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Free energy of a knotted polymer confined to narrow cylindrical and conical channels
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Monte Carlo simulations are used to study the conformational behavior of a semiflexible polymer confined to
cylindrical and conical channels. The channels are sufficiently narrow that the conditions for the Odijk regime
are marginally satisfied. For cylindrical confinement, we examine polymers with a single knot of topology 31,
41, or 51, as well as unknotted polymers that are capable of forming S loops. We measure the variation of the
free energy F with the end-to-end polymer extension length X and examine the effect of varying the polymer
topology, persistence length P, and cylinder diameter D on the free-energy functions. Similarly, we characterize
the behavior of the knot span along the channel. We find that increasing the knot complexity increases the
typical size of the knot. In the regime of low X , where the knot/S-loop size is large, the conformational behavior
is independent of polymer topology. In addition, the scaling properties of the free energy and knot span are in
agreement with predictions from a theoretical model constructed using known properties of interacting polymers
in the Odijk regime. We also examine the variation of F with the position of a knot in conical channels for various
values of the cone angle α. The free energy decreases as the knot moves in a direction where the cone widens,
and it also decreases with increasing α and with increasing knot complexity. The behavior is in agreement with
predictions from a theoretical model in which the dominant contribution to the change in F is the change in the
size of the hairpins as the knot moves to the wider region of the channel.
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I. INTRODUCTION

In recent years, numerous experimental studies have
contributed to the systematic investigation of the physical
behavior of single DNA molecules confined to nanochan-
nels [1,2]. Enabled by advances in nanofabrication techniques,
such work is mainly motivated by a variety of applica-
tions that exploit the effects of confinement on polymers,
including DNA sorting [3], DNA denaturation mapping [4,5],
and genome mapping [6–9]. The development of nanofluidic
devices for such purposes naturally benefits from a deep un-
derstanding of the conformational statistics and dynamics of
polymers in nanochannels.

One aspect of DNA that has received considerable at-
tention in recent years is its propensity to form knots [10].
Knots can occur in DNA as byproducts of various biological
processes, including replication, transcription, and recombi-
nation [10]. Confinement of DNA can dramatically increase
the probability and complexity of knot formation, as observed,
for example, in knots in DNA extracted from viruses [11].
Knots in DNA stretched by elongational fields or confinement
in channels have been observed and their dynamics charac-
terized in a variety of in vitro experiments [12–26], where
they are typically detected by the presence of bright spots
in optical images of stained DNA molecules. Knots can be
created by a variety of methods, including tying individual
DNA molecules using optical tweezers [13] or by application
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of a strong alternating electric field in microfluidics devices
that employ elongational fields [15].

Of particular relevance to the present paper are those
experiments which have examined knotted DNA confined
to nanochannels [20,24–26]. Understanding such systems is
important for the development of next-generation genomics
technology that use nanochannel mapping assays, where the
presence of knots or backfolds introduces artifacts that may
lead to erroneous results [25]. Several years ago, Reifenberger
et al. examined “topological events” occurring along DNA
molecules driven into narrow square channels (40–50 nm
wide) using an analysis of spikes in the YOYO intensity
profile [25]. The presence of either backfolds or knots was
evident from intensity spikes of approximately three times that
of the adjacent region. It was noted that frequency of these
structures was significantly less and their size significantly
greater than the values predicted from simulations [27,28].
In another recent study, Amin et al. developed a nanoflu-
idic “knot factory” which utilizes hydrodynamic compression
of single DNA molecules against a barrier in wide (325
nm × 414 nm) rectangular nanochannels to form sequences
of simple knots that can be studied upon subsequent extension
of the molecule [20]. They found that the knotting probability
increases with chain compression and with waiting time in the
compressed state. They also noted a breakdown of Poisson
statistics of knotting probability at high compression, likely
due to interactions between knots. Very recently, Ma and
Dorfman used the technique of Ref. [20] for knot generation
to study diffusion of knots in nanochannels in the extended
de Gennes regime [26]. They observed a subdiffusive motion,
contradicting the prevailing theory for diffusion of knots in
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channel-confined DNA but consistent with earlier observa-
tions of self-reptation of knots for unconfined DNA under
tension. Note that the mechanisms used to create knots in such
experiments do not allow for selection of knots of a specific
type nor is the knot topology easy to characterize afterward,
other than an approximate measurement of the DNA contour
length contained in the knot. Indeed, the difficulty in distin-
guishing a knot from a simple backfold was noted in Ref. [25].

Numerous computer simulation studies of knotted poly-
mers have contributed to elucidating the behavior of knots in
DNA [10,29]. A number of these studies have examined the
statics and dynamics of knotted polymers confined to narrow
channels [27,28,30–35]. Möbius et al. examined the dynamics
of a trefoil knot in a channel-confined semiflexible chain
in the Odijk regime using Brownian dynamics simulations
together with a coarse-grained theoretical model [30]. They
concluded that the knot inflates to macroscopic size before
untying. As noted elsewhere [33], however, their theoretical
model omits the key feature of excluded-volume interactions
between overlapping subchains, which tend to reduce knot
size and may lead to knot localization instead of knot ex-
pansion. In subsequent Monte Carlo (MC) simulation studies,
such knot localization of a trefoil knot was observed for both
flexible [33,36] and semiflexible [35] chains under confine-
ment in channels. In the case of flexible chains, the typical
knot size was observed to decrease monotonically with de-
creasing channel size and the overall behavior was explained
using a model employing the de Gennes blob scaling and
repulsion between blobs in different overlapping subchains in
the confined knot [33]. For the case of confined semiflexible
chains, the typical knot size varied nonmonotonically with
decreasing channel width, initially increasing, then reaching
a maximum before decreasing as the channel becomes nar-
rower [35]. This behavior was explained using a theoretical
model for the free energy based on an earlier theory of knots
in unconfined wormlike polymers [36–38]. Other MC sim-
ulation studies have shown that the knotting probability for
DNA (with persistence length ≈50 nm) peaks for channel
widths slightly below 100 nm and that simpler knots (espe-
cially trefoil) tend to dominate [28,31,32]. Langevin dynamics
simulations suggest that the abrupt decrease in the knotting
probability for channel widths below 100 nm arises from a
decrease in the knot lifetime and an increase in the mean time
between the formation of knots for decreasing channel widths
in this range [27,34].

In the present paper, we use MC simulations to examine the
behavior of a single knotted semiflexible polymer confined
to a narrow channel in the Odijk regime. This regime is de-
fined by the condition that P � D, where P is the persistence
length and D is the channel width, though the condition is
only marginally satisfied in this work. With the exception
of Ref. [30], each of the simulation studies discussed above
considered channels that correspond either to the extended
de Gennes scaling regime (P � D � P2/w, where w is the
polymer width) or else the onset of Odijk scaling for channel
widths near 50 nm. Although the equilibrium probabilities
of knots in this regime are expected to be very low, it is
nevertheless of interest to extend the range of confinement
over which knotting behavior is well characterized, as noted
in the conclusions of Ref. [20]. In addition, it is convenient

for testing theoretical models in such a clearly defined scal-
ing regime. As various studies have noted that simple knots
are most probable under channel confinement, we choose to
consider only knots of these types. We employ simulation
methods similar to those used previously to study polymer
folding in nanochannels [39,40] and measure the variation in
the free energy with respect to the extension length, which is
closely correlated with the knot size. These measurements are
comparable to the measurement of the variation in F with knot
length carried out in Ref. [35] for wider channels.

In addition to confinement to channels of constant cross-
sectional area, we also examine confinement of a knotted
polymer to a conical channel. Conical confinement of poly-
mers has been the subject of recent experimental [41] and
theoretical [42–45] work, though to our knowledge the effects
of such confinement on knots has not yet been considered.
Here, we examine the variation of the free energy with respect
to knot position along the channel for a polymer tethered at
the narrow end of the cone. For convenience, we also choose
cone angles that are sufficiently small for Odijk scaling to
hold throughout. The variation of the free-energy functions
with cone angle and knot complexity can be understood in the
context of a theoretical model that is similar in spirit to those
developed in Refs. [33,35] to describe knots in other scaling
regimes.

II. MODEL

The simulations examine a semiflexible polymer confined
to a long, narrow channel. We model the polymer as a chain
of N hard spheres, each with diameter σ . The pair potential
for nonbonded monomers is thus unb(r) = ∞ for r � σ and
unb(r) = 0 for r > σ , where r is the distance between the
centers of the monomers. Pairs of bonded monomers interact
with a potential ub(r) = 0 if 0.9σ < r < 1.1σ and ub(r) =
∞, otherwise. Thus, the length of each bond fluctuates slightly
about its average value. The bending rigidity of the poly-
mer is modeled using a bending potential with the form
ubend(θ ) = κ (1 − cos θ ). The angle θ is defined for a consec-
utive triplet of monomers centered at monomer i such that
cos θi = ûi · ûi+1, where ûi is the unit vector pointing from
monomer i − 1 to monomer i. The bending constant κ

determines the overall stiffness of the polymer and is re-
lated to the persistence length P by [29] exp(−〈lbond〉/P) =
coth(κ/kBT ) − kBT/κ . For our model, the mean bond length
is 〈lbond〉 ≈ σ . For sufficiently large κ/kBT � 1, this implies
P/σ ≈ κ/kBT .

In most simulations, the confining channel is a hard cylin-
drical tube of uniform diameter D. Each monomer interacts
with the wall of the cylindrical tube with a potential uw(r) = 0
for r < D/2 and uw(r) = ∞ for r > D/2, where r is the
distance of the monomer center from the central axis of the
cylinder. Thus, D is defined to be the diameter of the cylindri-
cal volume accessible to the centers of the monomers and the
actual diameter of the cylinder is D + σ . A second confine-
ment geometry that we examine is a hard conical channel with
nonuniform diameter D(z, α) = D0 + 2z tan α. Here, z is the
distance along the channel axis and α is the half-angle of the
cone. In this case, we fix one end monomer to position z = 0,
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FIG. 1. Illustration showing the definition of the various param-
eters described in the text for a polymer confined to (a) a cylindrical
channel and (b) a conical channel. The polymer extension, X , and
knot span, Xk, shown in panel (a) are defined exactly the same for the
system in panel (b).

where the diameter is D(0, α) = D0. The various parameters
describing the two model systems are illustrated in Fig. 1.

In most cases, the confined polymer contains a single
knot of topology 31, 41, or 51. We also consider the case of
an unknotted polymer, for which an S loop containing two
hairpin turns may be present for sufficiently short end-to-end
polymer extension length. To maintain the knot topology of
the polymer, we constrain the hairpin turns of the knot or S
loop to lie between the two end monomers along the channel.
In effect, the knot or S loop is constrained to lie between two
virtual walls attached to the end monomers that slide along
the channel with these monomers. Generally, this feature in-
troduces only very weak artifacts in the free energy and other
data, as discussed in Sec. IV A.

III. METHODS

Monte Carlo simulations are used to calculate the configu-
rational free energy F of the confined polymer. In the case of
a polymer confined to a cylinder, we calculate F as a function
of X , the end-to-end extension length of the polymer along the
channel axis. In addition, we examine the X dependence of the
knot span, Xk, which is defined as the distance measured along
the channel between the tips of the two hairpin turns present
in the knot or S loop. For a polymer confined to a conical
channel, we measure F as a function of Zk, the position of
the center of the knot along the channel axis measured with
respect to the end monomer fixed at the narrow end of the
channel. The quantities Xk and Zk are both illustrated in Fig. 1.

To measure the free-energy functions, the simulations
employed the Metropolis algorithm and the self-consistent
histogram (SCH) method [46]. The SCH method can be used
to find the free-energy function F (λ), where λ is any quantity
that is a function of the monomer coordinates. In this paper,
we choose λ = X for cylindrical confinement and λ = Zk

for conical confinement. To implement the method, we carry
out many independent simulations, each of which employs a
unique “window potential” of the form

Wi(λ) =
⎧⎨
⎩

∞, λ > λmax
i

0, λmin
i � λ � λmax

i

∞, λ < λmin
i ,

(1)

where λmin
i and λmax

i are the limits that define the range of λ for
the ith window. Within this range, a probability distribution
pi(λ) is calculated in the simulation. The window potential
width, �λ ≡ λmax

i − λmin
i , is chosen to be sufficiently small

that the variation in F does not exceed 2–3 kBT . The windows
are chosen to overlap with half of the adjacent window, such
that λmax

i = λmin
i+2. The window width was typically �λ = 2σ .

The SCH algorithm was employed to reconstruct the unbiased
distribution, P (λ) from the pi(λ) histograms. The free energy
follows from the relation F (λ) = −kBT lnP (λ). A detailed
description of the implementation of the SCH algorithm for a
polymer system comparable to that studied here is presented
in Ref. [47].

For the case of a knotted polymer confined to a coni-
cal channel, calculation of the free-energy function F (Zk )
required a more advanced approach than a straightforward
application of the multiple-histogram method used for F (X )
in the case of cylindrical channels. The problem is due to long
correlation times associated with fluctuations in the polymer
extension and, correspondingly, in the knot span, Xk. Typi-
cally, the correlation times are comparable to the run time of
an entire simulation. The variation of F with Zk was found
to depend significantly on the knot span. Consequently, the
histogram associated with each window in Eq. (1) is sensi-
tive to the initial values of Xk, which randomly distribute in
the initialization routine. This tends to result in free-energy
functions of poor quality. To address this problem, we use
the multiple-histogram method to measure F (Zk ) for fixed
X (which essentially also fixes the knot span) and then carry
out an appropriate average of these functions for a collection
of values of X . The details of the method are outlined in
Appendix A.

Polymer configurations were generated by carrying out
single-monomer moves using a combination of translational
displacements and crankshaft rotations. In addition, standard
reptation moves were also employed for the case of cylindrical
confinement. The maximum values of the displacements and
rotations are chosen to be small enough to not alter the knot
topology of the polymer. Trial moves were accepted with a
probability pacc = min(1, e−�E/kBT ), where �E is the differ-
ence in the total energy between trial and current states. Note
that �E = ∞ if any nonbonded monomers overlap, or if the
bonding constraints or window potential constraints of Eq. (1)
are violated, in which case pacc = 0 and the move is rejected.
Otherwise, �E is simply the difference in the total bend-
ing energy. Simulations for polymers confined to a cylinder
employed a polymer of length N = 400 monomers. The cal-
culations of F (Zk ) for confinement in a conical channel used
shorter chains of N = 200 monomers because of the much
larger number of simulations required for each free-energy
function. Equilibration times were chosen to be sufficiently
long to ensure the decay of transients in measured quantities
that arise from artificial (though convenient) initial config-
urations. The system was equilibrated for typically 5 × 106

MC cycles, following which a production run of 2 × 108 MC
cycles was carried out. A MC cycle is defined as a sequence of
N + 1 trial moves, each of which is either a reptation move or
else a change in the coordinates of a single randomly selected
monomer. The probability of attempting a reptation move was
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chosen to be equal to that of moving any single monomer.
For single-monomer movement, random displacement and
rotation are selected with equal probability.

In the simulations, we measure both the span and position
of the knot or S loop along the confining channel. This re-
quires identifying the portion of the polymer that is contained
within the knot. One option is to compute the Alexander poly-
nomial of the chain after closing both ends by a loop based
on the minimally interfering closure scheme [48]. Although
this method is widely used in simulation studies of knotted
polymers, we have chosen not to adopt this approach in the
present paper. The central problem is that the calculations of
the variation of F with knot position require that the the knot
lie within the range of the window defined by the potential
of Eq. (1). Consequently, determining whether a MC move is
accepted or rejected requires calculation of the knot position
each time a move is attempted. The high computational cost of
the chain-closure method makes this approach infeasible. For-
tunately, the fact that we consider knotted polymers confined
to very narrow channels provides a pragmatic alternative. In
this regime, the knot is characterized by two hairpin turns,
and the presence of additional hairpins for polymer contour
lengths considered here is extremely improbable. It is straight-
forward to determine the positions of the monomers at the
hairpins with minimal computational cost. We define the span
of the knot (or S loop, in the case of an unknotted polymer)
as the distance along the channel between the these two hair-
pins and its position as the mean position of the hairpins.
This approach is similar to that employed by Möbius et al.,
who studied unknotting kinetics for a polymer confined to a
channel under Odijk conditions [30]. For the results presented
below, distances are measured in units of σ and energies are
measured in units of kBT .

IV. RESULTS

A. Cylindrical channels

We first examine the properties of the free-energy func-
tion F (X ) for polymers confined to a cylindrical channel.
Figures 2(a) and 2(b) show representative functions for an
unknotted polymer and a polymer with a single 31 knot, re-
spectively. For X � 350, the unknotted polymer is buckled
and contains an S loop. (An S loop is an unknotted struc-
ture containing at least two hairpin turns and three elongated
subchains between the hairpins, similar in appearance to the
knot structure shown in Fig. 1(a) except for the key difference
in topology). In each case, results are shown for a polymer
of length N = 400, bending rigidity of κ = 15, and confining
cylinder diameter of D = 4. Sample snapshots of the polymer
at three different extension lengths identified by the three
points labeled in each graph are shown in Figs. 2(c) and 2(d).
The free-energy functions share common features of (i) the
presence of a single minimum at large X , (ii) a broad linear
regime at lower X , and (iii) a steep rise in the free energy at
the highest extensions. The slopes of the curves in the linear
regime are nearly equal for the two systems.

The key qualitative difference between the functions is the
deep free-energy well around the minimum present in the case
of the unknotted polymer [labeled point B in Fig. 2(a)]. The

FIG. 2. (a) Free energy F versus extension length X for a poly-
mer of length N = 400 and a bending constant of κ = 15, confined
within a cylindrical channel of diameter D = 4. The polymer con-
tains an S loop in the linear regime. (b) As in panel (a) except for a
polymer with a trefoil knot present instead of an S loop. (c) Sample
conformations corresponding to the points labeled in panel (a) for
the S loop. (d) Sample conformations corresponding to the points
labeled in panel (b) for the trefoil knot.

origin and scaling properties of this free-energy well have
been explained previously [39]. The extension at the free-
energy minimum corresponds roughly to the mean extension
length for an elongated semiflexible polymer in the Odijk
regime, where no backfolding is present. Upon decreasing the
end-to-end extension X , the polymer buckles and eventually
forms two hairpin turns that constitute the S loop. The depth
of the well is a measure of the free energy associated with the
formation of the hairpins. Further decreasing X increases the
span of the S loop along the channel, but leaves the hairpins
unaffected. The linear increase of F with decreasing X arises
from the interactions between the three subchains of the S
loop that lie between the two hairpins. For sufficiently narrow
channels, the scaling of the free-energy gradient in the linear
regime, f ≡ dF/dX , is expected [49] to scale with D and
the persistence length, P, according to f ∼ D−5/3P−1/3, with
small deviations in the scaling exponents arising from finite-
size effects [39,40]. At higher extensions, where X > Xmin,
the rapid increase in F arises from the decrease in entropy
associated with the suppression of lateral fluctuations in the
conformations sampled by the polymer.

Unlike the case for an unknotted polymer, the hairpins
present in a knotted polymer are not eliminated when the
extension length increases and the polymer unbuckles. Thus,
there is no corresponding release of the hairpin free energy
(which is mainly the hairpin bending energy for a polymer in
the Odijk regime) when an S loop is removed. Consequently,
the deep free-energy well associated with the hairpin forma-
tion is not present. Obviously, the value of Xmin is closely
connected to both the most probable knot contour length and
knot span length. The greater each of these lengths are, the
lower the corresponding value of Xmin. As will be exam-
ined in detail below, the values of these quantities are each
strongly affected by the polymer bending rigidity, the channel
diameter, and the topology of the knot. Note that the scaling
properties of the free energy for knotted polymers confined to
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FIG. 3. Free energy F versus extension length X for both knotted
polymers (31, 41, and 51) and unknotted polymers that may contain
an S loop (U). The polymers are of length N = 400 and are confined
to a cylindrical channel with a diameter of D = 4. Results are shown
for (a) κ = 15, (b) κ = 10, (c) κ = 7.5, and (d) κ = 5. In each panel,
the slope m obtained obtained for a fit to the linear portion of F for
the S loop is labeled.

channels have been elucidated in two previous studies [33,35];
however, neither approach is directly applicable to interpret-
ing the present results. Ref. [33] considered fully flexible
polymers in the de Gennes regime, while Ref. [35] examined
knots in semiflexible polymers, they used channels of width
D � P, which is wider than those considered here. Those
studies considered only trefoil knots, and in each of them a
metastable knot was observed whose most probable size was
dependent on the channel dimension. The underlying factors
governing the scaling behavior of the typical size of a trefoil
knot in the Odijk regime will be examined later in this section
of the paper in the analysis of the data of Figs. 6(e) and 6(f).

Figure 3 shows free-energy functions for polymers of
length N = 400 in narrow cylindrical channels with D = 4.
Results are shown for bending rigidities in the range κ =
5 − 15, and each panel shows functions for a given value of
κ for unknotted polymers, as well as those with knots with
topologies of 31, 41, and 51. In the case of an unknotted
polymer, the depth of the free-energy well decreases as the
polymer becomes more flexible. This is mainly due to the
reduction in the hairpin bending energy that is released as
the extension X increases and the polymer unbuckles. In-
deed, at κ = 5 no free-energy well is present, as expected
for the regime D � P where the concept of a hairpin turn is
no longer meaningful. The slope of the curves in the linear
regime gradually increases as the polymer rigidity lessens.
This is qualitatively consistent with the theoretical prediction
that the slope scales as P−1/3 in the Odijk regime [39,40,49].
Another notable trend is the overlap in the curves for different
topologies at each κ in the linear regime. This overlap is
not perfect, but close enough to suggest that polymer knot
topology does not strongly affect the overall conformational
behavior of the knot/S loop when that structure has a suffi-
ciently large span along the channel. As a clarifying example,
the conformational behavior illustrated in the snapshots of
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FIG. 4. Free-energy functions for knotted polymers (31, 41, and
51) and unknotted polymers that may contain an S loop (U).
Each polymer has a length of N = 400 and a bending rigidity of
κ = 15. Results are shown for (a) D = 4, (b) D = 5, (c) D = 6,
and (d) D = 7.

state A in Fig. 2(c) for an S loop and state D in Fig. 2(d) for a
31 knot are, by this measure, very similar. As X increases, the
free-energy curve for each knotted polymer eventually peels
away from the S-loop curve. Generally, the value of Xmin for
each knot topology decreases with increasing complexity of
the knot. Thus, the most probable contour length and knot
span increases with knot complexity.

Figure 4 shows free-energy functions for a polymer of
length N = 400 with a fixed bending rigidity of κ = 15. Re-
sults are shown for cylinder diameters ranging from D = 4−7
for each of the topologies considered in Fig. 3. Again, we
note the approximate overlap in the linear regime between
the curves for knots with different topologies. As before, this
suggests that knots and S loops have similar conformational
behavior in the case where these structures are sufficiently
large. The value of the slope decreases with increasing chan-
nel width. This is qualitatively consistent with the expectation
that the slope scales as D−5/3 in the Odijk regime [39,40].
As this slope lessens with increasing D, there is a widen-
ing in the distribution of extension lengths resulting from
an increase in the probability of shorter extension lengths.
This corresponds to a widening of the knot size distribution
through an increase in the probability of larger knots. This
is qualitatively consistent with the trend observed in simu-
lations of Jain and Dorfman for knotted polymers in square
channels for confinement near the onset of Odijk scaling (i.e.,
D ≈ P) [28]. As in Fig. 3, Xmin decreases as the complex-
ity of the knot topology increases. Thus, the most probable
contour length and span of the knot increases with knot
complexity.

As noted in Sec. II, the knot or S loop is artificially
constrained to lie completely between the two ends of the
polymer. This feature was incorporated into the model to
prevent the polymer knot from untying or changing to a
different knot type. This artificial confinement is expected
to reduce the entropy of the system and thus increase the
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FIG. 5. (a) Illustration of the effect of artificial longitudinal con-
finement of the knot/S loop on the free energy. Fid is the free-energy
function of an ideal polymer (i.e., overlap of monomers is permitted)
for N = 400, D = 4, and κ = 15. The longitudinal confinement free
energy is defined: Fc ≡ − ln(X − Xk ) + const, where Xk = Xk (X ) is
the knot span. The shifted free energy is F ∗

id ≡ Fid − Fc. (b) Free
energy for real polymers (i.e., no overlap between monomers). Note
that F ∗ ≡ F − Fc. The polymer has either a knot or an S loop. As in
(a), N = 400, D = 4, and κ = 15.

free energy. Here, we estimate the effect on the free-energy
functions by modeling the knot as a particle undergoing a 1D
random walk along the channel. For a channel of constant
cross-sectional area, the energy is independent of the knot
position. Neglecting fluctuations in the span of the knot, the
range of positions accessible to its center is X − Xk. Thus, the
entropy is Sc/kB = ln(X − Xk ) + const, and the free energy
is Fc/kBT = −Sc/kB = − ln(X − Xk ) + const. Note that the
knot span Xk depends on X , D, and κ , but is insensitive to
knot topology for extensions in the linear regime of the free
energy (i.e., X is sufficiently less than Xmin).

To test this approximation, we calculate F (X ) for an ideal
polymer, by which we mean that monomer-monomer overlap
is permitted. Note that the topology of the polymer will not
be preserved in the simulation, but this is not expected to
matter for Fc. Figure 5(a) shows the free-energy function Fid

for an ideal polymer with N = 400, D = 4, and κ = 15. As
expected, Fid does not display the steep increase with decreas-
ing X seen in Fig. 3(a) for a “real” polymer system (i.e., where
no monomer-monomer overlap is permitted) with otherwise
the same conditions. However, there is a residual small in-
crease in F with decreasing X resulting from the artificial
confinement described above. Overlaid on this curve is the
estimate of Fc. We see excellent agreement between the two
results in the regime where the two hairpins are present (i.e.,
X < 350). The corrected free energy, F ∗

id ≡ Fid − Fc is now
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FIG. 6. (a) Extension length at the free-energy minimum Xmin

versus bending rigidity κ for a polymer of length N = 400 in a tube
of diameter D = 4. Results are shown for unknotted (U) polymers
and polymers with a single knot of 31, 41, and 51 topology. The solid
lines are guides for the eye. The dashed line is the Odijk prediction
for the equilibrium extension length. (b) As in (a), except Xmin versus
D for polymer bending rigidity of κ = 15. (c) �Xmin vs bending
rigidity κ for D = 4, where �Xmin is defined in the text. (d) As in (c),
except �Xmin vs D for polymer bending rigidity of κ = 15. (e) Knot
span X ∗

k at X = Xmin vs κ for D = 4. (f) Knot span X ∗
k at X = Xmin

vs D for κ = 15. The dashed black lines in panels (e) and (f) are the
functions 1.65D2/3P1/3 for fixed D = 4 and P = 15, respectively.

independent of polymer extension, demonstrating the validity
of the approximation. Figure 5(b) shows free-energy functions
F (X ) and corrected free-energy functions, F ∗(X ), where the
latter are calculated as in Fig. 5(a). The correction leads to
a small but significant change in the curves. Specifically, it
slightly decreases the free-energy gradient in the linear regime
and extends the range of X over which the curves remain
linear.

The variation of Xmin for the free energies of Figs. 3 and 4
with κ and D for both knotted and unknotted polymers is
shown in Figs. 6(a) and 6(b), respectively. As expected, the
Odijk prediction for the mean extension length, which is over-
laid on the data, agrees well with the results for the unknotted
polymer, particularly at large κ and low D. To quantify the
shift in Xmin of the knotted polymers relative to that of the
unknotted polymer, we define �Xmin ≡ Xmin(n1) − Xmin(U ),
where Xmin(n1) is the extension length at the free-energy min-
imum for a polymer with a knot of topology n1 for n = 3, 4,
and 5, and Xmin(U ) is the corresponding extension length of an

052502-6



FREE ENERGY OF A KNOTTED POLYMER CONFINED TO … PHYSICAL REVIEW E 102, 052502 (2020)

unknotted polymer. �Xmin a measure of the reduction in the
extension length of the polymer caused by the presence of the
knot and is roughly proportional to the contour length of
the knot. Figures 6(c) and 6(d) shows the variation of �Xmin

with κ and D, respectively. A clearer measure of knot size
is X ∗

k , span of the knot along the channel evaluated at the
free-energy minimum, X = Xmin. The knot span is defined as
the distance measured along the channel between the tips of
the two hairpins in the knot. Figures 6(e) and 6(f) show the
variation of X ∗

k with κ and D, respectively. As expected, the
general trends for �Xmin are the same as for X ∗

k , since both are
measures of knot size. For each measure of knot size, three
main trends are apparent. First, �Xmin and X ∗

k increase with
both the polymer rigidity and the channel diameter. Second,
the rate of increase of each with κ and D appears to increase
with increasing knot complexity. Finally, for any given value
κ and D, �Xmin and X ∗

k increases with knot complexity. An
increase in knot size with knot complexity for elongated poly-
mers was also observed in the case of an unconfined knotted
polymer under tension [50], as well as for polymers confined
to channels somewhat wider than those examined here (i.e.,
D ≈ P) [28]. However, the increase in knot size with increas-
ing D differs from the behavior observed in Ref. [28], where
it remained relatively unchanged.

What factors determine the most probable knot span? The
rapid rise in F at high X corresponds mainly to the loss
in entropy associated with the suppression lateral conforma-
tional fluctuations. In addition, increasing X in the linear
regime (X < Xmin) leads to a reduction in knot size. For a
sufficiently large knot, this reduces excluded volume interac-
tions between deflection segments in the knot and causes the
decrease in F . These two contributions to F alone guarantee
the presence of a minimum. Now consider further the intra-
knot excluded volume interactions. The prediction [49] and
subsequent verification by computer simulation [39] that the
free-energy gradient of an S loop approximately scales as f ≡
dF/dX ∼ D−5/3P−1/3 is derived by modeling the polymer as
a collection of equivalent hard cylinders. The cylinders have a
length given by the Odijk deflection length ld ∼ D2/3P1/3 and
intercylinder interactions are estimated using the second-virial
approximation. In this picture, increasing X corresponds to
shortening the knot and removing these virtual hard cylinders
out of the knot into a region where no such interactions are
present. Thus, F decreases. Eventually, however, when the
knot span is of the order of ld, this picture breaks down. The
strands between the hairpins are (obviously) connected to the
hairpins. These constraints are expected to severely constrain
the orientational freedom of the (effectively rigid) strands, in
a manner that the orientational entropy sharply drops with
shortening knot span. Thus, it is expected that when Xk ≈ ld a
contribution to the free energy emerges that steeply rises with
increasing X , leading to a minimum in the free energy.

The simple argument above suggests that X ∗
k ≈ ld. The

dashed curves in Figs. 6(e) and 6(f) are plots of 1.65D2/3P1/3

for for fixed D = 4 and P = 15, respectively. These dashed
curves overlap with the X ∗

k perfectly, suggesting this argu-
ment is valid for trefoil knots. On the other hand, attempts
to fit the data for 41 and 51 knots using this scaling were not
successful. The increased entanglement for elongated knots
of greater topological complexity likely introduces additional
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FIG. 7. (a) Variation of the extension length of a 31 knot with
respect to the extension length of a polymer confined to a channel.
Results are shown for a polymer of bending rigidity κ = 15 in a
channel of various channel diameters. The black dotted lines overlaid
on the solid curves are corresponding results for the S-loop extension
length for an unknotted polymer. (b) Variation of ζk with X , where
ζk is defined by Eq. (3) and calculated using the data for the 31 knot
in panel (a). The dashed line shows the theoretical prediction that
ζk = (L − X )/2. The inset shows a close-up of the data.

constraints for those knots that further reduce the orientational
freedom of the knot strands. Clearly, this effect kicks in at
larger knot span that is not simply a multiple of ld. Further
elucidation of such effects in a future study would be worth-
while.

Let us now consider the relationship between knot span and
polymer extension length. Figure 7(a) shows the variation in
the knot span along the channel with the extension length of
a polymer with a 31 knot. Results are shown for a polymer
of bending rigidity κ = 15 and for various channel diameters.
The black dotted curves overlaid on the data are correspond-
ing results for the span of an S loop for an unknotted polymer.
Several trends are apparent. As expected, the knot span de-
creases with increasing X . For the range of X corresponding
to the linear regime in the free-energy functions of Fig. 3, Xk

decreases linearly with X . As X approaches and then passes
the extension at minimum free energy, Xmin, the rate of de-
crease of knot span with X decreases. For any value of X , the
knot span decreases slightly with increasing channel diameter.
However, for each D, the curves are essentially parallel with
a slope dXk/dX ≈ −0.5. In the case of an unknotted polymer
for extensions where an S loop is present, the S-loop span is
virtually identical to the 31 knot span at any X .

To understand the origin of these trends, we employ the
scaling properties of a channel-confined polymer in the Odijk
regime. Note that the required condition D � P is only
marginally satisfied in this case (P/D = 2.14−3.75), and thus
some quantitative discrepancy between the predicted and ob-
served behavior is to be expected. Since the results for knotted
(31) and unknotted (S-loop) polymers are identical over the
regime of interest (X < Xmin), we ignore the effects of topol-
ogy. Let us first consider a polymer with no backfolding.
Recall that the mean extension length of a polymer in this
regime is given by L̄‖ = L(1 − α‖D2/3P−2/3), where L is the
contour length of the polymer and where the prefactor is

052502-7



JAMES M. POLSON AND CAMERON G. HASTIE PHYSICAL REVIEW E 102, 052502 (2020)

α‖ = 0.1701 ± 0.0001 [1]. Now, consider a polymer with two
hairpin folds, which may result from an S loop or a knot.
We first define an effective contour length as 	 ≡ L − πD to
exclude the contour in the two hairpins. Here, we assume the
hairpin diameter is D, which is likely only a slight overes-
timate in the narrow-channel limit [51,52]. The mean span
of the S loop/knot, Xk, is the mean distance between the
two hairpins. We next define the effective extension of the
polymer as the sum of the extensions along the channel of all
elongated pieces of the polymer, which excludes the hairpins.
As explained in the Supplemental Material [53], the effective
extension of the polymer is given by 	‖ = 2Xk + X − 2D.
Replacing L → 	 and L‖ → 	‖ in the relation for L‖ above,
it follows:

Xk = −1

2
X + 1

2
L −

(
π

2
− 1

)
D − 1

2
α‖L(D/P)2/3

+ 1

2
α‖πD(D/P)2/3. (2)

The first term accounts for the observed slope of dXk/dX ≈
−0.5, while the third and fourth terms account for the ob-
served decrease in Xk with increasing D. In our simulations,
πD � L, and so the fifth term is negligible relative to the
fourth term and can be omitted. In the calculation above,
we have neglected the effects of fluctuations in the extension
length and interactions between the elongated segments in
the knot/S loop. In the Supplemental Material [53], we show
that these effects are negligible. Defining the shifted knot
extension, ζk, as

ζk ≡ Xk +
(π

2
− 1

)
D + 1

2
α‖LD2/3P−2/3, (3)

it follows from Eq. (2) (omitting the negligible fifth term)
that ζk = (L − X )/2 for all values of D, P, independent of
the polymer extension X . Figure 7(b) shows that such a shift
does lead to near collapse of the data to the predicted curve
for N = 400 in the range of X corresponding to the linear
regime of the free energy. The data collapse is slightly worse
for the largest channel diameter of D = 7, where the Odijk
regime conditions are least well satisfied. Overall, the data
collapse to a universal curve is reasonably good, given the
approximations employed in this theoretical model.

B. Conical channels

We now consider the behavior of a knotted polymer in a
conical channel. Rather than measuring the free energy with
respect to polymer extension, we use instead the knot position,
Zk. The central goal here is to characterize the effects of the
varying channel cross-sectional area at the location of the knot
as it samples different locations along the channel. As noted
in Sec. III, a problem with measuring F (Zk ) is the very long
correlation time associated with the fluctuations in the poly-
mer extension length. Consequently, we choose instead the
approach described in Appendix A. Essentially, this involves
calculation of F (Zk|X ), the variation in the free energy with
knot position for fixed polymer extension X , and carrying out
a suitable average of these functions.

Figure 8(a) shows the variation of F with knot position for
a range of polymer extension lengths. Results are shown for a
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FIG. 8. (a) Free energy F versus Zk calculated for a polymer
under conical confinement at fixed polymer extension length. The
polymer has a length N = 200, a bending constant of κ = 15, and a
localized 31 knot along its contour. The cap of the narrow end of the
cone has diameter D0 = 4 and the cone angle is α = 0.57◦. Results
for various cone angles are shown. For visual clarity, the curves are
each shifted such that F = 0 at Zk = 17.5. (b) Free energy F versus
extension length for a polymer with N = 200, κ = 15, and a 31 knot
confined to a cone with a cap diameter of D0 = 4. Results for several
cone angles are shown.

polymer of length N = 200 and bending rigidity κ = 15 with
a 31 knot confined to a conical channel with D0 = 4 and cone
angle α = 0.57◦. The steep rise in F at low and high extremes
of Zk is an expected artifact arising from the constraint that
the entire span of the knot lie between the two ends of the
polymer. (Recall that this constraint is imposed to preserve the
knot topology and prevent the knot from untying). This rapid
increase arises when an edge of the knot makes contact with
the “virtual wall” attached to an end monomer. This occurs
when |Zk − Zend| ≈ Xk/2, where Zend is the position of the
end monomer nearest to the knot center. As X increases, the
knot span decreases and the knot can occupy a wider range of
positions along the channel before it makes contacts with the
virtual wall. Thus, as X increases, we observe an increase in
the distance along the channel between these steep increases
in F .

In the region where the knot is not close to the end
monomers, F decreases monotonically as the knot moves in
the direction of increasing channel diameter, i.e., increasing
Zk. In addition, the rate of change in F with Zk increases
monotonically as the extension length increases. The origin
of these trends is straightforward. As the knot moves to a
wider part of the channel, the bending energy associated with
the hairpin turns decreases, contributing to a decrease in F .
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FIG. 9. (a) Free energy F versus Zk calculated for a polymer
under conical confinement. The polymer has a length N = 200, a
bending constant of κ = 15, and a localized 31 knot along its contour.
The cap of the narrow end of the cone has diameter D0 = 4. Results
for various cone angles are shown. The solid curves are the simula-
tion data and the dashed curves are the predictions using the theory
developed in Appendix C. (b) Free energy functions for N = 200,
κ = 15, D0 = 4, and cone angle of α = 0.57◦. Results are shown for
three different knot topologies.

Another contribution to this trend is the free energy associated
with the overlap of the three strands of the polymer inside the
knot between the hairpins, which is also expected to decrease
as the diameter of the channel decreases. This second contri-
bution to the free energy is proportional to the knot extension
length, which decreases as X increases. Consequently, there
is a weaker contribution to variation of F with Zk, and thus
the rate dF/dZk decreases with increasing extension length.

The method described in Appendix A requires calculation
of the F with the polymer extension length X for knotted
polymers confined to a conical channel. Results are shown
in Fig. 8(b) for the case of a 31 knot and for several cone
angles. For visual clarity, the curves are shifted so F = 0 at
X = 80. The curves are qualitatively similar to those in Figs. 3
and 4. Increasing the cone angle has the effect of increasing
the curvature of the functions for X < Xmin and decreasing
the value of Xmin. The latter trend results from the fact that
the extension length decreases with increasing D and larger
angles correspond to more of the polymer confined to wider
parts of the channel.

Using the method described in Appendix A and results
such as those shown in Fig. 8, we calculate the variation of the
free energy with Zk. Figure 9(a) shows F (Zk ) for several cone
angles. Results are shown for a polymer of length N = 200
and bending rigidity κ = 15 in a cone with an end fixed at a
position where the channel diameter is D0 = 4. We consider

D
Xk

X

X  −k

FIG. 10. Illustration of the model used for theoretical prediction
for a knot in a cone. The blue line represents an unknotted linear
polymer of extension length X . The linear polymer overlaps with
a ring polymer of extension Xk. The diameter of the ring polymer
hairpins (colored red) is approximately D, the diameter of the cone
at the center of the the ring. The extension of the extended sections
of the ring polymer (colored green) is thus Xk − D.

cones that deviate only slightly from cylindrical channels,
with a cone half-angle ranging from α = 0◦ (i.e., a cylindrical
channel) to α = 0.57◦. This range of α is chosen to ensure
that the condition for the Odijk regime is satisfied at least
marginally for all positions along the channel occupied by the
polymer, i.e., D(z) < P. The free-energy functions are shown
in the range 10 � Zk � 130. Inside this range, the free energy
is unaffected by the artificial constraint that the entire span
of the knot lie between the two end monomers. At either
extreme outside this range, the knot compresses against the
virtual walls connected to these end monomers and the free
energy abruptly rises. For visual clarity, the free-energy curves
are shifted so F = 0 at Zk = 10. Unsurprisingly, the free
energy is independent of knot position for cylindrical chan-
nels with constant cross-sectional area. However, for α > 0
the free energy decreases monotonically with increasing Zk,
i.e., as the knot moves to a channel location with a larger
channel diameter. In addition, at any given Zk the decrease
in the free energy relative to the Zk = 10 reference point is
larger for larger α. Thus, the dependence of F on Zk and
α indicates that the knot position probability increases with
increasing channel width at the knot location. Figure 9(b)
shows free-energy functions for three different knots, each for
a polymer with κ = 15 and a cone with D = 4 and α = 0.57◦.
The curves are all qualitatively similar. The key trend is the
more rapid decrease in F with Zk for knots of increasing
complexity.

The trends in Fig. 9 can be better understood using a
theoretical description that incorporates insights gained from
recent theoretical studies of folded polymers under confine-
ment in channels. The theory is developed and described in
detail in Appendices B and C. Here, the channel-confined
knotted polymer is modeled as a single linear polymer of
extension X that overlaps with a ring polymer of extension
Xk, as illustrated in Fig. 10 of Appendix C. The ring polymer
is a simple representation of the knot. The lengths of the
linear and ring polymer are designed to vary in a manner such
that the total length of the two is held fixed. In this context,
the free energy has four principal contributions: (1) the free
energy associated with the hairpin turns, (2) the overlap free
energy of the three subchains in the knot that lie between the
two hairpins, (3) the confinement free energy of the extended
sections of the ring polymer outside the hairpins, and (4) the
confinement free energy of the linear polymer. Figure 11 in
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FIG. 11. Variation of each contribution to the predicted free en-
ergy with knot position. The contributions F1, F2, F3, and F4 are
calculated using Eqs. (C2), (C4), (C5), and (C8), respectively, and
F is the sum of the contributions. The predictions are calculated for
a 31 knot, N = 200, κ = 15, D0 = 4.0, and α = 0.57◦.

Appendix C shows each of the four contributions to F (Zk )
for the case of κ = 15, D0 = 4 and α = 0.57◦. We note that
the dominant contribution is the free energy of the hairpins,
which accounts for about 70% of the variation of F with knot
position. This is mainly a result of the large amount of bending
energy stored in the hairpins that is released as the channel
widens.

Curves for the theoretical predictions of F (Zk ) are overlaid
on simulation results in Figs. 9(a) and 9(b). The quantitative
accuracy of the predictions is surprisingly good, given the
crudeness of the approximations employed in the theory. The
key qualitative trends are both reproduced by the theory: (1) F
decreases more rapidly with Zk as the cone angle increases and
(2) F decreases more rapidly as the knot complexity increases.
The first feature is mainly due to the release of the hairpin
free energy (mainly bending energy) as the knot moves in
the direction of increasing channel width. The second feature
appears to be associated with the increase in knot span with
knot complexity, as well as the greater rate of change of knot
size with channel width for increasing knot complexity, as
observed in Figs. 6(d) and 6(f).

V. CONCLUSIONS

In this paper, we have used MC simulations to investigate
the properties of the conformational free energy of a knotted
semiflexible polymer confined to cylindrical and conical chan-
nels. The channels are sufficiently narrow for the conditions
for Odijk scaling (D < P) to be marginally satisfied. Most
other comparable simulation studies of knotted polymers have
considered systems with wider channels corresponding either
to extended de Gennes scaling regime or else near the onset
of Odijk scaling (D ≈ P). Those cases are more relevant to
recent experiments of knotted DNA [20,24–26]. Our choice to
focus on the Odijk regime is motivated by an expectation that
future experiments for Odijk-regime systems will eventually
be carried out, as well a basic interest in the fundamental

physics of the behavior of knots in a regime that has been oth-
erwise so thoroughly examined for polymers in the absence
of self-entanglement. This study builds on our recent work of
folded semiflexible polymers under confinement [39,40] and
employs similar methodology.

For cylindrical channels, we measured the variation of F
with the extension length X for polymers with knots of various
types, as well as for unknotted polymers. Since the value of
X determines the span of the knot, the calculations in effect
measure the variation of F with knot size. As in other scaling
regimes for both flexible [33] and semiflexible [35] chains,
we observe a metastable knot, corresponding to a minimum
in F (X ). The most probable knot size X ∗

k increases with
persistence length P, channel width D, and knot complexity.
For trefoil knots, X ∗

k scales approximately with the Odijk de-
flection length, though the behavior for more complex knots is
less straightforward. For knots in the size regime where Xk >

X ∗
k (i.e., knots larger than the most probable size) the scaling

of F with respect to X , P, and D is comparable to that for
unknotted polymers containing an S loop. Specifically, in this
regime, the scaling of free-energy gradient is in approximate
agreement with the prediction of f ≡ dF/dX ∼ D−5/3P−1/3

previously derived [49] and confirmed [39] for the case of an
S loop. In addition, knot-span dependence on X and its scaling
with D and P is identical to that of an S loop. We conclude that
the overall conformational behavior of knots is very similar to
that of an S loop, at least in the regime where Xk > X ∗

k .
In addition to cylindrical channels, we also examined the

behavior of knots in conical channels. In this case, we mea-
sured the variation of F with respect to knot position along
the channel, Zk. Generally, we find that F decreases as Zk

increases, i.e., as the knot moves to the wider part of the chan-
nel. The main driving force is the reduction in the hairpin free
energy (mainly the hairpin bending energy) with increasing
channel diameter, which is unsurprising given the narrowness
of the channels in the Odijk regime. Generally, we find that
the rate of decrease of F with Zk increases with increasing
cone angle and with knot complexity. A simple theoretical
model that describes the knotted polymer as a linear polymer
overlapping with a ring polymer is able to account for these
trends.

One outstanding matter concerns the general criteria that
determine the metastable knot size X ∗

k for knots of arbitrary
complexity and how X ∗

k scales with respect to channel width
and persistence length. A future goal in subsequent work
will be to develop a theoretical model for the free energy
in the spirit of that developed in Ref. [35] applicable to the
Odijk regime and for arbitrary knot type. The observation that
scaling Xk matches that of the Odijk deflection length in the
case of trefoil knots is a useful starting point. In addition, it
will be useful to measure directly the variation of F with P
and D, as opposed simply to measuring how varying those pa-
rameters changes F (X ). A thermodynamic integration method
such as that employed in Refs. [54,55] is well suited for such
a measurement. Finally, the effects of channel cross-section
shape on the knot behavior would be of interest to examine, as
we have done previously in our study on backfolded polymers
under confinement in channels [40]. We hope that experiments
on knotted DNA will eventually be carried out to test the
predictions of our simulations.
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APPENDIX A: CALCULATION OF THE FREE ENERGY
FOR CONICAL CONFINEMENT

In principle, the multiple-histogram method used to calcu-
late F (X ) for knotted polymers in cylinders in Sec. IV A can
be employed to measure F (Zk ), the knot-position dependence
of the free energy for a polymer under confinement in a cone.
However, as noted in Sec. III previously, this approach suffers
from the presence of long correlation times associated with
fluctuations in the polymer extension and, correspondingly, in
the knot extension length, Xk. Typically, the correlation time
is comparable to or greater than the entire simulation run time.
Since the variation of F with Zk tends to depend significantly
on the knot extension, the contributions to F from the his-
togram associated with each window potential of Eq. (1) are
highly sensitive to the initial values of Xk. These values tend to
be randomly distributed during the initialization routine of the
simulations, and so the resulting free-energy functions tend to
be of poor quality. To circumvent this problem, we employ
the multiple-histogram method to measure F (Zk ) for fixed X
(which essentially fixes the knot span), and then carry out an
appropriate average of these functions for a number of values
of X . The algorithm is described below.

Consider a knotted polymer confined to a cone aligned
along the z axis with one end monomer tethered to z = 0.
Let Zk and X be the knot position along z and the polymer
extension length, respectively. The probability distribution for
the knot position, P (Zk ), satisfies

P (Zk ) =
∫

P (Zk|X )P (X )dX, (A1)

where P (X ) is the probability distribution for the polymer
extension, and where P (Zk|X ) is the conditional probability
for the knot position for a given extension length X . Here, the
integral is over all accessible values of X . Each probability
distribution is related to a corresponding free-energy function;
that is,

P (X ) = exp(−βF (X ))∫
dX exp(−βF (X ))

, (A2)

P (Zk ) = exp(−βF (Zk ))∫
dZk exp(−βF (Zk ))

, (A3)

and

P (Zk|X ) = exp(−βF (Zk|X ))∫
dZk exp(−βF (Zk|X ))

, (A4)

where β ≡ 1/kBT . It follows from Eqs. (A1)–(A4) that

βF (Zk ) = − ln

[∫
dX C(X ) exp(−β(F (Zk|X ) + F (X )))

]
,

(A5)

where

C(X ) ≡
[∫

exp(−βF (Zk|X )) dZk

]−1

. (A6)

We use Eq. (A5) to calculate the dependence of the free
energy on knot position in the simulations. To do so, the
free-energy function F (X ) is calculated for a polymer in a
cone using the same method as that employed for cylindrical
channels in Sec. IV A. The free-energy function F (Zk|X ) is
calculated by constraining the extension length to a particular
value X and then employing the multiple-histogram method
described in Sec. III to calculate the probability distribution
for the knot position, Zk. The integrals of Eqs. (A5) and (A6)
are approximated with discrete summations; thus,

βF (Zk ) ≈ − ln

[∑
i

C(Xi ) exp(−β(F (Zk|Xi ) + F (Xi )))

]
,

(A7)

where

C(Xi ) ≡
[∑

Zk

exp(−βF (Zk|Xi ))

]−1

. (A8)

The values of Xi are chosen to lie between bounds defined
such that F (Xi ) − Fmin < 7kBT , where Fmin is the minimum
of the free energy function. The probability that X lies outside
this range is negligible. Typically we choose 10–15 values of
Xi within this range.

APPENDIX B: CONFINEMENT FREE ENERGY
OF A POLYMER IN CONE IN THE ODIJK REGIME

A theoretical estimate for the variation of the free energy
of a knotted polymer with respect to knot position is provided
in Appendix C. The theoretical model used requires the con-
finement free energy of an unknotted polymer under conical
confinement, which we derive in this Appendix.

Consider a polymer confined to a conical channel of half-
angle α aligned along the z axis. One end monomer is fixed at
z = 0, where the cone diameter is D0. For z � 0, the diameter
is

D(z) = D0 + 2z tan α. (B1)

We consider only channels with sufficiently small D0 and α

such that D(z) � P for all locations where the monomers are
present; that is, Odijk conditions are assumed to apply for the
entire span of the polymer along the channel.

For a polymer in a cylindrical tube with α = 0 and diam-
eter D0, the extension X of a polymer of contour length L
satisfies

L = X/(1 − b(D0/P)2/3),

where b = 0.17 [1]. For the case of α > 0, we note that an
infinitesimal portion of the polymer of contour length dL
located at position z with an extension dz satisfies

dL = dz/(1 − b(D(z)/P)2/3), (B2)
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where D(z) is given by Eq. (B1). It follows that∫
dL = L =

∫ X

0

dz

1 − b(D(z)/P)2/3
,

which yields the following relation between L and X :

L = f (X ),

where

f (X ) ≡
(

3P

2b3/2 tan α

)[
tanh−1

(
b1/2

(
D(X )

P

)1/3)

− b1/2

(
D(X )

P

)1/3

− tanh−1

(
b1/2

(D0

P

)1/3)

+ b1/2
(D0

P

)1/3]
. (B3)

In the Odijk regime the confinement free energy of a semi-
flexible polymer in a cylindrical (α = 0) channel of diameter
D0 is

Fc = aLD−2/3
0 P−1/3, (B4)

where a = 2.3565 [1]. In the case of a conical channel, a
small portion of the polymer contour length dL at position
z contributes

dFc = adL(D(z))−2/3P−1/3. (B5)

From Eqs. (B2) and (B5), it follows:

dFc = adz

[(D(z))2/3P1/3](1 − b(D(z)/P)2/3)
.

Integration of along z from z = 0 to z = X gives the total free
energy,

Fc =
(

3a

2b1/2 tan α

)[
tanh−1

(
b1/2

(
D(X )

P

)1/3)

− tanh−1

(
b1/2

(D0

P

)1/3)]
, (B6)

where the extension length L is determined by Eq. (B3).

APPENDIX C: THEORETICAL MODEL FOR THE FREE
ENERGY FUNCTION OF A KNOT IN A CONE

In this Appendix, we derive an expression for the variation
of the free energy with respect to knot position of a knotted
polymer under conical confinement. To do so, we model the
knotted polymer as an unknotted linear polymer of span X
overlapping a ring polymer of span Xk, as illustrated in Fig. 10.
The ring polymer is an approximation for the knot in the real
system, each of which has two hairpin turns. The diameter
of the hairpin is chosen to be the local diameter of the cone,
D. As noted in Sec. IV A, this approximation is likely only
a slight overestimate under Odijk conditions [51,52]. The
combined contour lengths of the linear and ring polymers are
chosen to be equal to that of the real polymer.

We identify four main contributions to the free energy:
(1) The free energy of the two hairpins, F1.
(2) The overlap free energy of the three subchains that lie

between the two hairpins along the channel, F2.

(3) The confinement free energy of the two extended sec-
tions of the ring polymer (colored green in the figure),
F3.

(4) The confinement free energy of the linear polymer
(colored blue in the figure), F4.

For the hairpin free energy, we use the results of a study by
Chen [52]. In that study, a numerical solution to the Green’s
function equations for an ideal chain confined to a channel
yielded a hairpin free energy that could be approximated with
the following equation:

Fhp = 2Em

D̃
− 3

2
ln

[
A2D̃ + A0D̃2

1 + A1D̃ + A0D̃2

]
+ ln 4, (C1)

where D̃ ≡ D/P and where the dimensionless numerical
factors are Em = 1.43557, A0 = 1.0410, A1 = −0.6046 and
A2 = 1.2150. For simplicity, we neglect the small variation of
the D over the span of the knot, which is located at position
Zk. (Note that this approximation is valid only for very small
cone angles. Carrying out calculations with and without it
produced results with negligible difference for the cone angles
used here.) Thus, the hairpin free energy is

F1(Zk ) = 2Fhp(D(Zk )), (C2)

where the factor of 2 accounts for fact that there are two
hairpins, and where

D(Zk ) = D0 + 2Zk tan α. (C3)

As noted in Sec. IV A, the overlap free energy for an S
loop or knot for a polymer confined to a cylinder in the Odijk
regime is approximately

Fov = CD−5/3P1/3(Xk − D),

where Xk − D is the span of the three overlapping polymer
strands in the knot excluding the hairpins, and where the
constant is estimated to be C = 9.45. Thus,

F2(Zk, Xk ) = C(D(Zk ))−5/3P−1/3(Xk − D(Zk )). (C4)

For the contribution from the confinement free energy of
the two extended portions of the ring, we neglect the small
variation of the cone diameter along the span of the knot. The
overlap free energy is thus

F3(Zk, Xk ) = 2a(Xk − D(Zk ))(D(Zk ))−2/3P−1/3, (C5)

where a = 2.3565 [1]. In addition, the factor of 2 is due to
the presence of two extended strands of the ring polymer, and
D(Zk ) is given by Eq. (C3).

Finally, consider the free energy of the linear polymer in
the cone. Since the contour length of the knotted polymer L is
the sum of the contour length for the linear polymer, L′, and
that of the ring polymer, it follows that

L′ = L − πD(Zk ) − 2(Xk − D(Zk )).

Thus,

L − (π − 2)D(Zk ) − 2Xk = f (X ), (C6)

where f (X ) is given by Eq. (B3). It follows that

X (Zk, Xk ) = f −1(L − (π − 2)D(Zk ) − 2Xk ). (C7)
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Using Eq. (B6), the confinement free energy of the linear
polymer in the cone is thus

F4(Zk, Xk ) =
(

3a

2b1/2 tan α

)[
tanh−1

(
b1/2

(
D(X )

P

)1/3)

− tanh−1

(
b1/2

(D0

P

)1/3)]
, (C8)

where the dependence of F4 on Zk and Xk arises from the
relation for the extension length X in Eq. (C7).

The total free energy if the knotted polymer is given by the
sum

F (Zk ) = F1(Zk ) + F2(Zk, Xk ) + F3(Zk, Xk ) + F4(Zk, Xk ),

(C9)

where the free-energy contributions are given by
Eqs. (C2), (C4), (C5), and (C8). Finally, the dependence
of F on the knot span Xk must be removed. Note that Xk is

a fluctuating variable whose mean and variance depends on
Zk, the position of the knot along the channel. To estimate
the variation of Xk with Zk, we have chosen the following
procedure. A set of simulations for a knotted polymer in a
cylindrical channel were carried out to measure F (X ) and
Xk(X ) for various values of channel diameter D. At each D,
the mean value of Xk was calculated,

X̄k(D) =
∫

Xk(X ; D)e−βF (X ;D)dX∫
e−βF (X ;D)dX

, (C10)

where the integrals were approximated using discrete summa-
tions. Applying this result to the conical channel requires the
Zk dependence of D, which is provided by Eq. (C3). Figure 11
shows a comparison of each of the contributions for a 31 knot
for a system with N = 200, κ = 15, D0 = 4.0, and α = 0.57◦.
The hairpin contribution to free energy is the dominant term,
a consequence of the narrowness of the conical channel.
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