slows the dynamics of +1/2 defect, and it leads to slower growth dynamics. The two-point
correlation functions for the density and orientation fields show good dynamic scaling but no static scaling
for the different disorder strengths. Our findings can motivate experimentalists to verify the results and find
applications in living and artificial apolar systems in the presence of a quenched disorder.
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I. INTRODUCTION

Dynamics and steady state of a collection of active self-
propelled particles with different kinds of inhomogeneities
has become an interesting area of research [1-7]. Recent stud-
ies have mostly focused on the polar self-propelled particles
in the presence of inhomogeneous agents or medium [8—10].
The effect of disorder in active polar particles introduces many
exciting features, which, in general, do not present in the
corresponding equilibrium system of the same symmetry [11].
Studies on the effect of disorder in apolar particles are limited
to the equilibrium system only [12]. Disorders are present
almost everywhere in active apolar systems [1], but ordering
and steady state of active apolar particles with the disorder is
rarely studied.

Variety of systems where particles have head-tail symme-
try, like vibrated granular rods [13,14], collection of molecular
motors, cytoskeletal filaments [15,16], mesenchymal, epithe-
lial cells monolayers [17-20], bacterial colonies [21-23], and
colonies of swarming filamentous bacteria [24] are a few
examples of the active apolar system. The collection of such
active apolar particles, forming an orientationally ordered
state, is called active nematics. Most of the previous active
nematic studies are for a clean system [25-28]. But, inho-
mogeneity or disorder can play a crucial role in steady state
and kinetics of active nematics, which is our current study’s
focus.

In this paper, we study quenched disorder’s effect on a
collection of active apolar particles on a two-dimensional sub-
strate. The disorder introduced as a random field of strength &g
in the coarse-grained hydrodynamic equations of motion for
slow variables are local density po(r,?) and order parameter
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Q(r, t). We first characterize the steady state and then study
the ordering kinetics. We calculate the nematic order param-
eter (NOP) Q vs system size N for different k. For clean or
homogeneous active nematic, NOP decay algebraically with
N [quasi-long-range order (QLRO)]. But, for a finite disorder,
NOP shows a power-law decay, for small N, and a disor-
der dependent crossover to an exponential decay [short-range
order (SRO)] for large N, and the same we confirm by the
calculation of two-point orientation correlation function in
the steady state, using a linear approximation. The origin of
such crossover for the finite disorder (hy # 0) is due to the
pinning of the £1/2 defects. For large enough N, it breaks
the system in uncorrelated domains, and the size of these
domains depends on the disorder strength. Although the orien-
tation field is significantly affected due to disorder, the density
fluctuation remains unaffected and shows the usual giant num-
ber fluctuation (GNF) [26,27,29] for all disorder strengths
(ho).

We also studied the effect of disorder on the dynamics of
the defects and the ordering kinetics. The effective dynamic
growth exponent, z.¢ [30], increases on increasing disorder.
The two-point correlation functions for both fields show good
dynamics scaling for all disorder, but no static scaling is found
for different disorder.

We organize the paper as follows. We introduce the model
of our system in Sec. II. In Sec. III, we discuss the steady-
state properties, then we discuss defect dynamics and system
kinetics in Sec. IV; further, in Sec. V, we calculate the
two-point correlation functions. We summarize the results in
Sec. VL.

II. MODEL AND NUMERICAL DETAILS

We construct a monolayer of self-propelled apolar particles
of length /, on a two-dimensional substrate of friction coeffi-
cient x. Each particle is driven by an inherent driving force
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F acting along the particle’s long axis. The ratio of the force
F to the friction coefficient gives a constant self-propulsion
speed vg = F/x to each particle. The apolar nature of the
particle makes them move forward and backward with equal
probability with a step size equal to vy. On a time scale, large
compared to the interaction time, and length scale much larger
than the particle size, the dynamics of the system is gov-
erned by coupled hydrodynamic equations of motion for slow
variables, viz. local density p(r,t), and local NOP O(r, t)
[311,

dhp =a)ViV,;pQij+DpV’p, (1)

% Qi =[a1(p) — a(Q: DNQy; + B(V:iV,; — 18:;V%)p
+DQV2Qij+Hij+Qij- @)

Equations (1) and (2) are written in dimensionless units
by rescaling all lengths by the length of the particle and
time by the collision time and are of the same form as de-
rived from the microscopic rule-based model in [25], with
an additional term due to quenched disorder. The quenched
disorder is introduced as a random field in the free energy
density F = —Q : (hh — %), which further leads to Hj; =
(hih; —h%%cﬁij); in Eq. (2), in two dimensions i, j = 1,2
are the spatial indices for the two components of vectors,
where h; = ho(cosg, sing)—here hy is the disorder strength
and ¢(r) is a uniform random angle between (0, 277), with
mean zero, quenched in time (no time dependence) and space
correlation (¢(r)¢(r’)) = 6(r —r’).

The last term £2;; is a tensorial symmetric traceless
white noise with mean zero, such that (2;;(r, )Qu (', 1)) =
Ao8(r —1')8(t — t')€;ji. Here, Ag is the noise strength and
€ijrr = 38udji + 8udjk — 8i8k).

In the above Egs. (1) and (2) we keep the model minimal
and ignore the flow field [32], completely, or assume the in-
teraction among the particle is short range volume exclusion,
and no hydrodynamic interaction. Hence the system we study
is dry active nematic.

The random field introduced in our current model is similar
to the random field in XY model (RFXY model) [11]. Here-
after we refer to our model as random field active nematic
(RFAN) when hy # 0 and clean-active nematic (clean-AN)
for hg = 0.

To perform the numerical integration of Egs. (1) and (2)
we construct a two-dimensional K x K square lattice with
periodic boundary condition (PBC) and discretize the space
and time derivatives using Euler scheme (Ax = 1.0 and At =
0.1). Initially, we start with random homogeneous density,
with mean (py = 0.75), and random orientation.

We first study the steady state of the system for hy =
(0.0, 0.15) and system size, i.e., K = 64-512. Coarsening is
studied for larger K = 1024. Steady-state results are obtained
for simulation time r = O(10°) and the average over 10 in-
dependent realisations. One simulation time is counted after
update of Egs. (1) and (2) for all lattice points. Parameters
in Egs. (1) and (2) are (ap = 0.1-0.3), D, = i(aé + 1), po =
0.75, po =05, ao =1, B =0.25 andDg =1, Ag = 1074
and we check that the system remains stable for the chosen set
of parameters.

III. STEADY-STATE PROPERTIES

We first measure the steady-state properties of RFAN for
different hy. The global ordering in the system is measured
by calculating the nematic order parameter (NOP) defined

as Q = (11\,\/| vazl cos(260)|2 + | va:l sin(26;)|2), where the
sum runs over all the lattice points. (...) shows the aver-
age over many realizations. We compare the measured Q in
numerical simulation with the analytical expression for the
two-point orientation correlation function Cg [Eq. (3)], ob-
tained from a linearized treatment of small fluctuation in a
uniform ordered phase. We calculate the equal time Fourier
transformed spatial correlation of angle Sq(6) as a function
of wave vector ¢ and present our result for g, = ¢g,. Starting
from the equations of motion (1) and (2), a straightforward
linearized approximation shows that, for a finite disorder
strength,

1 .
CoV) = e ", 3)

which is obtained from the inverse Fourier transform of orien-
tation structure factor Sq(6#) at wave number g >~ N~'/2. The
coefficients in Eq. (3), B’ = 1.17 x 10~ and C’ = 3.9 x 1073
(for ay = 0.2), are constants and depend on the system pa-
rameters. Hence Cq is a product of algebraic and exponential
decay with N. Figure 1(a) data points show the plot of NOP
vs N for different disorder strengths, hy. For clean AN, Q
decays algebraically as N5, where B ~ 1.05 x 10~* depends
on system parameters. Also, B is small, since, for the given
parameters, clean AN is in the deep ordered state and sig-
nificantly away from the isotropic-nematic transition, where
it shows the instability [33-36]. For finite disorder, Q shows
the deviation from the pure algebraic decay. It decays alge-
braically for small N and leads a crossover to exponential
decay for a larger N. The larger the disorder strength, the
crossover to exponential decay appears for smaller N.

In Fig. 1(a) lines are a plot of \/Co(N, hy), Eq. (3). For
clean AN, Co(N, 0) is pure power law, whereas, for RFAN, it
decays exponentially for higher N. Hence crossover happens
after a disorder dependent N, N.(ho) ~ hy 4 We find a good
match of lines [Eq. (3)] and data from the simulation. We see
a systematic deviation between data points from the simula-
tion and the linear study lines for large Ay, which is due to
nonlinearities present in the model. In Fig. 1(b) we plot the
Q x NB/2ys N x I for different hy and find a good collapse
of data for different disorder strengths.

To further understand the steady state in RFAN, we cal-
culate the probability distribution function (PDF) P(A#) of
angle fluctuations A@ from the mean direction. Figure 1(c)
shows the plot of P(A@) vs A6 for different (hg, ap). P(AB)
for clean AN shows a very narrow peak at A6 = 0, whereas,
for RFAN, PDF has a much broader distribution and more
than one peak at nonzero A6 (see the Appendix for snap-
shots). Lines in Fig. 1(c) are fit to two distinct peaks for
hy = 0.05, ap = 0.3 with Gaussian. On increasing activity, the
width of the distribution sharpens, and more distinct peaks
emerge. Hence it infers the stronger intradomain ordering and
distinct ordered domains for large activity. Similarly, for a
more considerable disorder, P(A#) shows a greater number
of such different peaks, which means that smaller domains
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FIG. 1. (a) NOP Q vs system size N = K x K for different hy (symbols) and /Co, Eq. (3) (solid lines). (b) Scaled NOP, O =
OxN B'/2 ys ¥ =N x hy*. (¢) Probability distribution function P(A€) of angle fluctuations of angular orientation for different values of
(ho, ap), i.e., (0.0,0.2), (0.05,0.2), and (0.05, 0.3). Data for iy = 0.05, ay = 0.3 (data points) fitted with Gaussian for two distinct peaks

(solid lines).

emerge more if we further increase the disorder strength (data
not shown).

In the Appendix and the Supplemental Material (SM) (see
the Supplemental Materiel [37]), we show the animation for
the snapshots of local NOP for clean sy = 0.05 and iy = 0.1,
which shows that, for a clean system, the final state is globally
ordered, whereas, for RFAN, different ordered domains are
formed and survived at late times.

We also calculate the steady-state density fluctuation, for

all disorder, number fluctuation o = /(N,2) — (N,)2 ~ (N;),
where Ny is the mean number of particle in subcells, Fig. 2,
which shows a giant number fluctuation (GNF), as found in
[26,27,29]. When compared with the linearized calculation of
two-point density structure factor, as given in Eq. (36), for
g ~ N~'/2, density fluctuation should show the fluctuations
larger than the clean AN. But large fluctuation can arise for
size Ny > N. ~ hy 4 which is hard to achieve in numerical
simulation. Hence, in general, inhomogeneity does not affect
the density fluctuations in active nematic, although it signifi-
cantly changes the nature of two-point orientation correlation
function. Now we further study the ordering kinetics to such
a steady state.
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FIG. 2. Number fluctuation o vs (N;) plot for different disorder
strengths and K = 300.

IV. KINETICS
A. Defect dynamics

When the system is brought from a disordered state to an
ordered state, ordering happens through the process of domain
formation and which is due to the creation and annihilation of
+1/2 topological defects.

In the two-dimensional active nematic, these defects have
topological geometry [38]. A +1/2 defect has a cometlike
structure and moves along the axis parallel to its tail, whereas
a —1/2 defect has a threefold symmetry and does not have
any preferred direction of motion [32,39,40]. The dynamics
of defects play a vital role in the ordering of the system [30].
In Figs. 3(a) and 3(b), we study the dynamics of defects for
a clean AN (hy = 0.0), as well as for RFAN (hy = 0.075).
Figure 3(a) shows the snapshots of local NOP, Q, for clean AN
(upper panel) and RFAN (lower panel). White arrows show
the relative separation, Ar(t), between a pair of +1/2 defects.
The arrow’s tail and head represent the position of +1/2 and
—1/2 defects, respectively. We see that the disorder slows
the dynamics of the 41/2. The variation of Ar(t) vs time is
shown in Fig. 3(b). The length of the white arrow in Fig. 3(a)
decreases with time [or Ar decays with time, Fig. 3(b)], which
shows the two defects coming close to each other. For clean
AN, Ar(t) decay at a faster rate, whereas it takes a longer
time in the presence of disorder. Hence the relative speed is
small in the presence of disorder, as shown in the inset of
Fig. 3(b). To further understand the mechanism of slowing
down of defect dynamics, in Figs. 3(c) and 3(d), we show
the snapshot of the local density current near a pair of 1/2
defects. Density current J, is defined from Eq. (1), which can
be rewritten as a continuity equation, 9,0 = —V - J,, where
J, = —apV - (pQ) — D,Vp. The intensity of colors shows
the magnitude of the density current. For clean AN, current
flow is smooth near the defects, Fig. 3(c), whereas with disor-
der (hy = 0.075), current flow is distorted, Fig. 3(d), which
results in slower growth dynamics, which we will discuss
next. We also studied the effect of activity on the relative speed
of a pair of defects. For larger activity, the relative separation
(starting from the same relative separation) between a pair
of defects decreases faster, and hence they annihilate quickly,
which, in turn, results in more ordering for the same disorder
strength (see the Appendix for details).
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FIG. 3. (a) Snapshots of local NOP Q: upper panel (P:1) is for clean AN (i.e., iy = 0.0) and bottom panel (P:2) is for RFAN (hy = 0.075)
and the number along the white arrow is the relative separation [Ar(t)] between the 4+ and —1/2 defects. (b) Ar(t) vs ¢ plot for hy = 0.0, 0.075.

u is the relative speed of defects defined as u = | < SAr)] x 1073

and plotted in the inset of (b). (c) Snapshot of density current near the defects

for clean AN, hy = 0.0 and (d) RFAN, &y = 0.075. Intensity of colors shows the magnitude of the density current. Data is generated for system

size N = 5122

B. Growth law and scaling properties

As we discussed in the previous paragraph, disorder affects
the defect dynamics, and it can further influence the kinet-
ics of domain ordering. We characterize the domain growth
by calculating the correlation functions for orientation Q,
Co(r,t) = (Q(0,1) : Q(r, 1)), and local density p, C,(r, t) =
(6p(0,1)5p(r, 1)), where §p(r,t) = p(r,t) — pg is the devia-
tion of the local density from the mean py. With time both
correlations increase due to domain growth. Figures 4(a) and
4(b) show the plot of Co(r/L(t)) and C,(r/L(t)) vs scaled
distance r/Lg ,(t) and they all collapse to a single curve,
where the characteristic length Lg ,(¢) is calculated from
the first zero crossing of Co(r,t) and C,(r, t). Figures 4(c)
and 4(d) show the plot of Co(r/Lgo(t)) and C,(r/L,(t)) vs
scaled distance r/Lg ,(t) calculated at equal time (t = 10%)
for different disorder hy. We find no scaling for different
disorder strengths for both Q and p. Therefore, for all disorder
strengths, the system shows good dynamic scaling but no
static scaling in orientation and density.

The equilibrium analog of clean AN is XY model and the
characteristic length of growing domain in two-dimensional
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FIG. 4. Two-point correlation function Cq , vs scaled distance
r/Lg ,(t). (a),(b) Two-point correlation function for RFAN, i.e.,
hy = 0.1, at different simulation time (z). (c),(d) Two-point corre-
lation function for different /4, and at fixed simulation time r = 10°.

XY model goes as Lyy () ~ [t/ In(t)]"/? [30,41]. Hence we
assume that, for RFAN, Lo , ~ [t/ In(¢)]'/%".2» and further
calculate the dynamics growth exponent zef o,, from corre-

lation length Lg_,(t), defined as Zeﬁlg - = (d%%f;g’)) [30,40—

42], where (...) is the mean value of Zeff OVer intermediate
time (¢ ~ 1000 to 15000) when it remains constant for at
least one decade; see Fig. 5(a). We find that zer 0, 2 2 for
clean AN and increases on increasing hy. In Fig. 5(b), we
plot the Az = zesr — 2 vs hg on log-log scale. The change
Az increases algebraically with hy with power ~2 and ~1
for Q and p, respectively. Hence growth kinetics of density
field show small change in comparison to orientation field. Or
small change in growth kinetics of density field affects the
orientation field substantially.

C. Morphology of ordered domains

We study the effect of disorder on the morphology of
ordering domains. We calculate the behavior of scaled two-
point correlation functions Cg ,(r/Lg, ,) for small r/Lg ,.
In the limit of small r/Lg ,, Co ,(r/Lg,)~1— (Lép
where « is called the cusp exponent and features the domain
morphology [30,43]. In Fig. 6 we plot the 1 — Cg ,(r/Lg,,)
vs scaled distance r/Lg,, on log-log scale and estimate the
cusp exponent « for both fields (Q, p). The exponent o >~ 1.7
for both fields and for all disorder strengths. Hence domain
morphology remains unaffected in the presence of disorder.

V. LINEARIZED HYDRODYNAMIC CALCULATION OF
TWO-POINT CORRELATION FUNCTIONS

We start with the hydrodynamic equations of motion for
local density p and NOP Q as introduced in Egs. (1) and (2),

6 \ \ T F 3
O % ; x ]
doBI § | | |
4 4 3 ]
5 i
3 |
g B o 2
?
2 P ! l
0 0.05 0.1 0.15 0.2 0.1
h, h,

FIG. 5. Plots of dynamic growth exponent z.(hy) vs disorder
strength £ (a) and Az vs hy on log - log scale (b).
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FIG. 6. Cusp’s exponent « (slope of the plot) for Q and p field.
Diffrent symbols used for different values of disorder strength:
hy = 0.0 (circle), hy = 0.05 (square), hy = 0.075 (diamond), and
ho = 0.10 (triangle).

First, two terms on the right-hand side (RHS) of Eq. (2)
are the mean-field terms: o(p) = Olo(f — 1), where p. is
the critical density and where oy = 1 is chosen as unity for

J

simplicity. The system shows a homogeneous ordered state for
a1(po) > 0 and disordered isotropic state when «;(pp) < O,
where pg is the mean density of particles. The third term
is coupling to the density field and the fourth term is the
diffusion in Q. Origin of such diffusion can be obtained from
the equal elastic constant approximation of Frank-free energy
for a two-dimensional equilibrium nematic [44,45].

We rewrite Egs. (1) and (2) neglecting the higher order
fluctuations about the homogeneous ordered steady state.

The local nematic order parameter Q is given as O =
S rcos?20 sin 26

5 ln20  —cos2els Where S is a scalar and a measure of or-

dering. We define 8p, S, and 6 as the fluctuation terms
from their mean values py, Sp, and 6y, respectively. Here,
So = \/@ , and is obtained from Eq. (2), main text, for the

homogeneous steady state. Therefore, to linear order we have
0 = %(S0 +388), Q12 = 68y, and Eq. (1), main text, gives

(So + 8S) [—(So + 85)]
3 (po +8p) = ao[3x2(00 +8p) = + &7 (po + 8p)———— +20:9,(po + 5,0)509} +D,V(po +38p) (4
or
So8 58 So8 58
88p =a0[af( 0 ”;”OO )—ayz( 090 + fo )+2Sop08x8y9i| + D, (32 +02)sp )
or
080 = (220 4, Ya26p + (D, — 20 )o280 + PP (52 _ 52)55 + 2a0p0S0d:8,0 6
60 = T"‘f_p 60 + Py ),P‘FT(X—y) + 2a0 00500, 0,0, (6)

while the equation for 65 [Eq. (2), main text] in homogeneous steady state gives

0= [al(po) (o) — 257 + 25035):| P b )
Also a1 (pg) — %Soz = 0. Therefore, we have
[e1(p0)8p — 2808S1(Sp + 8S) = 0, (8)
55 = 2 (P0)3p ©)
WA
or
88 =Tép, (10)
where I' = % and o = %l p=p,- Hence Eq. (6) can be rewritten as
asp = (“"250 + Dp>afap + (Dp - @)aﬁap + aoz’)or(af — 92)8 + 2a0p0S0d. 8,0 (11)
or
38p = (@ +D, + F“OT’)‘))afsp + (—QOTSO +D, - F?)@Z(Sp + 20090093, (12)
or
%8p = Ki0;8p + K078 p + K30:0,0, (13)

where Kj = (%2 + D, + T%2) K, = (—%* 4+ D, — %

), and K3 = 261(),00S0.
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Now the equation of motion for Q,,
Qi = la1(p) — 2(Q: D112 + B(V1V2 — 3812V?)p + DoV? Qo + Hiz + Q. (14)
Here, Q1> = Syb; therefore, in linear order, [a1(p) — a2(Q : ©)]1Q1» will not survive. iy hy = ho>cos¢ sing = hy>®(r), where
®O(r) = cos¢ sing:
/3 2 2 h02 1
0,0 = ——0,0,6p +Dg(0y +0,)0 + — P + —-Q. (15)
' poSo ol Y ) 000 £0S0

Taking the Fourier transform of Eqs. (13) and (15), where Fourier modes are defined as f(q, w) = f f f(r, elar+iotdy de,
we get

(K1q:" + Kaq,” — i0)8p(q, ) + K3¢:4,6(q, @) = 0 (16)
and
/8 2 2 . h02 |
—<@xqy80(q, @) + [Do(q:” + ¢,7) — iw]0(q, ) = —D(q) + —2(q, ®). (17
£0So PSo PSo
Solving Egs. (16) and (17) will give
so(q, )] _ 1 [ 0 }
M = — ~ , 18
[ 0(q, ) ] P05 1> ®(@) + (g, ) (18)
where
Kig:* + Kxgy? — i K3qxqy ]
M= .. 19
[ pfSoqqu DQ(QXz + qu) —lw (19)

By solving Eq. (18) for g, = g, we get

3p(q, ®) 1 —K3q* lho’®(q) + Q(q. »)]
6 = T o 5 > , (20)
(q, ) (D1¢* + 0?) — iwD>g* | 2D,q” — iw £0So
where D = 4D,Dg + 2ayp and D, = 2(D, + Dg). Equation (20) gives
—K3q? (M3 ®(q) + (g, »)]
5p(q,0) = ————9 0T T O 1)
(D1g* + w*) — iwD»q £0S0
2D, — i ho(q) + Qq,
0(q. ) = . pqz i i [5P(q) + Q(q )]. 22)
(D1g* + w*) — iwDxq £0S0
Now, we first calculate the two point orientation correlation functions,
D,)q* + o’ [ (P (@) P(—q)) + (Q(q, ©)Q(—q, —0))]
(0(q, )0(—q, —0)) = ——F——— e : (23)
(D1g* + 0*)? + w*Dr7q £0S0
Here (®(q)P(—q)) = 8(q + q) and (Q(q, ©)Q(—q, —»)) = A¢d(q + q)8(w + ). Using this, we get
he 1
S4(0) = C(D,, Dg>q—2 +B(D,. Do) 5 (24)
. 4D,? _ mAo 1 2D, +c(vAP+c7)=20*] | [=2D,*+c(vAP+c)+2b%]
where C(D,, Do) = 750aD, Do 2apy And B(D,, Do) = 355; /240 +c2) x/p (/IR 21 + \/:<c+ T+ c2) 2 I, where

b= ,/22D,Dg + aof) and ¢ = ,/2(D, + Dg).

(

Hence the two point angle correlation function can be written Bf(x) + Chjg(x), where
as

chd

2 /a d2 1— iq-x
f) = f 1% ~mnAkl)  (@26)
g 2

B -1
§,00) =~ ; + (25) o 4m? q?

and
Here, the coefficients C and B depend on system param-

eters. To get the two point correlation function for nematic L s
order parameter Cg(x) =~ exp[—Gp(x)] [44], where Gy(x) is () = 7/ @ l 7 26(1 — eitoosd o7
the inverse Fourier transform of S, (6), Eq. (25). Also, G(x) = & e L2 Jo
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or

2w /L dq
gx) = fz 7[1 — Jo(qlxD]. (28)

7 /a

Here J,, is the nth order Bessel function [46]:

U dull - J Akl g
g(x>=|x|2f MHW/ =
0 u 1 u

Alx|
— |x|2/ dMLOS(u)]’ (29)
1 u
) [ 1 1
g(x) = Ix["A+ |x|7| — % I—W
27 /alx|
P / dul Jo(u)]’ 30)
27r/a\x\
9) = |x|2(A -5 |x|2/ ”’”‘Li(“)]) G1)
u
2
g ==+ |x|2<A - ; —A/>. (32)

Here A = (7 =h gy ~ 12 and A’ =

2m /alx| J, (u) ~
2r/L f du >

fooo %du ~ 0.27. Here, a = 1 is the lattice spacmg.
g(x) = |x|* x 0(0.01). (33)
Hence the orientation correlation function is given by
Cx) ~ LE—MZXO(O.OI)XC};@. (34)
|x|®

When measured on the scale of system size N = K?, we get
1 )
Co(N) 2 —=e i, (35)

Here, B =1.17 x 10~*and C' = 3.9 x 1073.
Similarly, structure factor for density can be calculated
using Eq. (21) and given by

h Ay
Sp(@) =ri—3 + 12— (36)
q* q

where y; = 0.5 and y, = 0.4 are constants and depend only
on system parameters.
VI. SUMMARY

We studied two-dimensional dry active nematics with
the quenched random disorder using the the hydrodynamic

A6

equations of motion for the slow fields, viz. density p and
orientation Q, in a coarse-grained description.

The study from the numerical solution of equations of mo-
tion and the linearized hydrodynamic calculation shows that
the orientation correlation follows a crossover from QLRO
(algebraic decay of correlation) to SRO (exponential decay).
Such crossover occurs due to the pinning of £1/2 defects in
the presence of finite disorder, which breaks the system in
domains of different orientations. The size of such domains
decreases on increasing disorder. For clean as well as RFAN,
number fluctuation is giant.

We also studied the approach to the steady state by (i) char-
acterizing the dynamics of 41/2 defects and (ii) calculation
of the characteristic length of growing domains Lg ,(t). The
slow dynamics of +1/2 defect leads to the slower domain
growth in the presence of disorder. Although domain growth
is slower in the presence of disorder, the two-point correlation
function for both fields C, o shows good dynamic scaling.
Still, no static scaling is found for different disorder strengths.
Domain morphology remains unaffected in the presence of
disorder.

We find an interesting steady state in RFAN, which
is different from its corresponding equilibrium counterpart:
random field XY model [11]. Our study should motivate ex-
perimentalists to verify our findings and encourage us to study
the effect of other kinds of disorders in active nematics. To
make the model minimal, the effect of background fluid is
ignored in our present study; hence it is for dry active nematic.
It would be interesting to extend this study for wet active
systems [32,47,48].
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APPENDIX: SNAPSHOTS FOR A6 AND NOP
1. Snapshots for A@

The snapshots corresponding to Fig. 1(c) are shown in
Fig. 7. Here we can see that for a nonzero disorder in the

AO Af
+0.15 +0.15

-0.15

-0.10

FIG. 7. Snapshots of Af for hy = 0.0, ap = 0.2 (i), hp = 0.05, ap = 0.2 (ii), and hy = 0.05, ap = 0.3 (iii).
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FIG. 8. Snapshots of local NOP, Q for ay = 0.2 and for different disorder strength in the system. From top to bottom panel (P:1 to P:3)
ho = 0.0, 0.05, and 0.1, respectively. Snapshots are generated at equal intervals, i.e., # = 150000, 300000, 450000, and 600 000, from left

to right, respectively. Notice the numbers on the color bars.

system; distinct domains can be seen as the fluctuation in
angular orientation A8 represented by color bar varies sig-
nificantly throughout the space whereas, for the clean system,
the whole space is identical in terms of Af. Also, for larger
activity ap = 0.3, the magnitude of A# fluctuations decreases,
which confirms the stronger intradomain ordering as found in
P(A6).

2. Fixed ay and varying h,

In Fig. 8, we show the snapshots for local NOP, Q at
different simulation time for gy = 0.2 and different strengths
of disorder in the system. We also included the multimedia
files in the SM (see the Supplemental Material [37] for the
animations of the nematic order parameter) for the same. We
observe that, as we increase the disorder in the system, dy-
namics of defect slows down. Also, for high disorder, defects

-
06
055
05
045
04
e — 035

025

FIG. 9. Snapshots of local NOP, Q for iy = 0.05 and for different activity in the system. From top to bottom panel (P:1 to P:3) ¢y = 0.1,
0.2, and 0.3, respectively. Snapshots are generated at equal intervals, i.e., r = 150000, 300000, 450000, and 600 000, from left to right,

respectively. Notice the numbers on the color bars.
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are pinned, which is responsible for the formation of multiple
smaller domains as shown in Figs. 1(c) and 7(i)-7(iii).

3. Fixed disorder %, and varying activity a,

Further, we change activity a¢ in Eq. (1) (main text) and
plot the snapshots of local NOP, Q for fixed hy = 0.05 in
Fig. 9 (see the Supplemental Material [37] for animations
of the nematic order parameter). We find that, for a fixed g
(=0.05 in this case), as we increase a, annihilation of defects
happens faster than that for the smaller ay. We also plot the
relative separation Ar(t) between +1/2 and —1/2 defects vs
t in Fig. 10(a) for three different ag = 0.1, 0.2, and 0.3. Also
the relative speed, which is defined as u = |%Ar(t)| x 1073,
is plotted in Fig. 10(b).

T 5

—
o o h=01,a=0. ] | i
160 =01, 3, i o
[ 5@00 o o h=0.1,2,-0.2 4l i
140~ 5“5000 o h=0.1,2=03 - L i
[ o 1
o120 08, 0 1 3k o O 4
T 8o @ 4 = | - il
< 100 8 4 ,L ]
8ol Ho ] L 8o 550 i
r DOOO 1 1 ¢mo QEDQQO 050 4
60 — ¢} B 8 _~.80 Oo
I | O\D OO\ ] [ 7800 ! ]
0 40000 0000 1zxios o =105
t t

FIG. 10. (a) Relative separation A(r) between +1/2 and —1/2
defects pair vs time plot and (b) relative speed, u = |l‘71[Ar(t)| X
1073, of £1/2 defects, for different values of ay and fixed hy = 0.1.
t is the simulation time.
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