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Transition from steady shear to oscillatory shear rheology of dense suspensions
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Recent studies have highlighted that oscillatory and time-dependent shear flows might help increase the flowa-
bility of dense suspensions. While most focus has been on cross-flows we here study a simple two-dimensional
suspensions where we apply simultaneously oscillatory and stationary shear along the same direction. We first
show that the dissipative viscosities in this set-up significantly decrease with an increasing shear-rate magnitude
of the oscillations and given that the oscillatory strain is small, in a similar fashion as found previously for
cross-flow oscillations. As for cross-flow oscillations, the decrease can be attributed to the large decrease in the
number of contacts and an altered microstructure as one transitions from a steady shear to an oscillatory shear
dominated rheology. As subresults we find both an extension to the μ(J ) rheology, a constitutive relationship
between the shear stresses and the shear rate, valid for oscillatory shear flows and that shear-jamming of frictional
particles at oscillatory shear dominated flows occurs at higher packing fractions compared to steady shear
dominated flows.

DOI: 10.1103/PhysRevE.102.052605

I. INTRODUCTION

The flow of dense suspensions, even for the simplest sys-
tems, shows several nontrivial rheological behaviours such
as shear-thinning [1], both continuous [2,3] and discontinu-
ous shear-thickening [4–7], and shear jamming [8,9]. In the
simplest models of a non-Brownian suspension composed of
hard bodies the viscosity η diverges as η/η f ∼ (φc − φ)−α ,
where η f is the solvent viscosity, φ the packing fraction, and
α a critical exponent usually close to 2 [10,11] and where
φc depends on the friction [12], shape [13–19], and inter-
actions [20,21]. The shear-thinning and shear-thickening can
usually be attributed to a decreased or an increased impor-
tance of certain interactions compared to others. For example,
shear-thinning of colloidal suspensions is due to a decreased
importance of thermal collisional interactions (vibrations in
“soft cages”) compared to the shear stresses [22]. Shear-
thickening can be attributed to an increased importance of
hydrodynamics [6,23] or as in the case of discontinuous shear-
thickening the onset of frictional interactions above a certain
stress threshold [4,5]. Shear-thickening can also be driven by
inertial effects [2,3] or a combination of the causes given
above [24,25]. Acoustics [26] and oscillatory flows [27,28]
have recently been shown to be effective in altering the flowa-
bility of suspension, where one has the ability to lower the the
viscosity in a controlled manner (i.e., the resistance to flow).
Especially cross-flows have turned out to be useful when an
increased flowability of (almost) shear jammed dense sus-
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pensions is desired and can even under certain circumstances
unblock shear jammed suspensions [28]. The current under-
standing of this decrease in shear viscosity with cross-flows
is based on a force chain tilting and eventual breakage of
them as a consequence to this secondary oscillatory shear flow
[27] and a random organisation [28,29], the later a concept
closely related to reversibility of oscillatory shear flows for
suspensions [29].

In this paper we show that by applying an oscillatory
shear flow which is parallel to a stationary shear flow, one
obtains an equivalent viscosity reduction as for cross-flow
oscillations, in contradiction to previous findings [28]. By
increasing the shear-rate magnitude of the oscillations, we
find that the number of contacts per particle decreases as well
as an altered microstructure compared to steady shear. These
findings agrees well with previous findings for cross-flow
oscillations and can be explained by the fact that the dense
suspensions transit from a steady shear to an oscillatory shear
rheology, where the latter has a significant lower viscosity
at the same packing fraction and small oscillatory strains.
We, furthermore, show that the shear-jamming point for a
suspension composed of frictional particles shifts to higher
packing fractions as oscillations with small strains are applied
and approaches a new shear jamming packing fraction with
a value just below the shear jamming point for a suspension
composed of frictionless particles. For a suspension composed
of frictionless particles we do not find any significant shift in
the shear jamming point as oscillations are applied. We do,
however, still notice a viscosity reduction, on the order of a
magnitude, as oscillations are applied.

II. STEADY-SHEAR AND OSCILLATORY-SHEAR
RHEOLOGIES

Consider a suspensions that is sheared with a time-
dependent shear rate γ̇ = γ̇0 + γ̇1 cos(ωt + δ), where γ̇0 is
the stationary shear-rate, γ̇1 the shear-rate magnitude of the
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oscillatory shear, ω/2π the frequency of oscillatory shear, and
δ a shift in time. Without any loss of generality, we assume
from now on δ to be equal to zero and both γ̇1 and γ̇0 to be
two positive numbers. While the viscosity in a steady shear
flow (γ̇1 = 0) is defined by a “stress” viscosity ησ = 〈σ 〉/〈γ̇ 〉,
where σ is the shear stress, it becomes obvious that this ex-
pression becomes imprecise and possibly invalid at pure oscil-
latory shear flows (γ̇0 = 0) where 〈σ 〉 → 0 and 〈γ̇ 〉 → 0. For
pure oscillatory shear flows one instead relies on the complex
viscosity η∗. Assuming a pure viscous response, this complex
viscosity η∗ becomes equal to its viscous part η′ as η∗ =
η′ =

∫ 2π/ω

0 σ (t ) cos(ωt ) dt

γ̇1
∫ 2π/ω

0 cos2(ωt ) dt
= G′′/ω, which is essentially a shear-

rate weighted quantity, with G′′ = ω2

πγ̇1

∫ 2π/ω

0 σ (t ) cos(ωt ) dt
being the loss modulus [30]. We generalize this quantity and
define shear-rate-averaged quantities as

〈A〉|γ̇ | =
∫ 2πn/ω

0 |A(t )||γ̇ (t )|dt∫ 2πn/ω

0 |γ̇ (t )|dt
, (1)

where A(t ) is a time-dependent quantity of interest (e.g., shear
stress σ or number of contacts Z) and an integer n (number of
oscillation periods of the time-average). Shear-rate-averaged
viscosities can then be calculated as η|γ̇ | = 〈σ 〉|γ̇ |/〈γ̇ 〉|γ̇ |, in
perfect agreement with the viscous part of the complex vis-
cosity for a pure oscillatory shear flow as well as the stress
viscosity for a steady-shear flow. This new measure η|γ̇ |,
hence, offers a generalized way to measure viscosities, ap-
plicable to both steady-shear and oscillatory-shear flows as
well as any combination of them. The power dissipated at
any given time is equal to D(t ) = σ (t )γ̇ (t ). By normalizing
the average power of dissipation 〈D(t )〉 with 〈γ̇ 2(t )〉, which is
related to the dissipation of an instantaneously relaxing New-
tonian fluid, we obtain that 〈D(t )〉/〈γ̇ 2(t )〉 = 〈σ 〉|γ̇ [/〈γ̇ 〉|γ̇ |,
i.e., our shear-rate-averaged viscosity is in fact a “dissipative”
viscosity. For a Newtonian suspension with σ = ηSS (φ)γ̇ and
an instantaneous relaxation of stresses in response to changes
in shear-rate, the two viscosities, “stress” and “dissipative”,
yield the same values ησ = η|γ̇ | = ηSS (φ). However, for
rapidly varying shear (i.e., unsteady) flow a suspension does
not, in general, have sufficient time to restructure and adapt to
the new conditions and one might easily obtain ησ �= η|γ̇ |.

III. SIMULATION METHOD AND DETAILS

We consider suspensions composed of roughly 1000 non-
Brownian polydisperse discs sheared between two rough
walls, created by fusing particles together, at constant packing
fractions or constant imposed pressure (see later). Particles
interact via normal and tangential forces (frictional forces)
with a Coulomb criteria for sliding where we set the parti-
cle friction coefficient μp equal to either 0.4 (frictional) or
0 (frictionless). The particles also interact with the solvent
via hydrodynamic drag and torques, which are linear with
the translational and angular velocity differences between the
particle and fluid, respectively. The interstitial fluid velocity is
described by a linear profile, u f = (yγ̇ , 0), with the angular
fluid velocity ω f = γ̇ /2; where y is the y coordinate of the
fluid and γ̇ being the time-dependent shear rate we apply

TABLE I. Values of η f γ̇max/kn we have in our simulations at
different φ’s for suspensions of frictional and frictionless particles.

frictional frictionless

φ η f γ̇max/kn φ η f γ̇max/kn

0.67 ∼[10−6, 10−5] 0.72 ∼[10−6, 10−5]
0.72 ∼[10−6, 10−5] 0.74 ∼[10−7, 10−5]
0.74 ∼[10−7, 10−6] 0.76 ∼[10−7, 10−5]
0.76 ∼[10−7, 10−6] 0.79 ∼[10−7, 10−5]
0.79 ∼[10−7, 10−6] 0.82 ∼[10−8, 10−6]

to the system. Both simulations with and without lubrica-
tion forces and torques were considered (see Appendix G
for description of the lubrication forces). The particle dy-
namics were either Newtonian (for the cases with lubrication
forces) or strictly overdamped (for the cases without lubrica-
tion forces). In the cases of the Newtonian dynamics we put
the Stokes number (St = ργ̇ d2

η f
, where d is the average particle

diameter and ρ the mass density of the particles) smaller
than 0.4 to ensure that we do not have non-negligible inertial
effects. For our pressure controlled simulations we used the
same dynamics for the two walls (moving as two blocks), in
the normal direction, as for the freely flowing particles. For
more details of the simulation model see [7,31].

For the simple system we are studying, we can identify
three dimensionless parameters: F = γ̇1/γ̇0, G = γ̇1/ω, and
φ. G gives here the maximum strain magnitude due to the os-
cillations. Parameters ranges studied are F ∈ [3 × 10−2, 3 ×
102] and G ∈ [10−2, 10]. In this work, we use the average par-
ticle diameter d as the unit of length, η f /kn as the unit of time,
and knd2 as the unit of energy. While our particles are soft (i.e.,
a harmonic potential between particles at contact), we obtain
a quasihard core behavior by keeping the ratio kn/P > 104

(which is related to the overlap) at all times. Since P ∼ |γ̇ |
and in order to ensure quasihard core condition, the maximum
shear-rate γ̇max = |γ̇0| + |γ̇1| needs to be adjusted in units of
kn/η f for the various parameter combinations of φ, F , and
G, see Table I. The lower η f γ̇max/kn values corresponds in
general to small F values and vice versa. For the pressure
imposed simulations it is straightforward to keep kn/P 
 104

as P is now an input parameter. For the oscillatory shear flows
we make sure that our time-step δt was much smaller than
the inverse frequency 2πω−1 (i.e., ωδt � 1). Naturally the
same conditions were applied for the maximum shear-rates
(i.e., γ̇maxδt � 1).

Simulations were typically carried out for a strain of at least
10 (i.e.,

∫
γ̇ dt > 10) and a minimum of ten oscillation peri-

ods (n = 10). Before starting to measure we pre-sheared all
sampled for a few oscillatory periods and with a minimum of
one absolute strain. We report both instantaneous time series
of η/η f as well as shear-rate-averaged quantities [according to
Eq. (1)] of Z , η, and later on also φ, J (viscous number), and
μ (stress ratio). Viscosities are compared to the steady-shear
viscosities ηSS found for the same packing fractions of the
system.
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FIG. 1. Instantaneous relative viscosities at φ = 0.67, μp = 0.4,
G = 0.33, and (a) F = 0.3, (b) F = 30. Lines give “stress” viscosity
ησ /η f (green-dashed), “dissipative” viscosity η|γ̇ |/η f (solid-blue),
and normal time-average ηtime/η f (cyan–dash-dotted); grey dotted
line indicates viscosity for steady shear (SS) flow at φ = 0.67 (i.e.,
F = 0), thin black solid line indicates zero line. The rectangular
plots beneath the main figures illustrate how the strain evolves in
the same time span for each corresponding case; black lines in the
rectangular plots indicate how strain will evolve taking only account
of the stationary shear-rate γ̇0.

IV. RESULT AND DISCUSSION

A. Instantaneous viscosities

Figure 1 shows two typical cases of how the instanta-
neous viscosities varies with time at two different oscillation
amplitudes. When F < 1 (small to moderate shear-rate oscil-
lations compared to the average shear flow) the instantaneous
viscosity only mildly fluctuates around an average viscosity
equal to that of ηSS (φ) seen in steady state [2], see Fig. 1(a).
However, when F > 1 (large shear-rate oscillations compared
to the stationary shear flow) two distinct and alternating peaks
appear with each period separated by zones with almost zero
instantaneous viscosities, see Fig. 1(b). These peaks corre-
late well with the peaks in the strain with a maximum just
before shear-reversal. One sees that the measure ησ poorly
represents a suspension’s instantaneous viscosity and is closer
to the suspension’s peaks in instantaneous viscosity at large
oscillations [see Fig. 1(b)]. In general η|γ̇ | performs better
in representing a suspension’s instantaneous viscosity and
is closer to a brute-force time-averaged viscosity ηtime =
ω

∫ 2πn/ω

0 η(t ) dt/(2πn). Similar alternating peaks are seen
also in the instantaneous stresses (shear stress and pressure)
both at this packing fraction and higher ones and as soon as F
is large, see Appendix A.

B. “Dissipative” viscosity at constant packing fraction

In Fig. 2 we show how (a) the “dissipative” viscosities
η|γ̇ |/ηSS , (b) the number of contacts Z|γ̇ |, the average dis-
sipation rate D normalized by (c) ηSS γ̇ 2

0 or (d) ηSS γ̇ 2
1 vary

with F at various oscillating strains G, at φ = 0.76 (results
for suspensions at other φ’s as well as for frictionless sus-
pensions at φ = 0.76 can be found in the Appendix D). For
all G the viscosities are close to ηSS (φ) as soon as F < 1 in
agreement with previously reported results using cross-flow
oscillations [28]. At F > 1 the viscosities decrease, moder-
ately for large G and substantially for small G (i.e., small
strain amplitude). This also illustrated in Fig. 3 where we

FIG. 2. (a) Reduced viscosity η|γ̇ |/ηSS , (b) Z|γ̇ |, (c) D/γ̇ 2
0 , and

(d) D/γ̇ 2
1 as function of F at various G, at φ = 0.76 and μp = 0.4;

dashed lines in (a) and (b) are best fits using a phenomenologi-
cal hyperbolic tangent function A|γ̇ |/ASS = 1 − c1 tanh(c2F ), where
c1 = (1 − AF=∞

|γ̇ | /ASS ) and c2 are two free parameters and A are
either η|γ̇ |/η f or Z|γ̇ |, and dashed lines in (c) and (d) are η|γ̇ |/ηSS (1 +
0.5F 2) and η|γ̇ |/ηSS ( 1

F2 + 0.5) with η|γ̇ | obtained from (a).

show how the reduced viscosity η|γ̇ |/ηSS at F = ∞ varies
with G. For large G the viscosity is close to ηSS but does
significant decrease as G is lowered. This effect seems to
only be mildly affected by the packing fraction. The “normal”
viscosity ηP

|γ̇ | = 〈P〉|γ̇ |/〈γ̇ 〉|γ̇ | behaves essentially the same for
the “dissipative” viscosity [see Fig. 2(a)], as shown in the
Appendix C. The same trends are also found in the number of
contacts, highlighting that the former is a consequence of the
later. In particular, we see that the viscosity and the number
of contacts both decrease to zero at high values of F and
low values of G. We interpret this as being in metareversible
(finite F) or reversible states (F = ∞) as has previously
been observed for pure oscillatory shear flows of suspensions
[29,32,33]. Metareversible is in where the states are only

FIG. 3. Rescaled viscosity η|γ̇ |/ηSS at F = ∞ as functions of G
with μp = 0.4 and φ = 0.67 or 0.76 as indicated in the legend.
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FIG. 4. (a) Time series of rescaled shear stress σ/η f γ̇1 and
(b) corresponding Lissajous curves of oscillatory flows at various
G, φ = 0.76, F = ∞, and μp = 0.4; black solid lines in (a) and
(b) are theoretical predictions assuming that a suspension follows
constitutive relationships obtained from steady shear, i.e., σ = ηSS γ̇ .

reversible for a certain time and will eventually be broken due
to the stationary shear flow. Figure 4 shows (a) time series
of the rescaled shear stress σ/η f γ̇1 and (b) the corresponding
Lissajous curves for the frictional suspensions at F = ∞ and
various G at φ = 0.76, i.e., the asymptotic cases of Fig. 2.
The black lines are theoretical predictions for an instanta-
neous relaxing suspension following a steady-shear rheology,
i.e., σ = ηSS γ̇ , at pure oscillatory shear flows. At G � 3.3,
where the viscosities have only a negligible decrease, the
time series show an almost instantaneous response to γ̇ and
the corresponding Lissajous curves are linear with only tiny
fluctuations. As G decreases, both the time series and the
Lissajous curves deviate from the steady shear with deviations
that are increasing as G is lowered. At G = 0.033 and 0.01
where the “dissipative” viscosities have reached zero, the
shear stresses are constantly zero in the Lissajous curves as
expected.

Our results are hence in line with what has been previously
found for cross-flows oscillations [27,28], but here we clearly
show that even oscillatory flows which are parallel to the
average shear flow are sufficient for increasing flowability
(i.e., lowering viscosity). This puts new doubt on the expla-
nation that the increasing flowability is due to that the cross
flow introduces a orthogonal perturbation which tilt the force
chains (and if strong enough break them), as there is no pos-
sibility for such orthogonal perturbations in two dimensions.
We here instead show that parallel oscillations decrease the
number of contacts per particle and, hence, reorganize the
particles microstructure (including breakage of force chains).
Figure 5 shows two collapses (one for frictional particles and
the other for frictionless) of rescaled viscosities η|γ̇ |/η f versus
the number of contact Z|γ̇ | for various φ, F , and G, high-
lighting the strong correlation between these quantities. Such
observation is in line with what has been reported previously
[28]. As a note, using the shear-rate-weighted measure for
cross-flows would leave previous results unaltered as they
were measured along a direction where the shear-rate was
constant in time. For a comparison between “dissipative” and
“stress” viscosities in with shear oscillations in the parallel
direction see the Appendix B. While results presented in the
main text of this paper are without any lubrication forces, we
found similar results with lubrification forces included (see
Figs. 17–18 in the Appendices). The main difference is that

FIG. 5. Rescaled viscosities η|γ̇ |/η f as functions of the number
of contacts per particle Z|γ̇ | for (a) frictional suspensions and (b) fric-
tionless suspensions. Black symbols corresponds to steady-shear
values (F = 0) [25] for (circles) frictional and (triangles) frictionless
particles, lines according to the constitutive laws for steady-shear, see
[25]. Various symbols corresponds to various F as indicated in the
legends, with φ ∈ [0.67, 0.79] for frictional and φ ∈ [0.72, 0.82] for
frictionless particles and G ∈ [10−2, 10].

the relative viscosities reach higher (finite) plateau values at
large F and small G values. The viscosity reduction can hence
be understood as a transition from a steady shear rheology
to oscillatory shear one where the latter one has lower num-
ber of contacts per particles (and hence less force chains in
general) at the same packing fraction and small oscillatory
strains. While cross-flow oscillations has the possibility to tilt
and break force chains, parallel-flow oscillations only has the
possibility to break chains by shear-reversals which in its own
would create new force chains (along the new and orthogonal
compression axis). Hence, there is a conceptual difference
between cross-flow and parallel-flow oscillations. In the force
chain picture one would not expect a lowered viscosity (or at
a maximum halved viscosity) when applying parallel oscil-
lations around a stationary flow. We see a substantial larger
viscosity reduction which instead seems to be related to a
random organisation mechanism [28,29] and a nonsliding of
frictional contacts.

As discussed by Ness et al. [28] the dissipation per strain
might be a more interesting quantity, especially for several
industrial applications where one wants the lower the en-
ergy consumption per strain. Looking at this quantity1, see
Fig. 2(c), one finds that the relative dissipation per strain
remains equal to that at steady-shear at low F whereas it
increases as F > 1. The increase at large F is in agreement
with cross-flow results [28]. In general, one finds that D/γ̇ 2

0 =
η|γ̇ |(1 + 0.5F2) and D/γ̇ 2

1 = η|γ̇ |(1/F2 + 0.5). The scaling
of D with respect to F is derived by having D = η|γ̇ |〈γ̇ (t )2〉.
With γ̇ (t ) = γ̇0 + γ̇1 cos(ωt ), 〈γ̇ (t )2〉 = γ̇ 2

0 + 0.5γ̇ 2
1 . There-

fore, D/γ̇ 2
0 ∼ (1 + 0.5F2) and D/γ̇ 2

1 ∼ (1/F2 + 0.5). The
quantity D/γ̇ 2

1 = η|γ̇ |(1/F2 + 0.5) might be more interesting
for flows which are almost purely oscillatory shear flows.
Notice that η|γ̇ | is itself dependent on F , as well as G and
φ. While we get a monotonic relative increase for the rate of
dissipation both from (c) a pure steady shear flow and (d)
a pure oscillatory shear flow, cross-flows seems to show a

1The dissipation per strain in the primary direction is given by W =
〈D〉/γ̇0 with WSS = ηSS γ̇ 2

0 /γ̇0 for steady-shear conditions.
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FIG. 6. Flow curves with extended μ(J ) rheology for (a) μ for suspensions with frictional particles (μp = 0.4), (b) μ for suspensions
with frictionless particles (μp = 0), and (c) Z for both suspensions composed of either frictional (empty symbols) or frictionless particles
(filled symbols). Black symbols corresponds to steady-shear values (F = 0) [25] for (circles) frictional and (triangles) frictionless particles,
lines according to [25]. Various symbols corresponds to various F as indicated in the legends, with φ ∈ [0.67, 0.79] for frictional and φ ∈
[0.72, 0.82] for frictionless particles and G ∈ [10−2, 10].

modest nonmonotonicity [28]. This discrepancy could pos-
sibly be attributed to that we neglected hydrodynamic
interactions between pairs of particles or indeed that having
the oscillations perpendicular to the average flow is slightly
more beneficial in regards to lowering the dissipation per
strain. However, we did not see any nonmonotonic for simula-
tions with lubrication interaction included (see Appendix G),
making the latter a more likely cause. An important finding
from above is that η|γ̇ |,F=∞ � η|γ̇ |,F=0 = ηSS (φ) for the same
φ, where viscosities for oscillatory flows and steady state dif-
fer for small to moderate oscillatory strains (G < 3.3), hence
do not respect the Cox-Merz rule, and are approximately equal
otherwise. Interestingly, there exists a small regime (1 < F <

10) for which the viscosities are lower both that of steady
shear flow and oscillatory shear flow viscosities for the largest
oscillatory strains [see Fig. 2(a)].

Suspension rheology can be reformulated using a viscous
number J = η f γ̇ /P, where φ(J ), μ(J ), and Z (J ) all are con-
stitutive relationships and functions of only J in the hard-body
limit [2,11], where P is the pressure and μ = σ/P the stress
ratio. We here show that one can expand this formulation
to oscillatory flows by using a shear-rate-weighted viscous
number J|γ̇ | = η f 〈γ̇ /P〉|γ̇ |, where P is measured in the cen-
ter of the cell. By doing so we find a collapse of μ|γ̇ |(J|γ̇ |)
and Z|γ̇ |(J|γ̇ |) as soon as F  1 for a large parameter space
of φ and G, see Fig. 5, with a crossover between steady-
shear and oscillatory dominated flows around F ∼ 1. Data
points for which F � 1 are all well captured by the orig-
inal μ(J ) rheology whereas data points for which F  1,
and with J|γ̇ |  JSS (φ), are better described by the empirical

relation μ|γ̇ | 
 μmax − κ[ ln(J|γ̇ |) − ln(J|γ̇ |,0)]
2

with μmax 

0.75, J|γ̇ |,0 
 2, and κ = 0.01, shown in Fig. 6(a) as a black
solid line. A similar trend can be found for suspensions com-
posed of frictionless particles, even though the collapse is
slightly worse, as seen in Fig. 6(b). Here, the black solid line
is the same constitutive law as in Fig. 6(a) but with μmax 

0.45, J|γ̇ |,0 
 1, and κ = 0.01. The collapse works slightly
better considering Z|γ̇ | plotted against J|γ̇ |, see Fig. 6(c). An

alternative and slightly worse definition of J|γ̇ | can be found
in the Appendix E.

C. Shift of jamming packing fraction

We now explore if one can cross the shear-jamming pack-
ing fraction by having shear flow oscillations. We achieve this
by doing pressure imposed simulations rather than constant
volume. This replaces the control parameter φ by J|γ̇ |. We
study the asymptotic cases where F = ∞ (having γ̇0 = 0),
and J|γ̇ | ∈ [10−5, 101] keeping the oscillatory strains G fixed,
which is achieved by varying γ̇1 and ω simultaneously. Indeed,
as observed by cross-flow oscillations we find that the shear-
jamming point shifts to higher packing fraction compared
to steady-shear for flows composed of frictional particles.
For F = ∞ there is no difference between if the flow are

FIG. 7. Reduced viscosity as function of φ at various G and F =
∞ (pure oscillatory flows). Suspension composed of (a) frictional
and (b) frictionless particles. Black symbols correspond to steady-
shear viscosities for (circles) frictional and (triangles) frictionless,
taken from [25]. The black lines corresponds to best fits according
to η(φ)/η f = a(φSS

c − φ)−α for (solid) frictional and (dash-dotted)
frictionless particles. Vertical grey dashed lines show the locations
of the corresponding shear-jamming points, with and φSS,frictionless

c =
0.848 ± 0.002 and φSS,frictional

c = 0.812 ± 0.002. Orange arrows indi-
cate the increase of G.
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FIG. 8. Normalized polar contact probability functions of the
particles at φ = 0.79. (a) Steady shear with η|γ̇ |/η f = 451 (red filled
circle) and oscillatory shear with η|γ̇ |/η f = 29 (black empty circle)
of frictional particles, (b) steady shear of frictionless particles with
η|γ̇ |/η f = 26 (red filled triangle) and oscillatory shear with η|γ̇ |/η f =
2.5 (black empty triangle). The inset in (b) shows the comparison
between the frictional case under oscillatory shear (black line) and
the frictionless case under steady shear (red line); the shaded region
indicates the difference between two lines, with the red region im-
plies the region where the red line has values larger than the black
one, and the black region the opposite.

cross-flow or parallel-flow as such distinction is ill-defined,
highlighting that it is not cross-flow per see that leads to the
shift in shear-jamming points but the fact that the flow is
dominated by the oscillatory shear flow behavior. Figure 7
shows the viscosity at various fixed oscillatory strains. The
viscosities follow the steady-shear viscosities for the corre-
sponding system as soon as the oscillatory strain G is large. As
the oscillatory strain is lowered the viscosities of suspensions
composed of frictional particles start to follow the viscosity
branch corresponding to suspensions composed of frictionless
particles at steady shear state in a narrow regime close to
the frictionless shear jamming point. In the Appendix F, we
show some time series of φ close to shear-jamming packing
fractions (at J|γ̇ | ∼ 10−3) at G = 0.33 and 0.01 for both the
frictional and frictionless cases. We see that for all the cases
shown, φ only show minor fluctuation around their average
values, with about 1% of relative fluctuation at G = 0.33
and almost negligible fluctuations (�0.1%) at G = 0.01. This
new and partially unexplored jamming point for oscillatory
flows which, as we denote φOS

c as compared to the steady
state jamming point φSS

c , will hence be dependent on G
with φOS,frictional

c → φSS,frictional
c as G → ∞ and φOS,frictional

c →
0.835 < φSS,frictionless

c as G → 0. The transition is found to
occur around G = 0.1. We do not yet know if this transition is
continuous or discontinuous. We do however observe that the
viscosity is substantially lowered even before a shift in shear-
jamming packing occurs [see G = 0.33 markers in Fig. 7(a)].

For suspensions composed of frictionless particles the
shear-jamming point seems not to shift for pure oscillatory
flow at imposed pressure (i.e., φOS,frictionless

c ≈ φSS,frictionless
c ).

The viscosities do, however, decrease by roughly one order
of magnitude. Our results are in agreement with previous
findings for oscillatory cross-flows [28] for low G with the
exception that we also find an increased flowability also for
frictionless particles at oscillatory flows and low G.

D. Altering in microstructure

As a final test we study the microstructure of steady-
shear, oscillatory shear flow samples for both frictional and
frictionless at constant packing fraction φ = 0.79. Figure 8
shows how the contact distribution changes from a twofold
rotational symmetry for steady shear flows to having a four-
fold symmetry for oscillatory shear flows. Even if the pure
oscillatory flow of the frictional particles [black empty circles
in (a)] has a viscosity similar to that of a frictionless sample
at the same packing fraction [red filled triangles in (b)] the
two microstructures are clearly different, as seen in the inset
of Fig. 8(b), indicating that the “mechanism” for jamming
is not the same in the two approaches and the collapse of
the oscillatory viscosities at low strains onto the steady-shear
frictionless branch is probably fortuitous.

V. CONCLUSION

In this paper we have shown that (i) oscillatory shear flows
parallel to the average flow leads to a decrease in viscosities,
(ii) the μ(J ) rheology can be extended to oscillatory shear
flows, and (iii) the oscillatory shear-jamming packing fraction
is unaltered compared to steady shear for frictionless particles
but shifted upwards for frictional particles. Our understand-
ing of why this shift occurs in the frictional but not in the
frictionless case is that for oscillatory flows with small strains
(less than 0.1) the tangential springs do not have time to get
enough strained to mechanically stabilize the suspensions.
Frictionless particles lacks this possibility altogether and are
hence unaffected by this effect. Our overall understanding of
the viscosity reduction of dense suspensions is that it should
be regarded as a transition from a steady shear flow rheology
to a oscillatory shear rheology, where the latter has a lower
viscosity at low oscillatory strains compared to the former
at the same packing fraction. Hence, this opens up for the
alternative strategy of using shear oscillations along a station-
ary shear direction (or any other chosen direction) to unblock
shear jammed dense suspensions of frictional particles and/or
facilitate flow.

It would be fruitful to expand the μ(J ) rheology to granular
rheology in line with Ref. [34] and using the inertial number I
instead of J , to explore the role of nonlocal rheology [35], and
study linear combinations of shear oscillations perpendicular
to each other with or without a stationary shear flow.
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APPENDIX A: INSTANTANEOUS VISCOSITIES,
STRESSES, AND PRESSURES

In Fig. 9 we show the instantaneous stress and pressure
at φ = 0.67, μp = 0.4, G = 0.33, and F = 30 [i.e., for the
same case as in Fig. 1(b) in the main text] as function of
time. Similar as for the instantaneous viscosity [see Fig. 1(b)
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FIG. 9. (a) The instantaneous rescaled stress σ/η f γ̇0 and (b) the
instantaneous rescaled pressure P/η f γ̇0 at φ = 0.67, μp = 0.4, G =
0.33, and F = 30 [i.e., the same case as in Fig. 1(b) in the main
text] as function of time. Green-dashed lines indicate values of
〈σ 〉/η f γ̇0 and 〈P〉/η f γ̇0, respectively, and blue solid lines indicate the
corresponding shear-rate-averaged quantities. The rectangular plots
beneath the main plots illustrate how strain evolves in the same time
span with black lines indicate how strain will evolve accounting only
for the average shear-rate γ̇0.

in the main text], we see two alternating peaks in both stress
and pressure which are well correlated to the peaks in strain.
Figure 10(a) shows how the relative viscosity varies with time
at φ = 0.76, μp = 0.4, G = 0.33, and F = 30. Similar to
Fig. 1(b) in the main text, we see that the “stress” viscosity ησ

poorly represents the viscosity of the suspension and is closer
to the peak viscosity, while η|γ̇ | is better in describing the
suspension’s viscosity. Figure 10(b) and (c) shows the instan-
taneous stress and pressure for the same case as in Fig. 10(a).
While ησ is close to the peak of instantaneous viscosities, the
corresponding stresses 〈σ 〉 and pressures 〈P〉 do better in rep-
resenting a suspension’s average (signed) stress and pressure.
Corresponding shear-rate average stresses σ[γ̇ | and pressures
P[γ̇ | are also showed, both yielding a good representation of
the (time-)averaged stresses and pressures.

FIG. 11. (a) Reduced “dissipative” viscosities η|γ̇ |/ηSS at φ =
0.76 and (b) reduced “stress” viscosities ησ /ηSS as function of F
at various G, φ = 0.76, and μp = 0.4.

APPENDIX B: COMPARISON BETWEEN “STRESS”
VISCOSITIES ησ/η

SS AND “DISSIPATIVE” VISCOSITIES
η|γ̇|/ηSS AT φ = 0.76

Figure 11 shows a comparison of using (a) “dissipative”
viscosity η|γ̇ |/ηSS and (b) “stress” viscosity ησ /ηSS . Fig-
ure 11(a) is the same as Fig. 2(a) in the main text. While
ησ /ηSS is close to η|γ̇ |/ηSS at F < 1, it becomes scattered
with large errors bars as F > 1. This is because σ and γ̇

change sign at F > 1 due to shear reversal. As F → ∞ we
have 〈σ 〉 → 0 and 〈γ̇ 〉 → 0. Therefore, ησ is no longer a good
measurement when F > 1.

APPENDIX C: RESCALED NORMAL VISCOSITIES ηP
|γ̇|/η

SS
P

AT φ = 0.76 FOR SUSPENSIONS OF FRICTIONAL
PARTICLES

In Fig. 12(a) we show rescaled normal viscosities ηP
|γ̇ |/η

SS
P

as function of F at φ = 0.76 and μp = 0.4. The parameters
are exactly the same as in Fig. 2 in the main text. The normal
viscosity is calculated from ηP

|γ̇ | = 〈P〉|γ̇ |/〈γ̇ 〉|γ̇ | and ηSS
P is

the corresponding value at steady-shear. Similar as in Fig. 2,
we find that the normal viscosities are close to steady-shear
results as soon as F < 1 and decreases as F increases, well

FIG. 10. (a) Instantaneous relative viscosities η/η f , (b) instantaneous rescaled stresses σ/η f γ̇0, and (c) instantaneous rescaled pressures
P/η f γ̇0 at φ = 0.76, μp = 0.4, G = 0.33, and F = 30 as function of time. In (a), lines give “stress” viscosity ησ /η f (green-dashed),
“dissipative” viscosity η|γ̇ |/η f (solid-blue), and normal time-average ηtime/η f (cyan–dash-dotted); grey dotted line indicates viscosity for
steady shear (SS) flow at φ = 0.76 (i.e., F = 0), thin black solid line indicates zero line; in (b) and (c) green-dashed lines indicate values
of 〈σ 〉/η f γ̇0 and 〈P〉/η f γ̇0, respectively, and blue solid lines indicate the corresponding shear-rate-averaged quantities. The rectangular plots
beneath the main plots illustrate how strain evolves in the same time span with black lines indicate how strain will evolve accounting only for
the average shear-rate γ̇0.
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FIG. 12. (a) Reduced normal viscosities ηP
|γ̇ |/η

SS
P as function

of F at various G, φ = 0.76, and μp = 0.4. ηSS
P is the normal

viscosity at steady-shear at φ = 0.76. Dashed lines are best fits us-
ing a phenomenological hyperbolic tangent function ηP

|γ̇ |/η
SS
P = 1 −

c1 tanh(c2F ), where c1 = (1 − ηP,F=∞
|γ̇ | /ηSS

P ) and c2 are two fitting
parameters. (b) The reduced normal viscosity ηP

|γ̇ |/η
SS
P as function of

G at F = ∞.

described by hyperbolic tangent functions. The decrease is
small for large G’s while significant for small G’s. We il-
lustrate this trend in Fig. 12(b) where we plot the normal
viscosity at F = ∞ as function of G.

APPENDIX D: “DISSIPATIVE” VISCOSITIES η|γ̇|/ηSS,
NUMBER OF CONTACTS Z|γ̇| AT OTHER PACKING

FRACTIONS φ FOR SUSPENSIONS OF FRICTIONAL
PARTICLES, AND AT φ = 0.76 FOR SUSPENSIONS OF

FRICTIONLESS PARTICLES

Figure 13 shows how the strain-average viscosity η|γ̇ |/ηSS

(a,b) and the number of contacts Z|γ̇ | (c,d) vary with F for
suspensions consisted of frictional particles at φ = 0.67 and
φ = 0.74 and various G. The observations are essentially the

FIG. 13. Reduced viscosities η|γ̇ |/ηSS at (a) φ = 0.67, (b) φ =
0.74; and Z|γ̇ | at (c) φ = 0.67, (d) φ = 0.74; at various G and μp =
0.4; dashed lines are best fits using the hyperbolic tangent function
introduced in Fig. 2 in the main text.

FIG. 14. (a) Reduced viscosities η|γ̇ |/ηSS , (b) Z|γ̇ |, (c) D/γ̇ 2
0 , and

(d) D/γ̇ 2
1 as function of F at various G, φ = 0.76, and μp = 0;

dashed lines in (a) and (b) are best fits using the hyperbolic tangent
function introduced in Fig. 2 in the main text, and dashed lines in
(c) and (d) are η|γ̇ |/ηSS (1 + 0.5F 2) and η|γ̇ |/ηSS ( 1

F2 + 0.5) with η|γ̇ |
obtained from (a).

same seen in Fig. 2(a,b) in the main text, indicating that our
observations in Fig. 2 are general for frictional suspensions at
various φ’s. A minor difference between different φ is that at
low packing fraction φ = 0.67, the viscosity and the number
of contacts decrease to almost zero already at G = 0.33. Fig-
ure 14 shows how (a) the strain-average viscosity η|γ̇ |/ηSS , (b)
the number of contacts Z|γ̇ | and the dissipation D normalized
by (c) γ̇ 2

0 and (d) γ̇ 2
1 vary with F at φ = 0.76 and μp = 0.

Again, the results we have is almost identical to those seen in
Fig. 2.

APPENDIX E: AN ALTERNATIVE DEFINITION OF μ|γ̇|
AND J|γ̇|

In Fig. 3 in the main text we showed μ(J ) and Z (J ) with
μ|γ̇ | = 〈σ/P〉|γ̇ | and J|γ̇ | = η f 〈γ̇ /P〉|γ̇ |. Here, in Fig. 15 we
show plots of μ(J ) and Z (J ) using an alternative definition of
μ|γ̇ | and J|γ̇ |, with μ|γ̇ | = σ|γ̇ |/P|γ̇ | and J|γ̇ | = η f γ̇|γ̇ |/P|γ̇ |. The
parameters are exactly the same as in Fig. 3 in the main text.
The main observations are the same as in Fig. 3, except the
collapse being worse especially in Fig. 15(c) (corresponding
to Z) at moderate J|γ̇ |. Another difference is that the decrease
of μ|γ̇ | at J|γ̇ |  JSS (φ) is much less significant compared
with Fig. 3. In Fig. 15(a) μ|γ̇ | seems more likely to be satu-
rating rather than decreasing.

APPENDIX F: TIME SERIES OF φ FOR PURE
OSCILLATORY FLOWS UNDER CONSTANT PRESSURE

CLOSE TO φc

Figure 16 shows time series of φ − φ|γ̇ | for pure oscillatory
flows under constant pressure (see Fig. 4 in the main text).
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FIG. 15. Flow curves with extended μ(J ) rheology for (a) μ|γ̇ | for suspensions with frictional particles (μp = 0.4), (b) μ|γ̇ | for suspensions
with frictionless particles (μp = 0), and (c) Z for both suspensions composed of either frictional (empty symbols) or frictionless particles
(filled symbols) using μ|γ̇ | = σ|γ̇ |/P|γ̇ | and J|γ̇ | = η f γ̇|γ̇ |/P|γ̇ |. Black symbols corresponds to steady-shear values [25] for (circles) frictional and
(triangles) frictionless particles, lines according to [25]. Various symbols and colors in (a) and (b) corresponds to various F as indicated in
legends, with φ ∈ [0.67, 0.79] for frictional and φ ∈ [0.72, 0.82] for frictionless particles and G ∈ [10−2, 10].

(a) is for suspensions of frictional particles with φG=0.33
|γ̇ | =

0.808 (i.e., φ|γ̇ | < φSS,frictional
c ), and φG=0.01

|γ̇ | = 0.836 (i.e.,
φSS,frictional

c < φ|γ̇ | < φSS,frictionless
c ); (b) is for suspensions of

frictionless particles with φG=0.33
|γ̇ | = 0.831 and φG=0.01

|γ̇ | =
0.838, both have φSS,frictional

c < φ|γ̇ | < φSS,frictionless
c . For both

frictional and frictionless cases, φ clearly fluctuate around φ|γ̇ |
with large fluctuations for the larger G value. Figure 16(c)
shows the evolution over 100 periods for the G = 0.01, μp =
0.4, and φ|γ̇ | = 0.836. We see that φ remains stable over
100 periods.

APPENDIX G: COMPARISON WITH RESULTS
CONSIDERING LUBRICATION FORCES

In this section we show some results with lubrication
forces and compare them with the results without lubrication
force. The lubrication force between each pair of disks is

calculated as

Fi j
lub,n =

[
−3

8
πη f di j

(Vi − V j ) · ni j

hi j + δ

]
ni j, (G1)

Fi j
lub,t =

[
−1

2
πη f ln

( di j

2(hi j + δ)

)
(Vi − V j ) · ti j

]
ti j, (G2)

where Eq. (G1) gives the normal component and Eq. (G2)
gives the tangential component, hi j is the gap between two
disks i and j, Vi and V j are the velocity of disk i and j at
the points of closest distance (i.e., a linear combination of
the translational and rotational velocities of the discs), di j =
2did j/(di + d j ), the regularization length δ = 0.05d or 0.01d ,
where d being the average disk diameter. For more detailed
description of lubrication forces see [2]. Figure 17 shows (a)
the “dissipative” viscosity η|γ̇ |/ηSS , (b) the number of contacts
Z|γ̇ |, and the dissipation D normalized by (c) γ̇ 2

0 and (d) γ̇ 2
1 at

various G with lubrication force at δ = 0.05d . The figure is the
counterpart to Fig. 2 from the main text (i.e., all parameters
are identical to the main text except the lubrication forces).

FIG. 16. Time series of φ − φ|γ̇ | for pure oscillatory flows (F = ∞) under constant pressure close to φc (J|γ̇ | ∼ 10−3) for (a) suspensions
of frictional particles and (b) suspensions of frictionless particles at F = ∞, G = 0.33, and 0.01; (c) the same case as in (a) at G = 0.01 but
over 100 oscillation periods.
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FIG. 17. (a) Reduced viscosities η|γ̇ |/ηSS , (b) Z|γ̇ |, (c) D/γ̇ 2
0 , and

(d) D/γ̇ 2
1 as function of F at various G, φ = 0.76, and μp = 0.4

with lubrication forces at δ = 0.05d; dashed lines in (a) and (b) are
best fits using the phenomenological hyperbolic tangent function
introduced in Fig. 2 in the main text, and dashed lines in (c) and
(d) are η|γ̇ |/ηSS (1 + 0.5F 2) and η|γ̇ |/ηSS ( 1

F2 + 0.5) with η|γ̇ | ob-
tained from (a); values of ηSS and ZSS are obtained from steady shear
with lubrication.

Similar observations are found, with viscosities close to
steady shear ones at small F’s which then drops as F in-
creases. The drop in viscosity is more substantial for small
G, just as in the case without any lubrication forces. The main
difference is that for small G’s the viscosity decreases to a
finite value (approximately 5% of ηSS) compared to a value
close to zero in the case of having no lubrication forces. In
Fig. 18 we compares simulation results without lubrication
with results including lubrication force using two δ, 0.05d and
0.01d at G = 0.01, and φ = 0.76. We can see that viscosity
decreased substantially for all three curves, except that the
viscosity decrease to a finite value for cases with lubrication

FIG. 18. Comparisons between having no lubrication forces and
having lubrication forces with δ = 0.05d and δ = 0.01d for (a) re-
duced viscosities η|γ̇ |/ηSS , (b) Z|γ̇ |, (c) D/γ̇ 2

0 , and (d) D/γ̇ 2
1 at G =

0.01, φ = 0.76, and μp = 0.4; dashed lines in (a) and (b) are best
fits using the phenomenological hyperbolic tangent function intro-
duced in Fig. 2 in the main text, and dashed lines in (c) and (d) are
η|γ̇ |/ηSS (1 + 0.5F 2) and η|γ̇ |/ηSS ( 1

F2 + 0.5) with η|γ̇ | obtained from
(a); values of ηSS and ZSS are obtained from corresponding steady
shear.

compared to zero for the case without lubrication forces. And
the plateau is slightly higher for δ = 0.01d (approximately
8% of ηSS). The difference in viscosities are clearer seen if
one looks at the dissipation rates instead. At F > 10, the
dissipation rate for the case with lubrication diverge from
the case without lubrications, in (c) a larger increasing slope
and (d) reaching plateau, both reflecting a finite viscosity at
F → ∞. Z|γ̇ | at F > 10, on the other hand, does not show
noticeable difference, indication that the difference in viscos-
ity and dissipation is a result from solely lubrication forces.
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