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Vertex model instabilities for tissues subject to cellular activity or applied stresses
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The vertex model is widely used to describe the dynamics of epithelial tissues, because of its simplicity and
versatility and the direct inclusion of biophysical parameters. Here, it is shown that quite generally, when cells
modify their equilibrium perimeter due to their activity, or the tissue is subject to external stresses, the tissue
becomes unstable with deformations that couple pure shear or deviatoric modes, with rotation and expansion
modes. For short times, these instabilities deform cells, increasing their ellipticity, while at longer times cells
become nonconvex, indicating that the vertex model ceases to be a valid description for tissues under these
conditions. The agreement between the analytic calculations performed for a regular hexagonal tissue and the
simulations of disordered tissues is excellent due to the homogenization of the tissue at long wavelengths.
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I. INTRODUCTION

The vertex model, initially proposed to describe foams and
soap bubbles [1,2], has been extended to describe epithelial
tissues [3–6] with large success. Applications include the
study of cell division [7], tissue elongation [8], and epithe-
lial packing in wing disk and ventral furrow formation in
Drosophila [9–11], tube formation [12,13], and the rigidity
transition in active tissues [14]. Approximating each cell c
as a polygon, an energy functional is built that penalizes the
deviations of the actual cell areas (Ac) and perimeters (Pc)
from preferred values (A0c and P0c, respectively). In the most
generic form, the energy functional is

E = KA

2

∑
c

(Ac − A0c)2 + KP

2

∑
c

(Pc − P0c)2 + J
∑
〈i, j〉

li j,

(1)

with li j the length of the cell edge shared by vertices i and
j. KA is the area elastic modulus, which describes the three-
dimensional incompressibility of the layer and the resistance
to height fluctuations; KP is the perimeter elastic modulus
related to the actin-myosin contractility; and J is the adhesion
energy per unit length and represents a constant line tension.
Although it is possible to absorb the last term into the second
one by redefining P0c, we opt to keep all terms, such that the
different constants retain a direct interpretation. Throughout
this work we consider A0c and P0c given by the initial ge-
ometry of each cell. Hence, the model only has three free
parameters.

In its usual form, the degrees of freedom of the model are
the positions of the vertices ri, which evolve variationally as

dri

dt
= −γ

∂E

∂ri
, (2)

where γ is a mobility that we absorb in KA, KP, and J , which
now have units of relaxation rate times different powers of
length.

Active stresses are continuously induced by cell divisions,
extrusions, and rearrangements between neighboring cells
[15]. Also, stresses are generated by cell growth [16] and
contractions [17], processes that can be easily included in the
vertex model as changes in the equilibrium cell parameters.

In Refs. [5,10], the vertex model was used to obtain
the phase diagram of the ground state (the most relaxed
network configuration) of a proliferating tissue, initially
made of a regular hexagonal packing. They found a phase
transition induced by cell division in the parameter space
[J/(KAA3/2

0c ), KP/(KAA0c)]. One phase corresponds to a sin-
gle ground state, with regular hexagonal packing geometry,
while the other phase corresponds to a network with many
soft deformation modes, where the hexagonal packing loses
stability. Here, we develop a general framework to study the
stability of tissues subject to cell activity and externally ap-
plied stresses. Neither cell division nor cell rearrangements
are considered. This is the case of some experiments [18,19]
and previous analytical calculations [5,20,21]. Also, topolog-
ical events are nonlinear and, therefore, they are not relevant
to describe the emergence of the instabilities. We show that
for a large region of the parameter space, if in large portions
of the tissue the cells modify their activity or it is subject to
external stresses, the whole tissue becomes unstable in the
form of long-wavelength deformations that couple pure shear
or deviatoric modes with rotation and expansion modes. These
instabilities differ from those that take place in passive foams
[22,23], because they are triggered by the cellular activity.

The organization of the paper is as follows. In Sec. II we
present the general analysis of the instabilities that appear in
a confluent tissue, focusing on the case of cellular activity.
The analytical method for regular tissues and the simulations
for irregular ones are described and compared. Section III
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considers the case of tissues subject to external prestresses. In
Sec. IV we discuss the case of general anisotropic prestresses,
which need a more detailed analysis. Our conclusions and a
discussion are presented in Sec. V. Finally, the Appendixes
give technical details.

II. TISSUE UNDER CELL ACTIVITY

For the vertex model, the elastic coefficients KA and KP

are assumed to be positive, and penalize deviations from the
reference areas and perimeters, while there is no restriction
on the sign of J , as has been discussed in the literature [6,24].
As a first case, where analytical results can be obtained, we
consider a regular tissue composed of N identical hexagonal
cells of side a, for which A0c = 3

√
3a2/2 and P0c = 6a, for all

cells c. Cell activity can generate stresses that tend to deform
the tissue. For example, sudden changes in the actomyosin
activity in the cell border can be modeled as a modification
of the equilibrium perimeters, P0c → (1 + λP )P0c (with λP >

0 for expansions and λP < 0 for contractions). Similarly, a
change in the actomyosin activity in the medioapical side of
the cells implies changes in the equilibrium cell areas, A0c →
(1 + λA)A0c.

As a first case, we consider homogeneous modifications
of the tissue (uniform λP and λA), modeling large por-
tions of the tissue that change as in Ref. [19], and we
investigate the stability and rigidity of this tissue, allow-
ing it to fluctuate. The vertex positions are now given by
(I + εU )r[0]

i , where ε � 1, and U is a general 2 × 2 matrix
of components uik , characterizing the fluctuations. Computing
contributions up to O(ε2), the energy of the tissue may be
written as E = ∑2

i=0 εi(E (i)
A + E (i)

P + E (i)
J ), where the super-

scripts represent the order of each term in the expansion,
and EA, EP, and EJ are the contributions proportional to KA,
KP, and J , respectively. The full expressions are given in
Appendix A 1.

The stress tensor is σik = ∂E
∂uik

. It has a zero-order contri-

bution derived from E (1), σ
(0)
ik = 2

√
2Ê ( 2

9 j − λA − 8
3 pλP )δik ,

that represents the total stress, with passive and active contri-
butions, needed to maintain the deformed configuration. Here,
we defined the energy scale Ê = NKAA2

0/2 and the dimen-
sionless parameters p = KP/(a2KA) and j = J/(a3KA), which
are the ratios between the characteristic time of the surface
elasticity and the ones related to the perimeter and adhesion
elasticity, respectively.

For general fluctuations, U can be expanded in Fourier
modes. When computing the total energy of the tissue, the
linear terms in ε cancel by spatial integration, leaving only
the reference energy and the quadratic terms in the fluctua-
tions. In physical terms, the linear contribution is eliminated
by the application of a uniform external stress σ

(0)
ik by other

tissues that act as a frame, imposing rigid boundary condi-
tions. Furthermore, in the limit of small wavevectors k, the
dominant contribution comes from the case of homogeneous
U , plus small corrections proportional to k2, which we ne-
glect henceforth. Hence, to analyze the stability of the tissue
under long-wavelength fluctuations, we have to determine
whether the quadratic form for homogeneous U is positive
definite. Expressing U as a linear combination of four basic

deformation modes,

deviatoric, U1 =
(−1 0

0 1

)
, pure shear, U2 =

(
0 1
1 0

)
,

rotation, U3 =
(

0 −1
1 0

)
, expansion, U4 =

(
1 0
0 1

)
,

(3)

as U = ∑4
i=1 viUi, the energy can be expanded as E (2) =

Ê
∑4

i, j=1 μi jviv j . In the case where the deformation is due to
cell activity, the μ-matrix is diagonal with

μ11 = μ22 = j

9
+ λA − 4pλP

3
, (4)

μ33 = 2 j

9
− λA − 8pλP

3
, μ44 = 2 + 8p

3
− λA, (5)

where we used the expressions of Appendix A 1. The defor-
mation modes U1 and U2 are both shears, although in different
directions. Consequently, their eigenvalues, which are asso-
ciated to the shear modulus, are equal. Negative values of
the diagonal terms signal the development of an instability
of the corresponding mode, in a single cell description. For
example, large positive values of λA (cell expansion) would
give rise to unstable rotation and expansion modes, while for
large negative values of λA (cell compression), the deviatoric
and pure shear modes become unstable.

At a tissue level, however, due to the confluent property,
pure modes are not allowed. Indeed, consider for exam-
ple the Fourier mode where the new vertex positions are
given by x′ = x + ε sin(2πx/L) cos(2πy/L) and y′ = y −
ε sin(2πy/L) cos(2πx/L), shown in Fig. 1(a). Depending on
the position, some cells experience deviatoric deformations
(in yellow), while others rotate (in red). Similarly, for the
Fourier mode x′ = x + ε cos(2πx/L) sin(2πy/L) and y′ =
y + ε cos(2πy/L) sin(2πx/L), shown in Fig. 1(b), pure shear
modes (in green) coexist with expansion modes (in blue).
Simple uniaxial deformations with sinusoidal amplitudes also
couple the deviatoric and expansion modes. Complementary
to the long-wavelength fluctuations, it is possible that the
boundaries between neighboring cells move inside a super-
cell (analogous to optical phonons in solids) as shown in
Figs. 1(c) and 1(d). Again, different modes coexist. The
confluent property with the periodic boundary conditions frus-
trates the emergence of pure deformation modes. The use of
fixed boundary conditions leads to the same frustration.

This unavoidable coexistence of modes implies that even
though a deformation mode may seem to be unstable at the
cell level, the total energy of the tissue should be computed
as the sum of the different contributions that, at the end, may
result to be positive definite. A detailed study of the stability
of a tissue that considers the coexistence of modes is given
in Sec. IV. We provide here a qualitative argument to obtain
the stability limit from the behavior of individual cells. As
the deviatoric and pure shear modes share the same value in
the μ-matrix, the total energy of the tissue fluctuations shown
in Figs. 1(a) and 1(c) are equal, with a prefactor equal to
μ11 + μ33 = j/3 − 4pλP. An instability is hence predicted to
develop for λP > j/(12p). Notably, when λA = 0, the insta-
bility is predicted to take place when the shear modulus (i.e.,
μ11 or μ22) vanishes, as was observed in Ref. [5]. However,
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(a) (b)

(c) (d)

FIG. 1. Representation of tissue fluctuations where cells
subject to different deformation modes coexist. Long-wavelength
fluctuations (a) x′ = x + ε sin(2πx/L) cos(2πy/L) and
y′ = y − ε sin(2πy/L) cos(2πx/L), and (b) x′ = x + ε cos(2πx/L)
sin(2πy/L) and y′ = y + ε cos(2πy/L) sin(2πx/L). (c), (d)
Fluctuations where the boundaries between neighbor cells move
inside a supercell. Cells with well-defined deformation modes are
colored: yellow for deviatoric, green for pure shear, red for rotation,
and blue for expansion. For simplicity, square cells are used in the
presentation.

when the target area has changed (λA �= 0), the vanishing of
the shear modulus does not signal the development of unstable
modes.

To validate the predictions in actual situations, we simulate
both regular and irregular tissues. Regular hexagonal tissues
are made of N = 3000 cells arranged in a box of size Lx =
50

√
3a and Ly = 90a with periodic boundary conditions. In

order to avoid artificial effects due to the lattice perfection,
a Gaussian noise is added to all the vertex positions in both
directions, with standard deviation 0.1a. Irregular tissues are
built as Voronoi cells, where the positions of N = 3000 center
points are generated by a Monte Carlo simulation of hard
disks in a box of equal size as for the regular tissue. The
diameter of the disks governs the degree of dispersion of
the cells. We consider an area fraction φ = 0.71, below the
freezing transition, to obtain a reproducible disordered tessel-
lation with moderate dispersion in cell sizes. The irregular
tissues are made of polygons of different sizes and num-
bers of sides, implying variance in the equilibrium areas and
perimeters, A0c and P0c. The deviatoric and pure shear modes
manifest in the elongation of cells, which we characterize by
the flattening parameter f = (a − b)/(a + b), computed for
each cell in terms of its principal semiaxis a and b, calculated
as the square root of the eigenvalues of the texture matrix
Mc = 1

nc

∑
i∈c (ri − rc) ⊗ (ri − rc), where the sum is over the

nc vertices conforming the cell, with positions ri, and rc

is the center of the cell. Simulations are performed solving
numerically the equations of motion (2), which are worked
out in Appendix B [Eqs. (B2), (B8–B10)]. The differential

(a) (b)

(d)

(e) (f)II IIII I I IIII

(c)

FIG. 2. Tissue instabilities obtained in simulations of N = 3000
irregular cells under the action of cell activity: modification of the
equilibrium perimeter with λP = 1/2 and the equilibrium area with
λA = 1/2 (left) and λA = −1/2 (right). Top: Change of the standard
deviation of the flattening parameter after a short time, t = 0.025:
σ f (t = 0.025) − σ f (t = 0). Negative values indicate cells become
more uniform. Middle: 1 − 〈Ac/ACH

c 〉, where Ac are the cell areas,
ACH

c the areas of the respective convex hulls, and the average is taken
over all the cells, computed after a longer time, t = 0.5. Units are
fixed such that KA = 1 and a = 1. See Appendix C for an analysis
of the relevant time scales, justifying the election of the observation
times. The thick white line and the thin yellow line are the analytical
curves obtained when assuming or neglecting coupling of modes,
respectively. Instabilities are predicted to the right of the lines. Note
that in (b) and (d), the thin yellow line is close to the top-left corner.
Bottom: Examples of a section of an irregular tissue for each case
of cell activity, indicating (I) the initial configuration at t = 0, and
the final configurations at t = 0.5, for the cases of the (II) stable
(green disk) and (III) unstable (red square) markers. The results are
the average of six different irregular tissues, generated with the same
parameters.

equations are integrated using the Euler integration method,
for various values of KP and J , fixing units such that KA = 1
and a = 1. The time step was fixed to dt = 0.005 and we
study the system up to t = 0.5.

The change of the standard deviation of the flattening
parameter after few time steps for fixed positive perimeter
change λP = 1/2, considering λA = ±1/2, displays an im-
portant increase precisely where the instability is predicted
[Figs. 2(a) and 2(b)]. The chosen values of λA,P are consistent
in the order of magnitude with experiments using laser abla-
tion and biochemical perturbations [8,10,19]. For larger times,
an important fraction of the polygons become nonconvex as
a consequence of the instability [Figs. 2(e) and 2(f)]. The
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nonlinear dynamics does not saturate the instability and, from
a practical point of view, this implies that the vertex model
ceases to be a valid description of tissues when these instabil-
ities develop. Nevertheless, the nonconvexity can be used as
a proxy of the instability and, for a continuous quantification,
one minus the mean value of the area of each cell divided by
the area of the respective convex hull is presented in Figs. 2(c)
and 2(d). For convex polygons, this order parameter van-
ishes, while positive values indicate that nonconvex polygons
appear. The agreement with the analytical prediction is excel-
lent, both when regular and irregular tissues are simulated. A
comparison between regular and irregular tissues is presented
in Appendix D, showing that the instability takes place for
the same parameters and the values of the observables agree.
Importantly, the line at which the shear modulus vanishes—
obtained when neglecting the coupling of modes—fails to
predict the instability for all tissues (Figs. 2, 5, and 6).

For the cases shown in Figs. 1(b) and 1(d), the energy for
the tissue has a prefactor that becomes negative when pλP >

3/2 + 2p + j/12, requiring an extremely large increase of the
equilibrium perimeter, except if j is negative. Consequently,
these modes are hardly seen and are hidden by other more
unstable modes.

For cells of equal equilibrium area and complete con-
traction of the perimeter (λP = −1), the transition line in
Refs. [5,10] is reproduced. An important difference with their
work is the use of a fixed size box in simulations, generating
at long times nonconvex polygons instead of soft networks.

III. TISSUE UNDER PRESTRESS

In addition to cellular activity, the tissue can be subject
to a prestress generated by the action of neighboring cells or
tissues, fixed boundary conditions, an actomyosin network, or
the drag by another expanding tissue located in an adjacent
layer, causing it to get predeformed. To model a prestressed
tissue, we perform an affine transformation by changing the
vertex positions as r[0]

i → �r[0]
i , where � is the 2 × 2 matrix

associated to the predeformation. Adding fluctuations, the
vertex positions are now given by (I + εU )�r[0]

i .
As for the cell activity, we consider homogeneous

deformations of the tissue (uniform �) and perturbations
U in the small wavevector limit, and we analyze first
the different deformation modes independently, without
dealing with their coupling. For a hexagonal cell, it is found
that E (2)

A =Ê [det(�)2tr(U )2+2det(�)(det(�) − 1)det(U )].
The expressions for E (2)

P and E (2)
J are more involved but

numerically it is found that they are always positive definite
for all predeformations, when KP and J are positive (see
Appendix A 2 for the full expressions). We conclude, then,
that negative J could give rise to instabilities for any prestrain.
The case of E (2)

A requires more analysis. From the expression
for E (2)

A , it is found that fluctuations with det(U ) = 0 are
always stable. Using the expansion U = ∑4

i=1 viUi, E (2)
A is di-

agonal with elements μA11 = μA22 = −μA33 = −λ̄, with λ̄ =
27
8 [det(�) − 1]det(�), and μA44 = 81

8 det(�)[det(�) − 1/3].
Note that whenever det(�) �= 0, either μA11,A22 or μA33

are negative, giving rise to possible unstable modes. When
det(�) > 1 (for example, under a preexpansion), μA11,A22

(a) (b)

(c) (d)

(e) (f)II IIII II IIII

FIG. 3. Tissue instabilities obtained in simulations of N = 3000
irregular cells in tissues under 50% isotropic contraction (left),
and under 60% horizontal contraction plus 40% vertical expansion
(right). Same representation as in Fig. 2.

are negative and the deviatoric and pure shear modes may
be unstable. Also, when 0 < det(�) < 1 (for example,
under a compression predeformation), μA33 is negative and
the rotation mode may be unstable. To fully determine
the stability, we must consider the perimeter and edge
contributions to the energy, as well as the mode couplings.

For isotropic prestrain � = (1 + h)I (h > 0 for expansions
and −1 < h < 0 for compressions), the complete μ-matrix is
diagonal, with

μ11 = μ22 = (1 + h)(−2h − 3h2 − h3 + 4hp/3 + j/9),
(6)

μ33 = (1 + h)(2h + 3h2 + h3 + 8hp/3 + 2 j/9), (7)

μ44 = (1 + h)(2 + 8h + 9h2 + 3h3 + 8p/3 + 8hp/3). (8)

The stability of the relevant global mode is, therefore,
described by μ11 + μ33 = (1 + h)(4hp + j/3), which can be-
come negative for a wide range of parameters when the tissue
is under compression. Simulations are performed, using the
methods described in Sec. II, for an isotropic compression
of 50%. Figure 3 (left) shows an excellent agreement with
the analytical calculations that predict the instability line at
j = 6p. Again, the instability manifests in an increase of the
eccentricity and, at longer times, the appearance of nonconvex
polygons.
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IV. ANISOTROPIC PRESTRESSES

Finally, in vivo or in vitro tissues are in general subject
to anisotropic external deformations [7–9], causing the μ-
matrix to be nondiagonal. The relevant global modes are
obtained as follows. For an extended tissue, the fluctuation
is expanded in Fourier modes: r′ = r + ∑

k akeik·r. From the
Jacobian of this transformation, the local deformation ma-
trix is computed as uαβ (x, y) = ikαakβeik·r. Expanding it as
U (x, y) = ∑4

i=1 vi(x, y)Ui, a local energy density is obtained,
e(x, y) = (Ê/L2)

∑4
i, j=1 μi jvi(x, y)v j (x, y). Finally, the total

energy of the tissue is

E =
∫

dx dy e(x, y) =
∑

k

2∑
α,β=1

k2eαβ (k̂)akαa∗
kβ, (9)

where we used that vi(x, y) are linear combinations of the
Fourier coefficients ak and that the Fourier modes decouple
if the tissue is homogeneous on the large scale. The matrix
eαβ is a 2 × 2 matrix with real coefficients:

e11 = 1
4 {(μ13 + μ24) sin 2θ + (μ11 − 2μ14 + μ44) cos2 θ

+ [(μ22 − 2μ23 + μ33) sin θ

− 2(μ12 + μ34) cos θ ] sin θ}, (10)

e12 = e21 = 1
8 {2[−μ13 + μ24 + (−μ12 + μ34) cos 2θ ]

+(−μ11 + μ22 − μ33 + μ44) sin 2θ}, (11)

e22 = 1
4 {(μ22 + 2μ23 + μ33) cos2 θ

+ (μ11 + 2μ14 + μ44) sin2 θ

+ (μ12 + μ13 + μ24 + μ34) sin 2θ}, (12)

where we used that the μ-matrix is symmetric. The stability
of the tissue, considering the confluent and periodic condi-
tions, is then obtained from the eigenvalues of the e-matrix,
which depend only on the direction k̂ of the wavevector. If
at least one eigenvalue is negative, the tissue develops long-
wavelength instabilities. When the μ-matrix is diagonal, and
using that μ11 = μ22, it is found that the eigenvalues of eαβ

do not depend on θ and they are given by 1
4 (μ11 + μ33) and

1
4 (μ11 + μ44), which corroborates the simple analysis for the
coupling of modes described in Sec. II.

Anisotropic predeformations generate nondiagonal μ-
matrices, for which some examples are given in Appendix E.
Figure 3 (right) presents the comparison between simulations
and the prediction of the instability using the eigenvalues of
the associated e-matrix for a tissue under 60% horizontal con-
traction plus 40% vertical expansion. The agreement is again
excellent when the nonconvexity proxy is used. The flattening
parameter does not signal the instability because, for this case,
there is no manifestation in the change of ellipticity as a result
of the coupling of all modes. Finally, Fig. 4 shows the results
for a tissue that is subject to a pure deviatoric stress or to a
pure shear stress.

V. DISCUSSION

Our analysis shows that stressed tissues described by the
two-dimensional vertex model present instabilities in which

(a) (b)

FIG. 4. Transition line at which the minimum eigenvalue of the
associated e-matrix changes its sign, for a tissue under (a) 50%
deviatoric prestress and (b) 50% pure shear prestress. The gray areas
correspond to the unstable part of the parameter space. Sections of
an irregular tissue are shown for each case, indicating the initial
configuration (top), at t = 0, and the final configurations, at t = 0.5,
for the cases of the marked black dots, one stable (middle) and the
other unstable (bottom).

the cells deform to increase their ellipticity, to later become
nonconvex. These stresses can be generated by the cellular
activity when the actin ring on the perimeter of the cells
changes its size or they can be external, when the tissue is
prestressed. In any of these cases the tissue is unstable for a
wide range of the model parameters.

The presence of the predicted instabilities is a stringent test
of the vertex model to describe biological tissues, which under
many conditions are subject to internal and external stresses.
For example, in developing tissues, processes like invagina-
tions, cell extrusion, and division generate stresses. Uniaxial
pulling can be generated by other tissues [15] or driven ex-
perimentally [19,21,25]. Also, biochemical signals can alter
in large regions the activity of the tissue [19]. These and other
configurations, with different external stresses, should be in-
vestigated to verify if the predicted instabilities take place and
if they can act as seeds to instabilities in developing tissues.
In the mechanobiological approach, forces and instabilities
launch the tissue transformations during development that are
necessary to generate structures and organs [26,27]. If the ver-
tex or similar models correctly describe the tissue dynamics,
internal or external stresses can trigger the instabilities de-
scribed in this paper, which can initiate tissue transformation
processes.

In this paper we restricted the analysis to two-dimensional
planar dynamics. Further studies are needed to analyze how
the deformation modes couple with motion in the third di-
mension when the planar restriction is removed. For example,
buckling instabilities generating wrinkles could relax stresses
instead of generating nonconvex polygons.
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APPENDIX A: ENERGY EXPRESSIONS FOR
FLUCTUATING TISSUES

For the analytic calculations, we consider a regular tissue
composed of N identical regular hexagonal cells of side a, for

052604-5



PÉREZ-VERDUGO, JOANNY, AND SOTO PHYSICAL REVIEW E 102, 052604 (2020)

which the preferred cell area and perimeter for all cells are
A0c = 3

√
3a2/2 and P0c = 6a, respectively.

1. Tissue under cell activity

Cell activity is included as homogeneous modifications of
the equilibrium perimeters, P0c → (1 + λP )P0c, and equilib-
rium areas, A0c → (1 + λA)A0c, with λP, λA > 0 for expan-
sions and λP, λA < 0 for contractions.

We define A(1)
c as the area of the cell c with fluctuations

characterized by the matrix U ,

A(1)
c = (1 + εtr(U ) + ε2det(U ))A0c. (A1)

Then, when considering an activity modulated by λA, the term
of the energy proportional to KA is given by

EA =
∑

c

KA

2

[
A(1)

c − (1 + λA)A0c
]2

,

=
∑

c

KA

2
A2

0c[−λA + εtr(U ) + ε2det(U )]2. (A2)

Hence, the zero-, first-, and second-order terms of EA are

E (0)
A =

∑
c

KA

2
A2

0cλ
2
A, (A3)

E (1)
A = −

∑
c

KAA2
0ctr(U )λA, (A4)

E (2)
A =

∑
c

KA

2
A2

0c[tr(U )2 − 2det(U )λA]. (A5)

We define P(1)
c as the perimeter of the cell c with fluctua-

tions characterized by the matrix U ,

P(1)
c = [

1 + 1
2εtr(U ) + 1

8ε2det(U )

+ 3
16ε2tr

(
U T U

) − 1
8ε2tr(U )2

]
P0c. (A6)

Then, when considering an activity modulated by λP, the term
of the energy proportional to KP is given by

EP =
∑

c

KP

2

[
P(1)

c − (1 + λP )P0c
]2

,

=
∑

c

KP

2
P2

0c

[
−λP + 1

2
εtr(U ) + 1

8
ε2det(U )

+ 3

16
ε2tr

(
U T U

) − 1

8
ε2tr(U )2

]2

. (A7)

The zero-, first-, and second-order terms of EP are therefore
given by

E (0)
P =

∑
c

KP

2
P2

0cλ
2
P, (A8)

E (1)
P = −

∑
c

KP

2
P2

0ctr(U )λP, (A9)

E (2)
P =

∑
c

KP

8
P2

0c

[
(1 + λP )tr(U )2 − λPdet(U )

− 3

2
λPtr(U T U )

]
. (A10)

Finally, the adhesion contribution to the energy is

EJ =
∑

c

J

2
P(1)

c , (A11)

where Pc(1) is given in Eq. (A6). As a result, the zero-, first-,
and second-order terms of EJ are given by

E (0)
J =

∑
c

J

4
P0c, (A12)

E (1)
J =

∑
c

J

4
P0ctr(U ), (A13)

E (2)
J =

∑
c

J

16
P0c

[
det(U ) + 3

2
tr(U T U ) − tr(U )2

]
. (A14)

Equations (A1) and (A6) can be obtained using
MATHEMATICA.

2. Tissue under stress

Now, we study the same energy contributions, but when
the tissue is subject to a homogeneous strain, such that all the
vertices change their position as r[0]

i → �r[0]
i , where � is a

2 × 2 matrix that gives account of the predeformation.
In a similar way as in the previous section we can define

A(1)
c and P(1)

c , representing the area and perimeter of the cell c,
that was initially a regular hexagon with area A0c and perime-
ter P0c, which is now subject to a given strain characterized
by the matrix �. Then, we define A(2)

c and P(2)
c as the values

when we allow fluctuations, modulated by the matrix U , in the
system:

A(1)
c = det(�)A0c, (A15)

A(2)
c =[1 + εtr(U ) + ε2det(U )]A(1)

c . (A16)

The expressions for P(1)
c and P(2)

c are more complicated
to write in terms of the matrices � and U . In general terms,
considering that the six vertices of the hexagon have positions
ri, we obtain

P(1)
c =

6∑
i=1

P(1)
ci

, (A17)

P(1)
ci

=
√

α2
i + β2

i , (A18)

P(2)
c =P(1)

c + εM (1)
c + ε2M (2)

c , (A19)

with

αi = λxxxi+1,i
(0) + λxyyi+1,i

(0), (A20)

βi = λyxxi+1,i
(0) + λyyyi+1,i

(0), (A21)

where we use ri+1,1 = ri+1 − ri, assuming the vertices
are ordered clockwise. The terms M (1)

c and M (2)
c are
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given by

M (1)
c =

6∑
i=1

1

P(1)
ci

[
α2

i uxx + β2
i uyy + αiβi(uxy + uyx )

]
, (A22)

M (2)
c =

6∑
i=1

1

P(1)
ci

[
u2

xx

(
α2

i

2
− α4

i

2P(1)2

ci

)
+ u2

yy

(
β2

i

2
− β4

i

2P(1)2

ci

)
+ u2

xy

(
β2

i

2
− α2

i β
2
i

2P(1)2

ci

)
+ u2

yx

(
α2

i

2
− α2

i β
2
i

2P(1)2

ci

)

+ uxxuxy

(
αiβi − α3

i βi

P(1)2

ci

)
+ uyyuyx

(
αiβi − αiβ

3
i

P(1)2

ci

)
+ uxxuyx

(
−α3

i βi

P(1)2

ci

)
+ uyyuxy

(
−α3

i βi

P(1)2

ci

)

+ uxxuyy

(
−α2

i β
2
i

P(1)2

ci

)
+ uxyuyx

(
−α2

i β
2
i

P(1)2

ci

)]
. (A23)

Now, following a similar procedure as in the previous section we can compute all the energy contributions. The contribution
proportional to KA is

EA =
∑

c

KA

2

(
A(2)

c − A0c
)2

,

=
∑

c

KA

2
A2

0c[(1 + εtr(U ) + ε2det(U ))det(�) − 1]2,

=
∑

c

KA

2
A2

0c[det(�) − 1 + (εtr(U ) + ε2det(U ))det(�)]2, (A24)

where we obtain that the zero-, first-, and second-order terms of EA are given by

E (0)
A =

∑
c

KA

2
A2

0c(det(�) − 1)2, (A25)

E (1)
A =

∑
c

KAA2
0cdet(�)[det(�) − 1]tr(U ), (A26)

E (2)
A =

∑
c

KA

2
A2

0c[det(�)2tr(U )2 + 2det(�)(det(�) − 1)det(U )]. (A27)

Similarly, for the term proportional to KP,

EP =
∑

c

KP

2

(
P(2)

c − P0c
)2

,

=
∑

c

KP

2

(
P(1)

c − P0c + εM (1)
c + ε2M (2)

c

)2
, (A28)

and the zero-, first-, and second-order terms of EP are given by

E (0)
P =

∑
c

KP

2

(
P(1)

c − P0c
)2

, (A29)

E (1)
P =

∑
c

KP
(
P(1)

c − P0c
)
M (1)

c , (A30)

E (2)
P =

∑
c

KP

2

[
2
(
P(1)

c − P0c
)
M (2)

c + M (1)
c

2]
. (A31)

Finally, the zero-, first-, and second-order terms of EJ are

E (0)
J =

∑
c

J

2
P(1)

c , E (1)
J =

∑
c

J

2
M (1)

c , E (2)
J =

∑
c

J

2
M (2)

c . (A32)

APPENDIX B: EQUATIONS OF MOTION

With periodic boundary conditions, Eq. (1) from the main text can be written as

E =
∑

c

KA

2
(Ac − A0c)2 +

∑
c

KP

2
(Pc − P0c)2 +

∑
c

J

2
Pc. (B1)
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The equations of motion for the vertex are obtained using
Eq. (2) of the main text, which can be written as

dri

dt
= dri

dt

∣∣∣∣
A

+ dri

dt

∣∣∣∣
P

+ dri

dt

∣∣∣∣
J

. (B2)

Assuming a polygon of N vertices, we calculate its area
using the triangularization method with respect to the vertex
v1,

Ac = −
N−1∑
j=2

1

2
ẑ · (r j,1 × r j+1,1),

= −
N−1∑
j=2

1

2
ẑ · [(r j − r1) × (r j+1 − r1)],

=
N−1∑
j=2

1

2
ẑ · [−r j × r j+1 + rv1 × (r j+1 − r j )],

=
N−1∑
j=2

1

2
ẑ · [−r j × r j+1] + 1

2
ẑ · [r1 × (rN − r2)], (B3)

where we used that the tissue is in the x-y plane, with the
vertices in each cell ordered clockwise, and we defined ri, j =
ri − r j and ri, j = ri, j/|ri, j |. To compute the energy gradients,
it is convenient to write this expression using any vertex to
make the triangularization

Ac =
N−1∑
j=2

1

2
ẑ · [−r j × r j+1] + 1

2
ẑ · [ri × (ri−1 − ri+1)],

(B4)

where cyclic vertex numbering is used (i.e., N + 1 ≡ 1 and
−1 ≡ N). Then,

∇iAc = 1
2∇i(ẑ · [ri × (ric−1 − ri+1)]),

= 1
2∇i[xi(yi−1 − yi+1) − yi(xi−1 − xi+1)],

= 1
2 (yi−1 − yic+1)x̂ − 1

2 (xi−1 − xi+1)ŷ = 1
2 ri+1,i−1 × ẑ.

(B5)

Also, the perimeter and its gradient with respect to the
position of the vertex i of the same polygon are given by

Pc =
N∑

j=1

|r j+1, j |, (B6)

∇iPc = ∇i(|ri+1,i| + |ri−1,i|) = −ri+1,i

ri+1,i
− ric−1,i

ri−1,i
. (B7)

Finally, the different terms of Eq. (B2) are

dri

dt

(A)

= −
∑

c

KA(Ac − A0c)∇iAc

= −
∑

c

KA(Ac − A0c)
1

2
{ric+1,ic−1 × ẑ}

=
∑

c

KA(Ac − Ac0)
1

2
{ric−1,ic+1 × ẑ}, (B8)

dri

dt

(P)

= −
∑

c

KP(Pc − Pc0)∇iPc

=
∑

c

KP(Pc − Pc0)

(
ric+1,i

ric+1,i
+ ric−1,i

ric−1,i

)
, (B9)

dri

dt

(J )

= −
∑

c

J

2
∇iPc

=
∑

c

J

2

(
ric+1,i

ric+1,i
+ ric−1,i

ric−1,i

)
, (B10)

where Eqs. (B8–B10) consider a sum over the three cells
which the vertex i belongs to, and ic + 1 and ic − 1 refer to the
next and previous vertex to i, in clockwise counting, belonging
to cell c.

APPENDIX C: SHORT AND LONG TIME SCALES

By performing a simple dimensional analysis we can ob-
tain the relevant time scales of the dynamics, and define useful
short time and long time values, τs and τl , respectively. The
first one allows us to detect the beginning of the instability,
while the second allows the nonlinear terms, which saturate
the eventual instabilities, to act.

We analyze the energy of a single hexagonal cell of equi-
librium side a0. At time t = 0 it is deformed isotropically
such that the new side is a = a0 + a1, with a1 � a0. The area
(equilibrium area) and perimeter (equilibrium perimeter) are
3
√

3a2/2 (3
√

3a2
0/2) and 6a (6a0), respectively. To simplify,

we consider J = 0, in which case the energy of the cell is

E = KA

2

27

4

(
2a0a1 + a2

1

)2 + KP

2
(6a1)2. (C1)

According to the dynamics of the vertex model, the cell side
evolves as

ȧ1 ∼ − ∂E

∂a1

= −
[

27

4
KA

(
2a0a1 + a2

1

)
(2a0 + 2a1) + 36KPa1

]

= −
[(

27

τA
+ 36

τP

)
a1 + (81/2)

τA

a2
1

a0
+ (27/2)

τA

a3
1

a2
0

]
, (C2)

where we defined τA = 1/(KAa2
0) and τP = 1/(KP ). With the

selection of units such that KA = a0 = 1, we have that τA = 1
and τP = 1/p, which is of order 1. Hence,

ȧ1 = − a1

1/(27 + 36)
− a2

1

2/81
− a3

1

2/27
. (C3)

Obviously, for a confluent tissue, the linear and nonlinear
terms change, and there are parameters for which the coef-
ficients change sign and tissue is stable. Nevertheless, the
present analysis allows us to extract the relaxation time scales.
The shortest gives the linear evolution, τ1 ≈ 0.016, and the
other two describe the nonlinear terms τ2 ≈ 0.025 and τ3 ≈
0.074. If we consider the short time τs = 0.025, the unstable
modes will have grown exponentially, allowing us to identify
their effect in the form of a change in ellipticity. For the long
time τl = 0.5, the nonlinear terms have played a role and
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(a) (b)

(c) (d)

(e) (f)II IIII I I IIII

FIG. 5. Tissue instabilities obtained in simulations of N = 3000
hexagonal cells with 10% of Gaussian noise over the regular
positions (left) and irregular cells (right) (three different tissues con-
sidered), under cell target perimeter activity, with λP = +1/2 and
λA = 0. Same representation as in Fig. 2.

the system could reach a steady state if the nonlinear terms
saturate the instability.

APPENDIX D: COMPARISON BETWEEN REGULAR
AND IRREGULAR TISSUES

To compare the dynamics of regular and irregular tissues,
we performed simulations for both cases. The results for target
perimeter activity, with λP = +1/2 (predicted line, j = 6p)
and λP = −1/2 (predicted line, j = −6p), can be seen in
Figs. 5 and 6, respectively. Although the detailed geometry
of the cells changes, the flattening parameter and the measure
of nonconvexity agree remarkably well between regular and
irregular tissues, showing that the long-wavelength approx-
imation is valid. From Figs. 5(b) and 6(b) it is seen that

(a) (b)

(c) (d)

(e) (f)II IIII II IIII

FIG. 6. Tissue instabilities obtained in simulations of N = 3000
hexagonal cells with 10% of Gaussian noise over the regular
positions (left) and irregular cells (right) (three different tissues con-
sidered), under cell target perimeter activity, with λP = −1/2 and
λA = 0. Same representation as in Fig. 2.

λP = −1/2 achieves lower values for the standard deviation
of the flattening parameter, which results in more rounded
cells [Fig. 6(f) (case II) versus Fig. 5(f) (case II)].

APPENDIX E: EXAMPLES OF NONDIAGONAL μ

MATRICES

Using the expressions in Appendix A it is possible to
derive the μ-matrix for different cases. Here, we present some
examples where the resulting matrix is nondiagonal, needing
the analysis described in Sec. IV to determine the unstable
modes.

For an anisotropic deformation, characterized by a 60%
horizontal contraction and 40% vertical expansion, � =
(0.4 0

0 1.4). The μ-matrix is

μ60/40 =

⎛
⎜⎝

0.246 + 0.019 j + 1.090p 0 0 1.632p
0 0.246 + 0.193 j − 0.110p −0.143 + 0.081p 0
0 −0.143 j + 0.081p −0.246 + 0.212 j − 0.121p 0

1.632p 0 0 0.381 + 2.420p

⎞
⎟⎠. (E1)

The transition line is given by j = 0.569p. Simulation results for irregular tissues can be seen in Fig. 3.
For a tissue under a pure deviatoric deformation, � = (0.5 0

0 1.5), the μ-matrix is

μdev =

⎛
⎜⎝

0.188 + 0.027 j + 1.150p 0 0 1.824p
0 0.188 + 0.206 j + 0.120p −0.145 j − 0.085p 0
0 −0.145 j − 0.085p −0.188 + 0.233 j + 0.136p 0

1.824p 0 0 0.938 + 2.932p

⎞
⎟⎠. (E2)
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The associated matrix eps is obtained [Eqs. (10)–(12)] and we compute the curve in parameter space where the minimum eigen-
value of eps changes its sign. Equivalently we search when the determinant vanishes, finding the linear relation j = −0.583p.
Note that, although the �- and μ-matrices are similar to the previous case, the transition line is radically different. Simulation
results for irregular tissues can be seen in Fig. 4.

Finally, for a tissue subject to a pure shear predeformation, � = ( 1 0.5
0.5 1 ), the μ-matrix is

μps =

⎛
⎜⎝

0.19 + 0.16 j + 0.13p 0.03 j + 0.15p 0.16 j + 0.12p 0.18p
0.03 j + 0.15p 0.19 + 0.08 j + 1.48p −0.01 j − 0.01p 2.07p
0.16 j + 0.12p −0.01 j − 0.01p −0.19 + 0.24 j + 0.18p 0

0.18p 2.07p 0 0.94 + 3.02p

⎞
⎟⎠. (E3)

The line at which the minimum eigenvalue of edev changes its sign is given by j = −0.769p. Simulation results for irregular
tissues can be seen in Fig. 4.
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