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Colloid particles in microfluidic inertial hydrodynamic ratchet at moderate Reynolds number
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The movement of spherical Brownian particle carried by an alternating fluid flow in a tube of periodically
variable diameter is investigated. On the basis of our previous results [Phys. Rev. E 99, 012604 (2019)] on the
hydrodynamics of the problem, we look at the competition of hydrodynamics and diffusion. We use the method
of Fick-Jacobs mapping on an effective one-dimensional problem. We calculate the ratchet current and show
that is is strictly related to finite size of the particles. The ratchet current grows quadratically with particle radius.
We also show that the dominant contribution to the ratchet current is due to inertial hydrodynamic effects. This
means that Reynolds number must be at least of order one. We discuss the possible use for separation of particles
by size and perspectives of optimization of the tube shape.
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I. INTRODUCTION

With the development of microfluidics [1,2], the
laboratory-on-chip applications are becoming widely
available for applications in technology, medical diagnostics
[3], and so on. One of the basic tasks in construction of
microfluidic devices still remains separation of micrometer
and submicrometer particles according to physical properties
including size, shape, and rigidity [4–9].

Sorting of large particles (typical size 10 μm) relies mostly
on deterministic hydrodynamic techniques. Among them, the
most widely used are deterministic lateral displacement [10]
and lateral migration [11,12] based on the Segre-Silberberg
effect [13]. The latter method found numerous medical appli-
cations [14–19].

For small particles (typical size under 1 μm) Brownian
motion plays important role. In this case, sorting may rely
on the well-known mechanism of Brownian ratchet [20,21].
Three ingredients are necessary for the Brownian ratchet to
work. They are periodic driving, mirror-asymmetric geometry,
and diffusion. The driving may be due to external potential or
by hydrodynamics. Here we shall consider the latter variant.
In this setting, particles are suspended in a fluid flowing in
a tube and the flow is periodically varied so that total fluid
flow over one time period is zero. The hydrodynamic Brow-
nian ratchet was realized experimentally [22–24] and studied
theoretically by direct simulations [25] and using the mapping
on one-dimensional diffusion problem [26].

Brownian ratchets with purely hydrodynamic driving are
more delicate than ratchets driven by external field. For ex-
ample, infinitesimally small particles in stationary flow under
the influence of Brownian motion are, in a stationary state,
distributed uniformly over the interior of the tube. Therefore,
if the alternation of the flow is so slow that adiabatic approxi-
mation is valid, then the flow of particles follows truly the flow

*slanina@fzu.cz

of the fluid and the ratchet effect is exactly zero. Therefore, we
need particles of either finite size or fast-enough oscillation of
the flow in order to observe the ratchet effect.

In a series of articles [27,28] we solved the problem of
movement of a spherical particle in axially symmetric tube
with periodically varying diameter. In the first step, we solved
the Navier-Stokes equations for undisturbed stationary flow
in such tube, using expansion in powers in the amplitude of
diameter variation. This problem was investigated previously
using the slow-variation method introduced by Blasius [29]
to periodically modulated tubes [30–37]. However, we rely
on small-amplitude expansion, which was used less often
[38–43]. In Refs. [27,28] we improved the earlier results by
providing explicit analytic formulas for first few terms of the
expansion.

In the second step we inserted spherical particle in the flow
and established the velocity if its forceless movement. We
found that the results are reliable up to Reynolds numbers
about Re � 4. This is enough to see inertial hydrodynamic
effects and still it is far from hydrodynamic instabilities. We
come to such a conclusion on the basis of numerical studies
of the flow in similar geometries [43–46], which show that the
flow is stable up to Reynolds numbers about Re � 200.

In our previous article [28] we showed that for relatively
large particles of the size �10 μm (which is about the size
of blood cells) we can realize ratchet effect in purely hydro-
dynamic regime with infinitesimally slow diffusion. However,
the purely hydrodynamic ratchet works only within a transient
regime, which means that the frequency of alternation of the
flow must be large enough and the length of the tube must be
small enough. When we approach the quasistationary regime,
the ratchet effect disappears.

In this work, we want to incorporate the effect of Brownian
motion. This implies that we work with relatively smaller par-
ticles, of sizes �1 μm or less. Our strategy will start with the
ordinary advection-diffusion equation, where the drift term
will be taken from our calculation of the velocity of a par-
ticle freely carried by the flow. Then the advection-diffusion
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FIG. 1. Schematic picture of the system investigated here. The
fluid flows through axially symmetric tube of periodically varying
diameter d (z). Within the fluid, there is a colloid particle of spherical
shape and radius R.

equation will be mapped on an effective one-dimensional
problem, using a simple variant of the Fick-Jacobs approxi-
mation [47,48]. This approximation was widely used to many
problems involving diffusion and was developed systemati-
cally as a power series, which can be even partially summed
[26,48–59]. We shall not employ the full power of this method
here; we shall use just the most basic version of it. The map-
ping on one-dimensional problem will allow us to calculate
the stationary current and hence the ratchet current in adia-
batic approximation. This way we establish the properties of
our version of Brownian ratchet.

At this point we must admit a weak point of our previous
work [27]. We already tried to apply the Fick-Jacobs approx-
imation there and obtained a compact analytic formula within
certain range of parameters. However, when we checked later
the values of physical quantities for which the approximation
leading to such formula (Eq. (22) in Ref. [27]) holds, we came
to a disappointing conclusion. If the liquid in question was
water at room temperature, then the formula would hold only
at spatial scales smaller than 10−15 m, which is completely
beyond reality. Larger viscosity would make it even worse. To
extend the result of Ref. [27] to wider and more realistic range
of parameters, we must apply the Fick-Jacobs approximation
in a more robust way and this is just the scope of the present
work.

II. PARTICLE CARRIED BY FLOW IN TUBE

A. Geometry

We investigate movement of spherical particle of radius
R carried by an incompressible fluid flow and performing
Brownian motion. The flow occurs in an axially symmetric
tube with spatially variable but periodic diameter. We use
cylindrical coordinates, so that the coordinate z is oriented
along the tube axis and r is the radial coordinate. Due to the
symmetry of the problem, we assume no dependence on the
angular coordinate φ in any measurable quantity. The system
investigated here is sketched schematically in Fig. 1. The
diameter of the channel at axial coordinate z is

d (z) = d

1 + S(z)
, (1)

where the parameter d will be called typical diameter, and the
modulation function S(z) is periodic, with spatial frequency

�. Generally, we can expand it in Fourier series,

S(z) =
∑

k=1,2,...

(Ak sin k�z + Bk cos k�z). (2)

We shall often measure the lengths in terms of the spatial
period of the modulation L = 2π/�. This way, we define
dimensionless parameters d = d� and R = R�.

B. Hydrodynamics

We shall suppose that the volumetric flow of the fluid
through the tube is Q. This is the basic parameter which
quantifies the flow. It can be either positive or negative de-
pending on the orientation of the flow with respect to the z
axis. We denote η the dynamic and ν the kinematic viscosity
of the fluid. The first step in investigating our problem is the
solution of Navier-Stokes equations for the fluid in the tube
with geometry defined by (1).

There are a few quantities which give rough but useful
characteristics of the flow. Most importantly, we define the
Reynolds number as

Re = 2�|Q|
πν

. (3)

We are interested in regime with significant inertial effects but
still far from any hydrodynamic instabilities. This implies that
typical values of Reynolds number will be around Re � 1.

It is also useful to have some idea on the fluid velocities and
pressures in the system. So we define the typical fluid velocity
as U = 4Q/πd2. The typical pressure drop per spatial period
can be estimated using the Hagen-Poisseuille formula as

�p = 256η�3Q

d
4 . (4)

Of course, the actual pressure drop must be obtained by full
solution of NS equations, which is a difficult task. The typical
pressure drop (4) is just a rough, however useful, estimate for
the actual value.

In recent works [27,28], we found the solution of the
Navier-Stokes (NS) equations for the stationary flow in a tube
with periodically varying diameter according to (1) and (2).

We used the expansion in the amplitudes of the modulation
Ak and Bk . The solution is expressed in terms of the stream
function ψ . The axial and radial coordinates of the fluid ve-
locity u are related to the fluid stream function by

ur = −1

r

∂ψ

∂z
, uz = 1

r

∂ψ

∂r
. (5)

The boundary conditions for NS equations were the usual no-
slip conditions at the tube wall placed at r = h(z) ≡ d (z)/2,
combined with the periodic boundary conditions in the z
direction, ψ (r, z) = ψ (r, z + 2π/�) valid in the stationary
state.

We look for the solution in the following general structure:

ψ (r, z) = 2Q

π
[ψ0(r, z) + ψ1(r, z) + ψ2(r, z) + . . .], (6)

where ψm contains mth powers of the amplitudes Ak , Bk . We
proceed by inserting (6) into NS equations and collect all
terms of the same order in the coefficients Ak , Bk . The terms

052601-2



COLLOID PARTICLES IN MICROFLUIDIC INERTIAL … PHYSICAL REVIEW E 102, 052601 (2020)

of zeroth order in Ak , Bk lead to the contribution

ψ0(r, z) = 2

{
[1 + S(z)]r

d

}2

− 4

{
[1 + S(z)]r

d

}4

. (7)

Using this term, we obtain equations for the contribution of
first order in Ak , Bk . In principle we can proceed iteratively
to any order, but already beyond the first order the equations
become unmanageable. That is why we stopped at the first
order in the expansion (6) (see Refs. [27,28] for details).

In the first order, we can separate contributions which are
symmetric and antisymmetric with respect to the orientation
of the flow, i.e.,

ψ1(r, z) = ψ1 even(r, z) ± ψ1 odd(r, z)Re, (8)

where the “+” sign applies for Q > 0 and “−” sign for Q < 0.
The even and odd parts can be written as

ψ1 even(r, z) =
∑

k=1,2,...

∞∑
l=0

(−1)l
(
k Re

)2l

× g(2l )

(
k�[1 + S(z)]r;

k�d

2

)

× (Bk cos k�z + Ak sin k�z) (9)

and

ψ1 odd(r, z) =
∑

k=1,2,...

∞∑
l=0

(−1)l+1k(k Re)2l

× g(2l+1)

(
k�[1 + S(z)]r;

k�d

2

)

× (Ak cos k�z − Bk sin k�z). (10)

The nontrivial part of the solution is contained in the functions
g(m)(x; y) which can be expressed in terms of integrals con-
taining Bessel functions. For details of the solution we refer
the reader to Refs. [27,28].

The solution obtained in Refs. [27,28] was found re-
liable for Reynolds numbers Re � 4.5 (see discussion in
Refs. [27,28] for details).

When we insert a spherical, neutrally buoyant particle into
an ambient flow described by velocity field u, free movement
of the particle is described by the velocity field v related to u
by the well-known formula [28,60]

v = u + R2

6
�u + O(R4). (11)

The terms of the order R4 and higher stem from the nonlinear
terms in Navier-Stokes equations. In Stokes flow they are
absent [60]. In this work we neglect the contributions of order
higher than R2. This approximation has an important technical
consequence. We can see that the velocity field of particles v is
incompressible (has zero divergence) as long as the flow u of
the fluid itself is incompressible. Therefore, in analogy with
the stream function for the fluid, we can define the function
ψp (we shall call it particle stream function) from which the
particle velocity v can be computed as

vr = −1

r

∂ψp

∂z
, vz = 1

r

∂ψp

∂r
, (12)

in analogy with (5). The formula (11) taken up to quadratic
order in R, induces linear relation between ψ and ψp, which
is [28]

ψp = ψ + R2

6

(
∂2

∂z2
+ ∂2

∂r2
− 1

r

∂

∂r

)
ψ. (13)

Note that the differential operator present in (13) is not the
Laplace operator expressed in cylindrical coordinates, as one
might naively think looking at the form of (11).

Now we can insert the solution of the NS equations ex-
pressed by Eqs. (6) to (10) into the relation (13) and thus
obtain the movement of the particle induced by the fluid flow.
This movement was thoroughly discussed in Ref. [28], so let
us stress only the most important finding. In fact, although
the particle velocity field v is incompressible, the streamlines
cross the tube walls. The physical meaning is that the fluid
flow pushes the particles toward the wall at some points,
while at other points the particles are repelled from the wall.
Therefore, hydrodynamic traps are formed. In Ref. [28] we
have shown that in transient regime of alternating flow, such
hydrodynamic traps induce a ratchet effect, which may be
used for particle separation based on purely deterministic
hydrodynamic effects. However, such hydrodynamic ratchet
works only in a specific window of parameters. First, it relies
on transient effects, so that the frequency of the alternation of
the flow cannot be too small. Second, Brownian motion of the
colloid particles is neglected. The motion of the particles is
totally deterministic.

C. Diffusion

The aim of the present work includes investigation of the
influence of Brownian motion of the particles. Therefore, we
study the competition between deterministic hydrodynamics
and stochastic diffusion in their movement.

The tool used will be a usual advection-diffusion equation,
into which the induced particle velocity (12) enters as an
input. The diffusion coefficient of our spherical particle is

D = kBT

6πηR
. (14)

We denote ρ(r, z, t ) the probability density for finding the
particle at coordinates (r, z) in time t . In all what follows we
assume that the probability density is axially symmetric, so
the dependence on the azimuthal angle φ is absent. It satisfies
the advection-diffusion equation in the form

∂tρ =
[
∂z(D∂z − vz ) + 1

r
∂rr(D∂r − vr )

]
ρ, (15)

where we used abbreviated notation ∂t , ∂z, ∂r for partial
derivatives with respect to time and coordinates z and r,
respectively. The advection velocities vz and vr are taken
from the solution (6) of the flow according to relations (13)
and (12).

The boundary conditions are

(D∂r − vr )ρ(r, z, t )|r=0 = 0 (16)

at the tube axis. This follows from the assumed axial symme-
try of the solution which implies that the flow crossing the axis
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must be strictly zero. At the tube wall, the reflection boundary
conditions imply

(D∂r − vr )ρ(r, z, t )|r=d (z)/2

= 1
2 d ′(z)(D∂z − vz )ρ(r, z, t )|r=d (z)/2. (17)

To simplify the treatment of the diffusion problem, we
perform mapping on a one-dimensional effective model, us-
ing the Fick-Jacobs approximation [47,48] in the lowest
order. As there are several variants of such approximation
[26,48–59] which differ in sometimes important details, we
describe shortly the procedure used by us here. In fact, it is the
simplest nontrivial version of the Fick-Jacobs approximation.

We want to write a closed equation for the projected den-
sity

p(z, t ) =
∫ d (z)/2

0
2πr ρ(r, z, t ) dr. (18)

Projecting the diffusion equation (15) and using the boundary
conditions (17) we obtain an exact (but not closed) equation,

∂t p(z, t ) = D∂2
z p(z, t )

− ∂z

[
D

π

2
d ′(z)d (z)ρ

(
1

2
d (z), z, t

)

+
∫ d (z)/2

0
2πr vz(r, z)ρ(r, z, t ) dr

]
. (19)

To close the equation we assume that the diffusion is fast
enough to quickly equilibrate the probability density in radial
direction. Then we apply approximate backward mapping

ρapprox(r, z, t ) = p(z, t )

A(z)
, (20)

where A(z) is fixed by consistency condition as A(z) =∫ d (z)/2
0 2πr dr = πd2(z)/4. Replacing in (19) the true ρ by

the approximate one (20), we obtain closed equation for
p(z, t ). This equation has the general form

∂t p(z, t ) = D∂ze
−W (z)∂ze

W (z) p(z, t ). (21)

Systematic improvement of this scheme is possible
[26,48–59], using more sophisticated formulas for the back-
ward mapping than (20), but we shall use only this lowest
approximation. The limits of the Fick-Jacobs approximation
and its generalizations are still under debate [52,54] and no
easy criterion seems to be at hand. Generally, of course,
quicker diffusion favors equilibration and therefore smaller
particles (which have larger diffusion coefficient) are better
described by the Fick-Jacobs scheme.

The function W (z) represents effective one-dimensional
potential in which the particle diffuses. All geometric and
hydrodynamic effects are amalgamated into this function. We
find that W (z) satisfies

∂zW (z) = −2
d ′(z)

d (z)

− 1

D

4

πd2(z)

∫ d (z)/2

0
2πr vz(r, z) dr. (22)

The integral on the right-hand side of (22) can be formally
calculated using the particle stream function ψp(r, z). Indeed,∫ d (z)/2

0
2πr vz(r, z) dr

= 2π{ψp[d (z)/2, z] − ψp(0, z)} = Qp(z). (23)

The quantity Qp(z) introduced here will be called nominal
particle flow. Note that this quantity depends on the position
along the tube axis. For point particles the quadratic (and
higher) corrections in (11) vanish and Qp(z) = Q for all z.

The reason Qp(z) is position dependent is related to the
feature of the particle velocity field (11) which was amply
discussed in our previous works [27,28] and already men-
tioned in the previous section. Indeed, the point is that the
streamlines of the particle velocity field v cross the tube wall.
Physically, it implies that the particles are pushed toward the
walls at some places and repelled from the walls at other
places, as we already mentioned. Formally, this effect results
in position dependence of the nominal particle flow Qp(z). At
the same time, we must keep in mind that the actual particle
flow calculated from Eq. (15) as well as from its approximate
projection (21) must obey particle-conservation law and in
stationary state must not depend on position along the axis.
The dependence of Qp(z) on position is reflected in the ef-
fective potential W (z) as a sequence of traps and barriers,
which represent the true physical phenomenon of pushing and
pulling the particle to and from the tube wall.

Integrating (22) we obtain the following formula for the
effective potential:

W (z) = − ln d2(z) − 4

πD

∫ z

0

Qp(z′)
d2(z′)

dz′. (24)

Now we can solve the projected diffusion equation (21) in sta-
tionary state. We assume periodicity of the probability density
p(z) = p(z + L) and fix the normalization such that there is
on average one particle per one period,

∫ L
0 p(z)dz = 1. Then,

the particle current is given by [20]

J = D
1 − exp

[− ∫ L
0

4 Qp(z′ )
πDd2(z′ ) dz′]∫ L

0

∫ z+L
z

d2(z)
d2(z′ ) exp

[− ∫ z′
z

4 Qp(z′′ )
πDd2(z′′ ) dz′′]dz′dz

. (25)

This formula will be the starting point for further investiga-
tions.

III. RATCHET EFFECT

A. Adiabatic approximation

Rectification of particle current can occur in periodically
driven diffusive systems if the static potential in which the
particle moves lacks mirror symmetry. In our case there is no
physical potential, as the particle moves freely within the tube,
influenced only by hydrodynamic forces. However, effectively
the particle feels tilted periodic potential W (z). This effective
potential has two sources, represented by two terms on the
right-hand side of Eq. (24). The first term stems purely from
the geometry of the tube. It can be interpreted as entropic term,
equal to logarithm of the space available for particle move-
ment. The second term is the most interesting one, because
it contains hydrodynamic effects. In fact, hydrodynamic and
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geometric effects are inseparably mixed in this term, but we
shall see later that the effect of hydrodynamic parameters, like
the Reynolds number, can be singled out in the final formulas.

The ratchet effect requires time-dependent periodic driv-
ing. In our case it is achieved by periodic change of the
volumetric flow Q(t ). We shall assume adiabatic approxi-
mation, i.e., the period of the change is much longer than
any transient times present in the system. Therefore, at each
moment the state of the system may be considered stationary.
We assume rectangular pattern of the time dependence of
Q(t ). In the first half-period the volumetric flow is constant
and positive, Q(t ) = |Q|; in the next half-period, it is constant
and negative, Q(t ) = −|Q|. Then, the ratchet current is the
average of stationary currents J = J> taken at Q > 0 and
J = J< taken at Q < 0. The ratchet current is then

Jrat = 1
2 (J< + J>). (26)

The currents J≷ are calculated using the formula (25).
Actually, we shall rather use the ratchet velocity

vrat = 2π

�
Jrat, (27)

which is independent of the normalization of the particle
density.

An important observation is due here. Within the adiabatic
approximation, we suppose that the system is infinitesimally
close to stationary state at all times, despite the fact that the
fluid flow Q(t ) is time dependent. But the stationary state
has an important property which is evident from the form
of the advection-diffusion equation (15). If the particles are
pointlike, i.e., R = 0, then the drift velocity v is equal to the
fluid velocity and the stationary solution of (15) is uniform.
Therefore, the true particle current is proportional to the volu-
metric flow Q(t ) at all times. Since the fluid flow is unbiased,
the volumetric flow as well as the particle current is zero,
when averaged over time period. This means that the ratchet
current is exactly zero. The conclusion is that the ratchet effect
is strictly related to finite size of the particles. In the following,
we shall see explicitly how the ratchet velocity decreases to
zero when R → 0.

B. Series expansion

The direction of the current is contained in the nominal
particle flow Qp(z). We shall write Qp(z) = QQ(z), where
Q(z) = 1 if the particle is pointlike. Nonzero particle radius
brings z-dependent corrections of order R2 to Q(z). Moreover,
inertial effects in the NS equation add further corrections to
Q(z) which depend both on z and on the orientation of the
flow. Therefore, we shall distinguish Q(z) = Q>(z) if Q > 0
and Q(z) = Q<(z) if Q < 0.

In the following, we shall use dimensionless coordinate
z = z�. We also introduce function

g(z) = [1 + S(z)
]2

, (28)

which contains geometric effects and functions

G≷(z, ζ ) =
∫ ζ

0
g(z ± ζ ′)Q≷(z ± ζ ′)dζ ′, (29)

which will be useful later. Inserting (25) into (26) we obtain a
closed equation for the ratchet velocity,

vrat =
4πν�Re

∫ 2π

0
V1(z)
g(z) dz

d
2{[ ∫ 2π

0
V0(z)
g(z) dz

]2 − [ ∫ 2π

0
V1(z)
g(z) dz

]2} . (30)

The central point is the calculation of functions V0(z) and
V1(z). They are expressed as

V0(z) = 1
2 [V<(z) + V>(z)]

V1(z) = 1
2 [V<(z) − V>(z)], (31)

where

V≷(z) = 1

Q≷(z)

±
∫ 2π

0

e−βG≷(z,ζ )

1 − e−βG≷(z,2π )

d

dz

1

Q≷(z ± ζ )
dζ . (32)

The dimensionless parameter

β = 12πηνR

kT d
2
�

Re, (33)

which appears in the exponentials in (32) plays central role in
the approximations we shall use in the following. Indeed, for
reasonable values of physical variables, β can be considered
very large and expansion in inverse powers of β is appropriate.

As an example, consider the spatial frequency � =
105 m−1, reduced tube diameter d = 0.3, and reduced parti-
cle radius R = 0.05. For such choice the the spatial period
is 2π × 10−5 m, tube diameter is 3 μm and particle radius
0.5 μm. If the flow velocity is adjusted to Re = 1, considering
pure water at 293 K, then the typical fluid velocity is U =
2.23 ms−1 and the typical pressure drop per one spatial pe-
riod, according to (4), is �p = 0.5 MPa. For such parameters,
we have β = 5.20 × 107, i.e., a very large value. Note that
even particles as small as 2R � 1nm (with other parameters
unchanged) give β � 104, which is still very large. Only at
Reynolds numbers as small as Re � 10−3 may we expect
that large-β expansion may come into problems. However,
such a slow motion produces too weak ratchet effect to be
of practical interest, as will be clear later. So we conclude that
expansion on powers of β−1 seems reasonable in all physi-
cally interesting situations in devices of typical sizes �10 μm
and Reynolds numbers of orders Re � 10−1 to Re � 1. This
will be the range of Reynolds numbers investigated here.

So let us turn to calculation of the functions V≷(z) in
the limit β → ∞. It consists of three steps. First, the term
e−βG≷(z,2π ) is neglected in the denominator of (32). Second,
the upper limit of the integration in (32) can be prolonged
to infinity. Third, the function G≷(z, ζ ) in the exponent can
be expanded in Taylor series around the point ζ = 0, thus
generating a series in powers of the small parameter β−1. In
terms of the even and odd parts Vσ (z) for σ ∈ {0, 1}, we can
write

Vσ (z) =
∞∑

m=0

(βg(z))−mVσ,m(z). (34)
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For the first two terms, we can easily find

Vσ,0(z) = 1

2

[
1

Q<(z)
+ (−1)σ

1

Q>(z)

]

Vσ,1(z) = 1

2

[
Q

′
<(z)

Q
3
<(z)

+ (−1)σ
Q

′
>(z)

Q
3
>(z)

]
. (35)

We have computed the particle flow up to first order in the
Reynolds number [28]. Within such approximation we can
write for the nominal flow of particles

Q≷(z) = 1 + R
2

Q0(z) ± R
2
Re Q1(z). (36)

The form of the functions Q0(z) and Q1(z) is related to the
solution of Navier-Stokes equations through the relations (9),
(10), (13), and (23). Detailed expressions are given later.

In order to simplify the formulas we denote the expression

N (z) = [1 + R
2

Q0(z)]2 − (R
2
Re Q1(z))2, (37)

which will always occur in the denominator. Using these
functions we can write

V0,0(z) = 1

N (z)
[1 + R

2
Q0(z)]

V1,0(z) = 1

N (z)
R

2
Re Q1(z) (38)

for the lowest order in β−1.
We can see that in this order, the dependence of the ratchet

velocity on both particle radius and the Reynolds number is
quadratic, as long as R and Re are small enough but not so
small that the large-β approximation becomes invalid. We
can also immediately see that the contribution of this term
vanishes if the inertial hydrodynamic effects are omitted.

In the next order in β−1 we obtain the following formulas:

V0,1(z) = 1

N3(z)
(R

2
Q

′
0(z){3[1 + R

2
Q0(z)]2R

2
Re Q1(z) + (R

2
Re Q1(z))3}

− R
2
Re Q

′
1(z){[1 + R

2
Q0(z)]3 + 3[1 + R

2
Q0(z)](R

2
Re Q1(z))2})

V1,1(z) = 1

N3(z)
(R

2
Q

′
0(z){[1 + R

2
Q0(z)]3 + 3[1 + R

2
Q0(z)](R

2
Re Q1(z))2}

− R
2
Re Q

′
1(z){3[1 + R

2
Q0(z)]2R

2
Re Q1(z) + (R

2
Re Q1(z))3}). (39)

For moderate values of radius and Reynolds number,
this contribution is negligible compared to lowest or-
der in β−1, as will be shown quantitatively in the next
section.

On the other hand, if we neglect inertial hydrodynamic
effects, then the second-order term in β−1 is the lowest term
which gives nonzero contribution to ratchet velocity. In other
words, if we used the Stokes equation instead of the Navier-
Stokes one, then the lowest term in the large-β expansion is
just given by the equations (39). We can artificially “switch
off” the inertial effects by forcing Q1(z) = 0 everywhere. We
can immediately see that in this case the contribution of (38) to
the ratchet current is zero. At the same time, the contribution
of (39) to the ratchet current is proportional to particle radius if
the radius is small. We can see this effect quantitatively in the
inset of Fig. 2. We can see that the ratchet velocity produced
by the hypothetical flow governed by Stokes equation is so
small (in picometer per second range) that it is out of practical
consideration. We also checked the importance of terms of
higher order in β−1. We calculated explicitly the terms Vσ,m

for m = 2, 3. The formulas are analogous to (39) but more
complicated. We consider unnecessary to show them here.
Indeed, we found that quantitatively, their contribution to the
data in Figs. 2 and 3 is smaller than the line width in these
figures.

Strictly speaking, the expansion (11) neglects all contribu-
tions of order R4 and higher, so we ought to neglect them also
in the formulas for ratchet velocity. This leads to expression

(keeping just the lowest power of β−1)

vrat = 4πν�Re2R
2

d
2

∫ 2π

0
Q1(z)
g(z) dz∫ 2π

0
1

g(z) dz
+ O(R

4
), (40)

in which the quadratic dependence on both radius and
Reynolds number is explicit. However, we prefer to pro-
ceed somewhat inconsistently, keeping all terms in the full

FIG. 2. Dependence of the average ratchet velocity of the particle
on the reduced particle radius. The parameters of the tube are � =
105 m−1, d = 0.3, A = 0.15, and B = 0.2. The Reynolds number is
Re = 3 (solid line), Re = 2 (dotted line), and Re = 1 (dashed line).
In the inset, average ratchet velocity for the same tube parameters
and Re = 3, in the hypothetical case of neglected inertial effects.
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FIG. 3. Dependence of the average ratchet velocity of the par-
ticle on the Reynolds number. The parameters of the tube are � =
105 m−1, d = 0.3, A = 0.15, and B = 0.2. The reduced radius of
the particle is R = 0.02 (solid line), R = 0.015 (dotted line), and
R = 0.01 (dashed line). In the inset, average ratchet velocity for
the same tube parameters and R = 0.05. The result computed to the
lowest (i.e., first) order in β−1 is drawn by dot-dashed line. The solid
line shows the result computed up to second order in β−1. Including
third and fourth order in β−1 brings difference smaller than the width
of the line.

expressions (37), (39), and (38) when calculating the ratchet
velocity. One of the reasons is that for future we plan to
calculate also higher terms in R in the expansion (11). Another
reason is that particle diameter occurs also in the diffusion
coefficient and through it in the parameter β, so the powers
of R are mixed from several sources. Therefore, we consider
more safe to keep all terms in the expressions.

C. Role of parameters

To calculate the ratchet velocity for given shape of the tube,
we need the functions Q0(z) and Q1(z). Inserting the general
solution (7)–(10) into (13) and (23), we finally obtain

Q0(z) = 2

3

{
−8

[
1 + S(z)

d

]2

− 2

[
S′(z)

1 + S(z)

]2

+
∑

k=1,2,...

k2 g(0)′′
(

kd

2
;

kd

2

)

× (Bk cos kz + Ak sin kz)

}
(41)

and

Q1(z) = 2

3

∑
k=1,2,...

k3 g(1)′′
(

kd

2
;

kd

2

)

× (Bk sin kz − Ak cos kz). (42)

Let us now specify the tube shape. If not stated differently,
then we shall fix the spatial frequency � = 105 m−1 and re-
duced tube diameter d = 0.3. Therefore, the spatial period
of the modulation of the tube is L = 62.8318 . . . μm and the
tube diameter oscillates around d = 3 μm. We shall first work
with a simple shape with just two Fourier components,

S(z) = A sin 2z + B cos z. (43)

This is the minimum model which yields nonzero ratchet
current.

As we already stressed, the very occurrence of the ratchet
effect is related to finite spatial extent of the particles. There-
fore, the first question is in regard to how the ratchet velocity
depends on the particle radius. We can see from (38) that
vrat ∼ R

2
for small R. Quantitatively, we can see this depen-

dence in Fig. 2. We observe a dependence close to quadratic
for all investigated sizes. To be precise, we neglected all
contributions higher than quadratic in R from the beginning,
see (11). So in order to include corrections to quadratic depen-
dence consistently, we would need to go significantly deeper,
starting with calculating corrections to (11).

For typical tube dimensions, � = 105 m−1 and particle
size R = 0.2 μm and for moderate Reynolds numbers Re � 3
the ratchet velocity is of order vrat � 1 μms−1. This implies
that in a real device consisting of tubes 10 spatial periods
(i.e., about 0.6 mm) long, it takes about 10 min for a half-
micrometer particle to traverse from one entrance to the other.
Quadratic dependence on the size strongly enhances velocity
of large particles, so that we can easily use such device for
a “hydrodynamic chromatography,” separating different frac-
tions from a mixture.

In Fig. 2 we can also see that the ratchet velocity increases
with Reynolds number. This dependence is shown in detail
in Fig. 3. We can see that the dependence is quadratic, as
hinted by equations (30) and (38). In fact, for the parameters
as in Fig. 3, it is sufficient to consider just lowest term in the
expansion in β−1, i.e., Vσ � Vσ,0. This is illustrated in the inset
of Fig. 3. The effect of higher-order terms in β−1 becomes per-
ceptible only for Reynolds numbers as small as Re � 10−3.
However, for such a slow flow, the ratchet velocity becomes
practically irrelevant (picometers per second). Moreover, from
the formal point of view, the large-β expansion breaks down
for so small Re, as is also seen in the inset of Fig. 3. Indeed, the
second term in the β−1 expansion gives unphysical nonzero
limit for vr when Re → 0, as can be deduced from (39) and
as can be seen explicitly in the inset in Fig. 3.

A natural question is in regard to whether we can tune
the ratchet velocity to desired level by the adjustment of
the tube shape. We consider this question using somewhat
more realistic sawtooth shape, in which the tube wall h(z) =
d/{2[1 + S(z)]} is described by the function

h(z) =
{

h0 + a
π−bz 0 < z < π − b

h0 + a
π+b (2π − z) π − b < z < 2π

. (44)

The constant h0 is adjusted so that S(z) is a sum of Fourier
components with k > 0 according to (2). [In practical calcu-
lations the Fourier expansion of the corresponding S(z) was
truncated at a quite large value k = 100.]

In our, rather simple, geometry, we can change two param-
eters, namely the parameter b, measuring the asymmetry, and
a quantifying the amplitude of the corrugation of the tube. We
show in Figs. 4 and 5 the dependence of the ratchet velocity
on these parameters. Clearly, if either of them is zero, the
ratchet effect is absent. Consistently, we observe that vrat → 0
if either b → 0 or a → 0. For nonzero but small parameters,
we observe that vrat ∼ a2 and vrat ∼ b. Also in Fig. 4 we can
compare the result for tubes of shapes (43) versus (44). We
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FIG. 4. Dependence of the average ratchet velocity of the par-
ticle on the parameter b determining the shape of the tube. Other
parameters of the tube are � = 105 m−1, d = 0.3, a = 0.1 (solid
line), a = 0.08 (dotted line), and a = 0.06 (dashed line). Reynolds
number is Re = 2.5, particle radius is R = 0.02. The symbol × at
b = 1.5 indicates the ratchet velocity for the same Re, R, d , and
�, but in the tube with shape (43) with parameters A = 0.15, and
B = 0.2. In the inset, function describing the tube wall. In dot-dashed
line, we show the shape according to (43) with parameters A = 0.15,
and B = 0.2. Other three lines are shapes according to (44) with
d = 0.3, b = 1.5, and a = 0.1 (solid line), a = 0.08 (dotted line),
and a = 0.06 (dashed line).

can see that if the parameters A and B, or a and b, are adjusted
so that the two shapes look similar, as compared in the inset of
Fig. 4, the ratchet velocity is also similar in magnitude, as seen
in the main plot of Fig. 4. This suggests that the minute details
of the tube shape may be of little relevance for the ratchet
transport. It is the overall form of the profile that counts.

The parameter b must lie within natural limits b ∈
(−π, π ). We always observed that the ratchet velocity in-
creases with |b|. (Of course, for fixed a, vrat changes sign
when b changes sign.) From this point of view, maximally
asymmetric sawtooth shape is the most efficient one. The
parameter a is limited by requirement that there is nonzero

FIG. 5. Dependence of the average ratchet velocity of the par-
ticle on the parameter a determining the shape of the tube. Other
parameters of the tube are � = 105 m−1, d = 0.3, b = 1.5 (solid
line), b = 1.0 (dotted line), and b = 0.5 (dashed line). Reynolds
number is Re = 2.5, particle radius is R = 0.02. In the inset, function
describing the tube wall according to (44) with d = 0.3, a = 0.1, and
b = 1.5 (solid line), b = 1.0 (dotted line), and b = 0.5 (dashed line).

aperture left in the tube, to allow passing particles. However,
in our computations we observed that ratchet velocity always
increases with a, even when a approaches this strict limit.
This goes against natural expectation that the velocity must
decrease when the aperture gets too narrow. The misleading
behavior we observe at large a is related to the fact that the
basic approximation made in solving the NS equations was
keeping just terms which are linear in the Fourier coefficients
Ak , Bk . For large a such approximation is unfounded. Hence,
our calculations are unable to provide optimal value of the
parameter a.

The second reason why our results for large a lose validity
comes from the steric repulsion of the particles with tube
walls. In this work, we neglect the steric effects completely.
Large a implies small aperture of the tube at its narrowest
position and further narrowing due to steric effects can be
decisive. Not only the effective tube diameter is diminished
for larger particles, but also the effective tube shape is altered.
Therefore, the value of d , as well as all Fourier components
in the expansion (2) depend on the particle radius. The ef-
fect of steric repulsion with walls was investigated, e.g., in
Refs. [61,62], but we decided to neglect it, in order not to mix
it with the inertial hydrodynamic effect, which is the focus of
our work.

IV. CONCLUSIONS

Using our previous results [27,28] for the hydrodynamics
of a spherical colloid particle in an axially symmetric tube
with variable diameter we investigated the ratchet effect and
possible particle separation in such setup. Particles are driven
by periodically alternating fluid flow with no bias, so that the
fluid flow averaged over one time period is zero. Note that this
is not the same as driving by regularly oscillating pressure,
because the nonlinear term in Navier-Stokes equations breaks
the time-reversal symmetry. That is why the bias must be
neutral in the flow, rather than in the applied pressure.

Our approach is based on the projection of the advection-
diffusion equation on an effective one-dimensional diffusion
problem. The mapping was performed using the simplest
variant of the Fick-Jacobs approximation. The effective one-
dimensional potential incorporates entropic effects due to the
geometry of the tube, as well as hydrodynamic effects which
are related to finite radius of the particle.

In order to calculate the particle current in the effective
one-dimensional problem, we used the expansion in powers
of the inverse of the large dimensionless parameter β, defined
in (33). In fact, it is the Péclet number of our system, relating
the magnitudes of hydrodynamic and diffusive transport. For
typical values of parameters used in our work, it is of the
order β � 107. This means that hydrodynamic effects are
decisive and diffusion plays an auxiliary role. However, as
was also shown in our previous work [28] neglecting the
diffusion completely would be a great mistake, because at
least slow diffusion is indispensable for establishment of a
nontrivial stationary state. Indeed, strictly pointlike particles
do not exhibit any ratchet effect. The ratchet effect is possible
only for nonzero particle radius. However, for such particles,
hydrodynamic effects push the particles toward walls at some
places and repel them from walls at other places. This induces
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an effective potential walls for the movement of particles. In
absence of diffusion, these potential walls are unsurmountable
and in stationary state all particles would be packed in poten-
tial traps. In reality this scenario is avoided due to at least weak
diffusion. Alternatively, such an unphysical stationary state
is bypassed by fast enough alternation of the fluid flow, i.e.,
keeping the system in a transient regime far from stationarity.
The latter way was investigated in our previous work [28].
Here we looked at the influence of weak but finite diffusion
in stationary state. Therefore, working at very large Péclet
number β is appropriate here.

The results for stationary particle current found in this way
was directly used for calculation of ratchet velocity in adia-
batic approximation, i.e., in the limit of infinitesimally small
frequency of the alternation of the fluid flow. Although in
principle the entropic and hydrodynamic effects on the ratchet
velocity are mixed, we found that hydrodynamics is dominant.
We also found that inertial hydrodynamic terms, i.e., those
originating from the nonlinear terms in Navier-Stokes equa-
tions, are several orders of magnitude larger than the terms
present only in Stokes equations. This means that the use of
bare Stokes equation in description of hydrodynamic ratchets
is hopelessly insufficient.

We performed quantitative analysis of the ratchet velocity
for tubes of typical diameter around d = 3 μm at moderate
Reynolds numbers Re � 3. The ratchet velocity was typically
around vrat � 1 μms−1. We found that the ratchet velocity
grows quadratically with particle size, which allows practical
application for particle separation.

As expected, the ratio of fluid velocity to ratchet velocity
is of the same order as the Péclet number β. This is quite a
large number, but the net particle velocity is still large enough
to provide efficient separation of submicrometer particles at
time scales of tens of minutes, considering a half-millimeter-
thick membrane penetrated by pores of the size and shape
investigated here.

We also tried to find optimal shape, which would provide
maximum ratchet velocity. This effort was only partially suc-
cessful. We investigated this question by varying parameters
of sawtooth shape of the tube. Generically, we found that it
is beneficial increasing the asymmetry of the tube as much as
the geometry allows. We also found that the ratchet velocity
increases when we increase the amplitude of the modulation
of the tube, as expected. However, beyond certain value of
the amplitude the velocity is expected to decrease again, due
to narrowing the aperture of the tube. In our calculations we
do not reach this regime, because the approximation used is
principally limited to small amplitudes of the modulation.
Indeed in the solution of Navier-Stokes equations just terms

linear in the amplitude of the modulation are kept. Therefore,
the attempt of optimization the shape must be taken with great
care.

The method used in this work is open to improvements in
several directions. First, it would be desirable to go beyond
linear term in the amplitude of the tube modulation. We expect
a lengthy but straightforward calculation. A new feature is
that in linear approximation used here all Fourier components
of the periodic modulation are independent, which simplifies
the calculation a lot. Beyond linear approximation the Fourier
components become coupled and an additional approximation
will be necessary, keeping only a few lowest harmonics. The
important gain from this effort would be much more reliable
optimization of the tube shape with respect to ratchet velocity,
as we discussed it before.

Second, in this work we completely neglected the effect
of narrowing the available space within the tube due to finite
particle size. This is a delicate task, because the shape of the
available space is altered in a nontrivial way. In fact, it will af-
fect all Fourier components of the tube modulation. Again, an
approximation would be necessary, taking just finite number
of these components and neglecting the rest. We believe there
is no serious difficulty in doing that.

Third, we neglected also hydrodynamic interactions of the
particles with walls. At this point, however, we are not aware
of any directly applicable analytic procedure which would
work in modulated tube. On the other hand, this effect is rather
serious, because the ratchet phenomenon investigated here re-
lies to great extent on the effect of pushing the particles toward
the wall at some places. This effect will be surely influenced
by hydrodynamic interactions to large extent. Therefore, there
is a strong motivation to tackle this issue. We leave this prob-
lem open for future investigation.

Fourth, the formula for the velocity of sphere carried by
flow can be improved by calculating the terms of fourth, or
maybe even higher, order in particle radius.

Finally, all the theory presented here assumes small den-
sity of particles, so that the particle-particle interactions are
neglected. Investigation of dense suspensions of colloids pose
further challenge which goes beyond the scope of this work.
Perhaps application of ideas borrowed from stochastic model-
ing of dense suspensions [63] could provide a path.
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