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Confinement effects on the mechanical heterogeneity of polymer fiber glasses
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Both polymer fiber glasses and bulk polymer glasses exhibit nonlinear mechanical responses under uniaxial
deformation. In polymer fibers, however, polymer chains are confined strongly and the surface area is relatively
large compared to their volume. The confinement and the surface may lead to the spatially heterogeneous
relaxation of chains in polymer fibers. In this work we perform molecular dynamics simulations and investigate
the relation between the heterogeneous dynamics and the nonlinear mechanical responses at a molecular
level. Our molecular simulations capture successfully not only the nonlinear mechanical response but also the
dependence of mechanical properties on the strain rate of typical polymer glasses as in experiments. We find that
the local elastic modulus and the nonaffine displacement are spatially heterogeneous in the pre-yield regime,
which results in a lower elastic modulus for polymer fibers than bulk polymer glasses. In the post-yield regime,
those mechanical properties become relatively homogeneous. Monomers with large nonaffine displacement are
localized mainly at the interfacial region in the pre-yield regime while highly nonaffine monomers are distributed
throughout the fibers in the post-yield regime. We show that the nonaffine displacement during deformation
relates closely to the mechanical response of the polymer fibers. We also find that in the strain-hardening regime
there is a significant difference in the energetic contribution to the stress between polymer fibers and bulk
polymers, for which the modulus of the strain-hardening regime of the polymer fibers is smaller than that of
bulk polymers.

DOI: 10.1103/PhysRevE.102.052501

I. INTRODUCTION

The relaxation dynamics and the glass transition of con-
fined polymers (such as polymer films and polymer fibers)
are different from those of bulk polymers. For example,
Forrest et al. [1] showed that the glass transition temperature
(Tg) of free-standing polystyrene (PS) thin films depended
on the film thickness (unlike bulk polymer melts) and de-
creased by about 20% with a decrease in the film thickness
from 180 to 29 nm. The presence of considerably large
interfacial regions in confined polymers could make the re-
laxation dynamics spatially heterogeneous, which have been
discussed in experiments and theoretical studies extensively
[1–6]. Heterogeneous relaxation dynamics is of crucial im-
portance in understanding complicated mechanical properties
of the confined polymer glasses [7–9]. However, the relation-
ship between the dynamic heterogeneity and the macroscopic
mechanical response of confined polymers still remains un-
clear. In this work, therefore, we perform molecular dynamics
simulations and investigate the effects of the confinement and
the surface of polymer fiber glasses under large deformation.

Polymer (nano)fiber glasses with diameters from 10 to
600 nm have drawn attention due to its wide applicability for
tissue engineering [10–12], drug delivery systems [13–15],
composites materials [16–18], and energy storage systems
[19–21]. Not surprisingly, it is a fundamental issue in those
applications to control the mechanical properties of polymer
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fibers. Recent experiments and simulation studies revealed
that the mechanical properties were determined by various
factors including entanglement [22], confinement effects [23],
crystallinity [24], chain orientation [25], and chain flexibility
[26]. Such various factors make it difficult to obtain general
insights on the mechanical properties from previous studies.
For example, Arinstein et al. [23] showed that the Young’s
modulus of nylon 6,6 nanofibers increased by three times with
a decrease in the diameter from 900 to 400 nm. On the other
hand, Buell et al. [27] carried out extensive molecular dy-
namic simulations of glassy polyethylene (PE) nanofibers, and
showed that Young’s modulus decreased by about 30% with
a decrease in the fiber diameter from 17.7 to 3.7 nm. In order
to elucidate the effect of the interfacial region and the con-
finement systematically, therefore, one may take advantage
of a generic model. The coarse-grained bead spring model
has been employed extensively to investigate the relaxation
dynamics and the mechanical responses of polymeric glasses
[28–30]. For example, a simulation study with the bead spring
model reproduced the mechanical features of PMMA glasses
during the multistep creep experiments successfully [31]. An-
other simulation study also employed the bead spring model
and predicted that strain hardening was associated closely
with plastic flow [32], which was supported by a recent exper-
iment [33]. In this study we employ a generic coarse-grained
bead spring model for a polymer chain and perform systematic
molecular dynamics simulations for the mechanical response
of the polymer fibers.

The segmental relaxation of polymer chains is spa-
tially heterogeneous in confined polymer glasses due to the
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presence of the surface [34,35]. Paeng et al. [34] mea-
sured the reorientation of fluorescence probes in free-standing
polystyrene (PS) films and showed that the segmental mobility
in the interfacial layer was faster by four orders of magnitude
than that of the bulk layer. Previous studies also showed that
the modified segmental relaxation near the surface should
affect Tg [36–39] and the elastic modulus [23,27,40–43]. For
example, Camposeo et al. [44] measured and reported the
local Young’s modulus of MEH-PPV fibers via AFM indenta-
tion technique. They found that the local Young’s modulus of
the core region was two times larger than that of the interfacial
region. It still remains unclear, however, how the segmen-
tal relaxation of chains may relate to nonlinear mechanical
responses of confined polymer glasses under deformation.
Therefore, we try to investigate the segmental relaxation of
confined polymers during the deformation in our simulations.

The mechanical response of polymer glasses depends on
the timescale of deformation [45–50]. Polymer glasses behave
as elastic solids at short timescales, whereas polymer glasses
act as viscous liquids at long timescales. Such viscoelasticity
of polymers is responsible for the nonlinear nature of the
mechanical response. For example, the stress-strain curve of
polymer glasses in constant strain rate experiments exhibited
nonlinear mechanical response. At quite small strains, stress
increases linearly with strain (the elastic regime). After the
elastic regime, the stress reaches a stress maximum followed
by the strain softening with a drop in the stress (the stress
overshoot regime). As the strain increases further, the stress
reaches a plateau with a constant stress value (the steady-state
regime). In cases of typical polymer glasses, stress begins to
increase again, which is called the strain hardening regime.
Previous studies revealed that such nonlinear mechanical re-
sponse of polymer glasses to the deformation should relate
to the segmental relaxation and its heterogeneity of polymer
chains [35,51–60]. The extent of heterogeneity of segmental
relaxation in polymer glasses depends on strain [31,42,61–
64]. For example, Riggleman et al. [31] showed that in the
elastic regime the extent of heterogeneity of segmental re-
laxation increased. But, after the elastic regime, the extent of
heterogeneity of segmental relaxation decreased.

Theoretical approaches have been developed to describe
the mechanical responses of polymer glasses during defor-
mation. Eyring proposed a phenomenological description of
stress-induced molecular motion where the applied stress low-
ered the energy barriers for molecular motions [65]. The
Eyring model does not, however, predict the nonlinear me-
chanical response successfully beyond yield stress [31,61,66].
In order to overcome the limitation of the Eyring model,
several theories have been suggested. As an example, the
shear-transformation-zone (STZ) theory is a phenomeno-
logical description for the plasticity of amorphous solids
and has been used widely to describe the strain soften-
ing phenomenon [67–69]. Chen and Schweizer [70–73] also
proposed the excellent nonlinear Langevin equation (NLE)
theory for the nonlinear mechanical response of deformed
polymer glasses based on a mean-field approach. Hoy et al.
showed that the strain hardening at large strains resulted from
dissipative stress regardless of the presence of entanglement
[74,75]. Even though previous theories provided systematic
approaches to elucidate the nonlinear mechanical response,

mean-field theories would still lack a description for dynamic
heterogeneity. It would be, therefore, of academic importance
to test whether theoretical models can capture the relationship
between heterogenous segmental relaxation and mechanical
properties of confined polymer glasses.

In this study we employ a generic coarse-grained model for
polymer chains and perform molecular dynamics simulations
to investigate the nonlinear mechanical response of the glass
polymer fibers. We find that our simulations reproduce the
four regimes well as observed in experiments for the uniaxial
deformation of glass polymer fibers. The mechanical proper-
ties such as the elastic modulus (of the elastic regime) and
the strain hardening modulus (of the strain hardening regime)
are dependent on the strain rate and are different from those
of bulk polymer glasses. The mechanical properties are quite
heterogeneous at the pre-yield regime but becomes relatively
homogeneous at the post-yield regime. Such mechanical het-
erogeneity should be responsible for the difference in the
elastic modulus between glass polymer fibers and bulk poly-
mer glasses. We also find that the nonaffine displacement of
monomers in the interfacial regions is larger than those in the
core region of fibers. As the strain increases, however, the
distribution of the nonaffine displacement becomes homoge-
neous in fibers.

The rest of the paper is organized as follows. We describe
the simulation model and methods in Sec. II. In Sec. III, we
present the simulation results and discussions, and in Sec. IV
we summarize and conclude our study.

II. SIMULATION MODEL AND METHODS

We perform molecular dynamics (MD) simulations with a
generic coarse-grained model for polymers. Polymer chains
are modeled as bead spring chains of Nmon = 32 monomers.
The number (Npol) of polymers is 350 in our simulations.
The nonbonding interactions [Unb(r)] between a pair of non-
bonded monomers is described via truncated and shifted
Lennard-Jones (LJ) potential with a cutoff length of rc =
2.5σ , i.e.,

Unb(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6] − Uc, r � rc,

0, r > rc,
(1)

where Uc = 4ε[( σ
rc

)12 − ( σ
rc

)6]. ε and σ denote the units of
energy and length, respectively. r is the distance between
two monomers. The bonding between two chemically bonded
monomers of a chain is described by a harmonic potential,
i.e., Ub(r) = Kb(r − r0)2 with Kb = 1000ε/σ 2 and r0 = 1σ .
This model prevents crystallization due to the mismatch be-
tween the positions of minima of Unb and Ub. The mass of a
monomer (mmon) is set to unity. Then, the units of the temper-
ature (T ) and the time (τ ) in our simulations are reduced LJ
units. All simulations are performed using LAMMPS simu-
lation package [76]. We employ the velocity-Verlet integrator
with a time step of 0.002τ .

We obtain the equilibrium configurations of a polymer
fiber as follows. First, we place Npol = 350 polymer chains
at random positions in a rectangular simulation box with
periodic boundary conditions applied in all directions.
If there is any overlap between particles, the chains are
discarded and re-inserted at different random positions. The
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FIG. 1. Simulation snapshots of polymer fiber glasses during
uniaxial deformation. Periodic boundary images along x axis are
also shown. Black solid lines represent the boundaries of the primary
simulation cell. The strain (γ ) of each snapshot corresponds to γ = 0
(top), 0.4 (middle), and 0.8 (bottom).

dimensions of the rectangular simulation box are
(Lx, Ly, Lz ) = (25σ, 21.166σ, 21.166σ ) such that the number
density of monomers is about 1. Once we obtain initial
configurations in the rectangular simulation cell, we increase
the values of both Ly and Lz to 100σ in order to construct
a polymer fiber. The periodic images of a polymer chain
along y and z directions cannot interact with one another
(Fig. 1). Then we conduct molecular dynamics simulations
until the time correlation function of the end-to-end vector of
the chains decays to e−1 in order to equilibrate the polymer
fibers. In this equilibration all simulations are performed for
the canonical NV T ensemble at T = 1 with the Nosé-Hoover
thermostat. In this work we obtain nine independent initial
configurations for polymer fibers of each condition. All
the properties reported in this study are averaged over nine
independent trajectories. Error bars in our results are the
standard errors on the mean.

After equilibration steps at T = 1, we cool down all sys-
tems to T = 0.1 in the NV T ensemble at a cooling rate (�)
of � = 1 × 10−4, 1 × 10−5, and 1 × 10−6. � in this study is
much faster than cooling rates used in experiments such that
some properties of glassy materials may depend on cooling
rates. However, note that the cooling rate in this study is
comparable with the typical cooling rates used in previous
simulation studies of polymeric glasses [31,49]. And we also
expect that mechanical properties in our simulations can be
comparable with those in experiments at least qualitatively.
Unless otherwise noted, we provide the mechanical properties
of polymer fibers and bulk glasses at � = 1 × 10−5. Upon
cooling, the temperature dependence of the potential energy of
systems changes before and after the glass state [Fig. 2(a)]. We
estimate the glass transition temperature (Tg) of all systems by
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FIG. 2. (a) The temperature dependence of potential energy per
particle (Ep/Nt ) for polymer fibers (red) and bulk polymer melts
(black). Lines are fits to the simulation results based on Eq. (2). (b)
The radial density profile [ρ(rr )] of polymer fiber glasses at T = 0.1.
The black solid line is a fit based on the hyperbolic tangent equation
to the simulation results (red circles). Both results are obtained at
� = 1 × 10−5.

fitting Eq. (2) to the potential energy per particle as a function
of temperature, as employed in previous studies [49,77,78]

Epot(T )/Nt = w
(G − M

2

)
ln

[
cosh

(T − Tg

w

)]

+ (T − Tg)
(M + G

2

)
+ C, (2)

where Epot(T ) denotes the potential energy of the system
as a function of temperature T , Nt is the total number of
monomers in the systems (Nt = Npol × Nmon), and M and G
are the linear thermal expansion coefficients of the melt and
glass, respectively. w denotes the width of the transition, and
C is the potential energy per particles at T = Tg. We find
from our simulations that Tg = 0.36 for glass polymer fibers.
Therefore, the lowest temperature of T = 0.1 in our study is
much lower than Tg.

We estimate the radius (R0) of polymer fibers at T = 0.1
by calculating the radial density profile ρ(rr ) as follows:

ρ(rr ) ≡
〈

1

Nt

Nt∑
i=1

1

2πrr
δ(rr − ri )

〉
, (3)

where i denotes the monomer index, and rr is the shortest
distance from the central axis of the fiber. ri is the shortest
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FIG. 3. (a) The stress-strain curves of polymer fiber glasses (empty) and bulk polymer glasses (lines) at γ̇ = 3.5 × 10−5σ/τ (blue) and
γ̇ = 3.5 × 10−3σ/τ (red). These stress-strain curves are obtained at � = 1 × 10−5. (b) The four regimes of mechanical responses of polymer
fiber glasses for γ̇ = 3.5 × 10−5σ/τ are indicated: (1) the elastic regime, (2) the stress overshoot regime, (3) the steady-state regime, and (4)
the strain hardening regime.

distance between the ith monomer and the central axis. 〈· · · 〉
denotes ensemble averages. We fit simulation results for ρ(rr )
to the following hyperbolic tangent function ρ(rr ) = ρ0

2 [1 +
tanh( R0−rr

ls
)]. Here ρ0 is the value of ρ(rr ) at rr = 0. R0 and ls

denote the estimated radius of the polymer fiber and the width
of the interface, respectively. As shown in Fig. 2(b), ρ(rr ) of
polymer fibers fits well with the hyperbolic tangent function.
Before we begin to deform the fibers, we find that ρ0 = 1.04,
R0 = 11.68σ , and ls = 0.31σ at T = 0.1. One monomer of
the coarse-grained bead spring model is usually comparable to
the Kuhn monomer of polymers. In the case of polyethylene,
the Kuhn length is 1.4 nm. Therefore, the diameter of polymer
fibers in our simulations corresponds to about 30 nm, which
is a realizable length scale in experiments. For example, Zhou
et al. reported the nanofibers made of polyaniline, of which
the diameter was as low as 20 nm [79].

In order to investigate the mechanical responses of glassy
polymer fibers, we undergo the uniaxial deformation of the
glassy polymer fibers at T = 0.1 along the fiber axis (x axis) at
a constant engineering strain rate (γ̇ ). We employ the deform
command incorporated in the LAMMPS simulator. During
the uniaxial deformation, the dimension Lx of the simulation
cell changes as Lx(t + δt ) = Lx(t ) + γ̇ δt , where δt is the
elapsed time during the deformation. The x components of
the positions of all monomers are remapped to the deformed
simulation box. On the other hand, Ly and Lz of simulation
cells fluctuate in response to the barostat with py = pz = 0
[27]. To obtain stress-strain curves of glassy polymer fibers,
we calculate the xx component of engineering strain as γxx =
(L′

x − Lx )/Lx. We also calculate the xx component of engi-
neering stress (σxx) of the system as follows:

σxx = − 1

V0

{
Nt∑

i=1

mivi,xvi,x +
Nt −1∑
i=1

Nt∑
j=i+1

ri j,x fi j,x

}
, (4)

where i and j denote the particle indices, and V0 is the volume
of the systems before deformation. In the case of polymer
fibers, V0 = πR2

0Lx. vi,x is the x component of the velocity

of the ith particle. ri j,x and fi j,x denote the x components of
the distance and the force between the ith and jth particles,
respectively. In this study we discuss only the xx components
of strain and stress. For convenience’ sake, therefore, we drop
the subscripts for both the strain (γ ) and the stress (σeng).

We also prepare bulk polymer melts of 250 polymer chains
(Npol = 250) with Nmon = 32 monomers in order to make a
comparison with polymer fibers. We perform N pT molecular
dynamics simulations with pressure p = 0 and T = 1 using
the Nosé-Hoover barostat. We equilibrate the bulk polymer
melts until the end-to-end vector time correlation function
decays to e−1. Then we cool the bulk polymer melts down
to T = 0.1 at a cooling rate of � = 1 × 10−5 under N pT
condition with p = 0. Note that T = 0.1 is much lower than
Tg of bulk polymer melts. Tg is estimated to be 0.41 as depicted
in Fig. 2(a). We also deform the bulk polymer glasses along
the x axis at a constant engineering strain rate. The detailed
procedure for the uniaxial deformation for the bulk polymer
glasses is identical to that for polymer fibers.

III. RESULTS AND DISCUSSIONS

A. The mechanical response of polymer fiber glasses

Both polymer fiber glasses and bulk polymer glasses in our
simulations respond to the deformation in a nonlinear fashion.
To monitor the mechanical response of polymer fiber glasses,
we deform the fibers along the central axis at three strain rates
of γ̇ = 3.5 × 10−5, 3.5 × 10−4, and 3.5 × 10−3σ/τ . During
the uniaxial deformation we calculate the engineering stress
[σeng(γ )] as a function of the engineering strain (γ ) for each
value of γ̇ [Fig. 3(a)]. Note that the ordinate in Fig. 3(a)
corresponds to the difference in the engineering stress from
that for the undeformed state (γ = 0). Simulation results
for the stress-strain curve are categorized clearly into four
distinct regimes: (1) the elastic regime, (2) the stress over-
shoot regime, (3) the steady-state regime, and (4) the strain
hardening regime [Fig. 3(b)], which are consistent with pre-
vious studies [40,49]. The stress-strain curves of polymeric
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FIG. 4. Simulation results as a function of γ̇ for (a) the elastic modulus (ml ), (b) the yield stress (σY ), (c) the plastic flow stress (σF ), and
(d) strain hardening modulus (ms) of polymer fiber glasses (red circles) and bulk polymer glasses (black squares). All results are obtained at
� = 1 × 10−5.

systems in our simulations are different from those of
monomer glasses and short oligomer glasses qualitatively due
to the presence of the strain hardening regime. For example,
the stress-strain curves of modified binary Lennard-Jones sys-
tem for metallic glasses did not exhibit the strain hardening
regime at large deformation [80]. The stress-strain curves of
polymer glasses and fibers of short oligomers did not ex-
hibit the strain hardening regime at large deformation, either
[32,81].

In the elastic regime, σeng(γ ) increases linearly with γ .
The elastic modulus (ml ) of the regime is determined to
be the slope of the stress-strain curve in the elastic regime
(γ < 0.005). In the stress overshoot regime, σeng(γ ) reaches
a maximum at a yield stress but begins to decreases with a
further increase in γ . We determine the yield stress σY to be
the value of σ (γ ) − σ (0) at the maximum. In the steady-state
regime, σ (γ ) − σ (0) remains constant over the regime, of
which value is taken as the plastic flow stress σF . In the last
strain hardening regime, σ (γ ) begins to increase again with an
increase in γ . The strain hardening modulus (ms) is, then, the
slope of the stress-strain curve in the strain hardening regime.
We estimate four mechanical properties (ml , σY , σF , and ms)

that characterize the mechanical response of glasses upon the
deformation (Fig. 4).

All of the mechanical properties are larger for bulk polymer
glasses than polymer fiber glasses, and are also dependent
on the strain rate (γ̇ ). Figure 4 depicts the mechanical prop-
erties as functions of γ̇ . ml , σY , σF , and ms of both glassy
polymer fibers and bulk polymer glasses increase with an
increase in the strain rate. In the case of bulk polymer glasses,
σY and σF increase by about 40% from γ̇ = 3.5 × 10−5 to
γ̇ = 3.5 × 10−3σ/τ . ml and ms increase by 15% and 30%,
respectively, too. Such a strain-rate dependence of mechan-
ical properties are in agreement with previous experiments
and simulation studies. Previous studies on ml , σY , and σF

revealed a logarithmic dependence on strain rates [82–84].
Even in the case of the polymer fiber glasses, we find that ml ,
σY , and σF follow the logarithmic dependence on γ̇ . Previous
studies also showed that ms increases with γ̇ [82].

As shown in Fig. 3(a), σeng(γ ) − σeng(0) of polymer fiber
glasses is lower for a given strain rate (γ̇ ) than that of bulk
polymer glasses. Note that the value of σ (γ = 0) of poly-
mer fiber glasses at the undeformed state is 0.66, whereas
σ (γ = 0) = 0 for bulk polymer glasses. Such a nonzero stress
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at the undeformed state is attributed to the surface tension of
the polymer fibers [27]. Note that subtracting the value of
the stress at zero strain from the stress-strain curve is not to
exclude the contribution of the surface tension to the stress-
strain curves of polymer fibers but to compare bulk polymer
glasses and polymer fiber glasses. For the comparison of bulk
polymer glasses and polymer fiber glasses, it is important
to investigate how much the stress increases from the value
of the stress of undeformed states, instead of the absolute
value of stress. The elastic modulus (ml ) of bulk polymer
glasses is larger than that of polymer glass fibers by about
2% at γ̇ = 3.5 × 10−5σ/τ , which is consistent with previous
simulation studies [27,40,43]. For example, Buell et al. [27]
showed that ml decreased with a decrease in the fiber radius.
We also find that σY , σF , and ms of polymer fiber glasses are
lower than those of bulk polymer glasses [Figs. 4(b)–4(d)],
which shall be discussed in the following sections.

In this study we perform simulations under the condition
that the morphology of fibers is stable during deformation.
Although we find the surface distortion of polymer fibers
in some trajectories at a large strain, as shown in Fig. 3(a),
the stress-strain curves of polymer fibers do not exhibit a
decrease in engineering stress due to the necking [85]. Also
note that we consider the stability of the fiber morphology
based on the Rayleigh instability criterion [86]. According
to the Rayleigh instability criterion, if 2πR0 � Lx, fibers are
unstable. Before deformation, the radius of fibers is 11.68σ

and the length of our system along the fiber axis is 25σ .
Therefore, 2πR0/Lx = 11.68σ × 2π/25σ � 1, which sug-
gests that fibers before deformation should be stable. But, at
a large strain of 0.8, the radius of fibers is 8.64σ and the
length of the system along the fiber axis becomes 45.42σ .
Then 2πR0/Lx = 8.64σ × 2π/45.417σ ≈ 1.2 such that the
fiber is still relatively stable than other polymer nanofibers in
experiments.

We also obtain the stress-strain curves of polymer fibers
of much longer chains with Nmon = 200. Polymer chains of
Nmon = 200 are usually entangled in polymer melts [87]. As
shown in Fig. 5, before the strain hardening regime, both
stress-stress curves are almost the same. However, the strain
hardening modulus of polymer fibers of long chains (0.760)
is larger than that of polymer fibers of short chains (0.603).
These results for the effects of the chain length are consis-
tent with previous simulation results and experimental results.
For example, previous experiments for a thermoplastic glassy
polyimide showed that the values of the Young’s modulus
were constant regardless of molecular weights of polyimide
at room temperature [88]. Previous simulation results also
showed that the strain hardening modulus increased with the
chain length [32].

B. Local mechanical properties

We scrutinize the local responses of the polymer fiber
glasses and their spatial heterogeneity in mechanical prop-
erties. This allows us to elucidate the effects of the surface
and the confinement on the mechanical response. We calculate
the local elastic modulus of surface layers of polymer fibers.
We divide the cross section of polymer fibers into each layer
along the radial direction like Fig. 6(a). The thickness of each

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

en
g(

)-
en

g(
0)

0.80.60.40.20.0

0.760

0.603

   Chain length
Nmon = 32   
Nmon = 200 

FIG. 5. The stress-strain curves of polymer fiber glasses of short
chains of 32 monomers (blue) and long chains of 200 monomers
(red). The strain rate is 3.5 × 10−5σ/τ and the cooling rate is
1 × 10−5.

layer is 0.5σ . Then we obtain the local stress-strain curves
of polymer fibers and estimate local elastic modulus of each
layer from the local stress-strain curves. The local stress is
estimated [89] as follows:

σα = − 1

V α

[ Nα
t∑

i=1

mivi,xvi,x +
Nα

t −1∑
i=1

Nα
t∑

j=i+1

ri j,x fi j,x

qα
i j

ri j

]
, (5)

where α is the index for each layer of polymer fibers. Nα
t and

V α denote the number of monomers and the volume of the
corresponding layer during the deformation, respectively. ri j

is the distance between the ith and the jth particles. qα
i j is the

part of the line segment connecting between the ith particle
and the jth particle that lies inside the α layer. If the line
segment connecting between the ith particles and jth particles
lies inside only α layer, qα

i j = 1 and the contribution of the

(a) (b)

Layer 1
Layer 2

r

R0

FIG. 6. (a) A schematic figure of layers of polymer fibers. R0 is
the radius of polymer fibers and rr is the shortest distance from the
central axis of the fiber. R0 − rr = 0 means the surface of polymer
fibers. The thickness of layers is 0.5σ . (b) The local elastic modulus
of polymer fibers as a function of rr . A black line is the elastic
modulus of bulk polymer glasses. The strain rate is 3.5 × 10−5σ/τ

and the cooling rate is 1 × 10−5.
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FIG. 7. (a) The difference in the kinetic energy density (Ek/V0) and the potential energy density (Ep/V0) between the undeformed system
and the deformed system at γ̇ = 3.5 × 10−5σ/τ and � = 1 × 10−5. (b) The energetic stress (σener) of the polymer fiber glasses (red) and
the bulk polymer glasses (blue). (c) The dissipative stress (σdiss) of the polymer fiber glasses (red) and the bulk polymer glasses (blue) at
γ̇ = 3.5 × 10−5σ/τ . All curves in (b) and (c) are shifted by the constant C for the sake of clarity.

interaction between the ith particle and jth particle to the local
stress of other layers is zero.

Figure 6(b) depicts the local modulus of polymer fibers as
a function of R0 − rr . Here rr is the shortest distance between
the monomer and the central fiber axis, and R0 is the diameter
of the polymer fiber. Therefore R0 − rr ≈ 0 corresponds to the
surface region of the fiber. The local elastic modulus (local
ml ≈ 25) of the surface region is about 1.8 times smaller
than local modulus (local ml ≈ 45) of the core region, while
the local ml of the core region is quite close to that of the
bulk polymer glasses (Fig. 6). This indicates that monomers
experience quite heterogeneous mechanical responses under
deformation depending on the region that the monomers be-
long to. And the mechanical environment of the core region is
similar to that of the bulk polymer glasses. This is consistent
with previous experiments on the local modulus of MEH-PPV
fibers where the local modulus of the core region is about two
times larger than that of the surface region [44].

The local modulus of polymer fiber glasses [Fig. 6(b)] sug-
gests that the thickness of the surface region would be about
1σ . The thickness of surface region in our work is comparable
to the previous results of polyethylene atomic simulations
(1–3 nm) [27] and also measurable in experiments. (In the
case of polyethylene, for example, 1σ is comparable to
1.4 nm.) One caveat is that 1σ is the shortest length scale
in our coarse-grained model. In order to investigate the size
of the surface layer at a higher resolution, one might have to
employ a finer model with atomistic details for monomers.
On the other hand, note also that in order to define the surface
layer, we estimate the local modulus, i.e., how much force
monomers within a certain layer experience as the monomers
are displaced during the deformation. And the displacement
of monomers of 1σ is not small in polymer glasses, consid-
ering that the maximum nonaffine displacement of polymer
fiber glasses is about only 0.37σ (as shall be discussed later).
Within the surface layer of 1σ , therefore, highly nonaffine
monomers can be distributed continuously.

Composite material theory provided an approach to explain
the elastic modulus of the polymer fibers. The composite
material theory assumes that the elastic modulus of the core
region would be identical to the bulk polymer glasses and also

that the surface region would be more soft with a smaller elas-
tic modulus. Then, the theory suggests that the elastic modulus
of the polymer fibers would be a linear combination, i.e.,
ml ≈ mcore

l fcore + msurf
l fsurf. Here fcore is the volume fraction

of the core region and fsurf = 1 − fcore. ml obtained from the
theory matches well with the value of ml from our simulations,
which corroborates the composite material theory.

C. Energetic and dissipative stresses

For both polymer fiber glasses and the bulk polymer
glasses, the nonbonding interactions between monomers are
mainly responsible for the mechanical response to the defor-
mation. Figure 7(a) depicts differences in either the kinetic
energy density (Ek/V0) or the potential energy density (Ep/V0)
between the undeformed (γ = 0) and the deformed state as a
function of γ with γ̇ = 3.5 × 10−5σ/τ . Ek stays constant dur-
ing the uniaxial deformation because we perform canonical
isothermal simulations at each value of γ . On the other hand,
not surprisingly, the potential energies (Ep) of both polymer
fiber glasses (red) and bulk polymer glasses (blue) increase
upon the deformation. At a relatively large strain beyond the
yield point, Ep/V0 of the fiber glasses increases more quickly
than that of the bulk polymer glasses. We dissect the potential
energy Ep into the bonding potential (Ub) and the nonbonding
potential (Unb) contributions. We find that the increase in the
Ep upon the deformation is attributed mainly to the nonbond-
ing interactions between monomers. Ub hardly changes but
only fluctuates during the deformation. This indicates that
the bond relaxation (which is the shortest relaxation mode
in the polymer chain) occurs quickly during the deformation.
On the other hand, Unb increases upon the deformation.

We decompose the stress of the polymer fiber glasses into
(1) an energetic (σener) and (2) a dissipative (σdiss) stresses
based on the first law of thermodynamics (dE = dW + dQ)
as follows:

σeng = ∂W

∂γ
= ∂E

∂γ
+ ∂ (−Q)

∂γ
= σener + σdiss, (6)

where W , E , and −Q denote the work done on the system per
volume, the internal energy of the system per volume, and the
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FIG. 8. (a) The mean square nonaffine displacement (〈u2〉) of bulk polymer glasses (black) and the polymer fiber glasses (green). (b) The
participation ratio (〈u2〉2/〈u4〉) of the nonaffine displacement of the bulk polymer melts (black) and polymer fiber glasses (green). (c) 〈u2〉 of
monomers in the core (blue) and the surface (red) regions of the polymer fiber glasses. A black line corresponds to the 〈u2〉 of the bulk polymer
glasses. (d) 〈u2〉2/〈u4〉 of monomers in the core (blue) and the surface (red) regions of the polymer fiber glasses. A black line corresponds to
the 〈u2〉2/〈u4〉 of the bulk polymer glasses. In this figure, γ̇ = 3.5 × 10−5σ/τ and � = 1 × 10−5.

heat transfer away from the system per volume, respectively.
We estimate σener by calculating the derivative of Ep with
respect to γ because Ek stays constant. Then σdiss can be
obtained by using σdiss = σeng − σener.

The energetic stress (σener) and the dissipative stress (σdiss)
contribute differently to the total stress depending on the
regimes [Figs. 7(b) and 7(c)]. σener increases sharply initially
with γ and contributes significantly to the elastic regime.
However, σener decreases back in the steady-state and the
strain hardening regimes while σdiss should account for the
increase in the stress in the strain hardening regime. As de-
picted in Fig. 7(c), σdiss keeps increasing beyond the yield
point with a slope of about 0.78 for both polymer fiber glasses
and bulk polymer glasses. On the other hand, σener decreases
in the post-yield regime with a negative slope. The slope of the
σener of the polymer fiber glasses is even lower around −0.23
than that (−0.02) of the bulk polymer glasses. This is why the
strain-hardening modulus (ms) is lower for the polymer fiber
glasses. The dominant contribution of σdiss in the strain hard-
ening regime are consistent with previous studies [74,75]. We
discuss the nonaffine displacement distribution of monomers

in the following section, which relates to the dramatic increase
in σdiss beyond the yield point.

D. Nonaffine displacement during deformation

We investigate the plastic flow of glasses beyond the yield
points by calculating the mean square nonaffine displacement
(〈u2〉) and the participation ratio (〈u2〉2/〈u4〉) of the nonaffine
displacement. In the affine deformation, particles during de-
formation are placed on the position expected by the global
strain (γ ) applied to the system. In general, crystalline solids
are expected to be affinely deformed. Beyond the yield points,
however, the plastic flow could locate particles away from the
positions expected by the global strain, thus resulting in the
nonaffine deformation. We capture nonaffine deformation of
glasses by calculating the mean square nonaffine displacement
(〈u2〉). In order to obtain both 〈u2〉 and 〈u2〉2/〈u4〉 as functions
of the strain (γ ), we take four steps as follows. Note that the
symbol “◦” indicates the simulation parameters and config-
urations used (and obtained) from the additional simulations
for the estimation of the nonaffine displacement. (Step 1) We
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take a simulation configuration at a given strain value of γ and
determine the position vector (
riγ ) of the ith monomer. (Step
2) We, then, undergo the uniaxial and affine deformation with
a strain of γ ◦

xx = 0.005 and γ ◦
yy = γ ◦

zz = 1√
1+γ ◦

xx

− 1. Here γ ◦
xx,

γ ◦
yy, and γ ◦

zz denote the strains in x, y, and z directions, re-
spectively. This affine deformation allows us to determine the
position vector (
r◦

ia) of the ith monomer if the monomer were
to undergo the affine displacement. (Step 3) Then we perform
additional canonical NV T simulations with a configuration
(
r◦

ia) at a strain of γ (in step 2) at T = 0.1 during t = 20000τ .
In this step, monomers may relax its configurations toward
the local free energy minima at the given γ and undergo the
nonaffine movements. (Step 4) The position vector (
r◦

i ) of the
ith monomer obtained in the previous step is determined to be
the nonaffine position vector. Then the nonaffine displacement
vector (
u) is defined as 
u ≡ 
r◦

i − 
r◦
ia.

As expected, the deformation of both fibers and bulk
polymer glasses is affine in the elastic regime with 〈u2〉 ≈ 0
[Fig. 8(a)]. However, after the elastic regime, 〈u2〉 increases
rapidly, thus indicating that monomers begin to undergo non-
affine displacement significantly. Beyond γ = 0.35, in the
case of polymer fibers, the magnitude of 〈u2〉 increases grad-
ually. On the other hand, in the case of bulk polymer glasses,
the magnitude of 〈u2〉 converges to a constant value.

The participation ratio (〈u2〉2/〈u4〉) is a measure of how
much nonaffine displacement deviates from the Gaussian
statistics [31]. If the nonaffine displacement distribution of
monomers is Gaussian, 〈u2〉2/〈u4〉 = 3/5. A smaller value
of 〈u2〉2/〈u4〉 suggests that nonaffine displacement deviates
from Gaussian statistics and that monomers would undergo
more correlated motions. As shown in Fig. 8(b), 〈u2〉2/〈u4〉
decreases in the elastic regime, thus indicating that monomers
are likely to participate in the correlated motions in the elastic
regime. After yield point, however, 〈u2〉2/〈u4〉 increases, and
then converges in the steady-state regime and the strain hard-
ening regime. This shows that the nonaffine displacements
of monomers becomes relatively homogeneous compared to
those in the elastic regime, which is consistent with previous
studies [31,66].

The deformation of polymer fiber glasses is more non-
affine, especially in the interfacial regions, than that of bulk
polymer fibers. As shown in Fig. 8(a), 〈u2〉 is larger for poly-
mer fiber glasses than for bulk polymer glasses. In the case of
polymer fiber glasses, we divide 〈u2〉 into two contributions
from the surface and core regions, i.e., 〈u2〉surf and 〈u2〉core.
As shown in Fig. 6(b), the local elastic modulus increases
rapidly after rr < R0 − 1σ , for which we set the thickness
of surface region as 1σ . If a monomer is located close to
the fiber axis with rr < R0 − 1σ , the monomer belongs to
the core region. Monomers that lie outside the core region
with rr < R0 − 1σ are considered to be in the surface region.
Interestingly, 〈u2〉core of the core region is almost identical to
that in the bulk polymer glasses [Fig. 8(c)], while 〈u2〉surf in
the surface region is much larger than 〈u2〉core. The signifi-
cant nonaffine displacement in the surface region should be
responsible for the more nonaffine deformation of the polymer
fiber glasses. We also find that (〈u2〉2/〈u4〉)surf in the surface
region is lower than (〈u2〉2/〈u4〉)core in the core region, and
that (〈u2〉2/〈u4〉)core collapses well onto 〈u2〉2/〈u4〉 of bulk

FIG. 9. The highly nonaffine monomers projected on the cross
section of the fiber at (a) γ = 0.03 and (b) γ = 0.8. The number
distribution functions [n(rr )] of monomers with top 10% of the
magnitude of nonaffine displacements as a function of rr at (c)
γ = 0.03 and (d) γ = 0.8. In this figure, γ̇ = 3.5 × 10−5σ/τ and
� = 1 × 10−5.

polymer glasses after the elastic regime. This suggests that the
nonaffine displacements of monomers in the surface region
are more correlated than the bulk polymer glasses and the core
region of the fibers.

We project highly nonaffine monomers onto the cross sec-
tion of the polymer fiber glass. We determine that monomers
with top 10% of the magnitude of nonaffine displacements
are highly nonaffine monomers. As depicted in Fig. 9, such
highly nonaffine monomers are distributed mainly in the sur-
face region at γ = 0.03. As shown in Fig. 9(c), the number
of highly nonaffine monomers in the surface region is three
times larger than that in the core region. At γ = 0.8, how-
ever, monomers at the core region are also likely to perform
nonaffine displacement. As shown in Fig. 9(d), the number
of highly nonaffine monomers in the surface region is only
1.5 times larger than that in the core region. This indicates
that at a small strain, the nonaffine displacement of monomers
are spatially heterogeneous with the most highly nonaffine
monomers in the surface region. However, at a large strain
regime, the nonaffine displacement distribution becomes rel-
atively widespread, which is consistent with our result that
〈u2〉2/〈u4〉 increases with γ .

The nonaffine displacement (〈u2〉) also depends on the
strain rate (γ̇ ). Beyond the elastic regime, especially, 〈u2〉 is
larger for a faster strain rate (γ̇ ). For example, at γ = 0.6,
〈u2〉 of the polymer fiber glasses at γ̇ = 3.5 × 10−3σ/τ is 2.5
times larger than that at γ̇ = 3.5 × 10−5σ/τ . The participa-
tion ratio of 〈u2〉2/〈u4〉 at the fast strain rate is also greater
than at the slow strain rate. Such dependence of nonaffine
displacement on strain rates contributes to the increase of σdiss
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FIG. 10. (a) The stress-strain curves of polymer fiber glasses at γ̇ = 3.5 × 10−5σ/τ . (b) The mead square nonaffine displacement (〈u2〉)
of polymer fiber glasses. (c) The participation ratio (〈u2〉2/〈u4〉) of the nonaffine displacement of polymer fiber glasses. Red markers, green
markers, and blue markers represent a cooling rate = 1 × 10−4σ/τ , 1 × 10−5σ/τ , and 1 × 10−6σ/τ , respectively.

after the elastic regime in Fig. 7(c), because the nonaffine
displacement relates closely to irreversible rearrangement of
monomer under deformation.

We also investigate the effects of the cooling rate on
the mechanical properties of polymer fibers. As shown in
Fig. 10(a), the values of the yield stress increase with a
decrease in cooling rates. These results are consistent with
the previous simulation results [49]. Unlike the stress-strain
curves, however, the cooling rates do not affect the mean
square nonaffine displacement and the participation ratio of
the nonaffine displacement in our simulations [Figs. 10(b) and
10(c)]. These results imply that the nonaffine displacement
defined in our work should not be sensitive to the cooling
rates. According to the previous simulation work [49], the
nonaffine behavior defined at long timescale could be affected
by the cooling rate. But, the nonaffine displacement in our
study is defined at a short timescale.

IV. SUMMARY AND CONCLUSION

We perform molecular dynamic simulations to investigate
the mechanical response of polymer fiber glasses. We deform
the polymer fibers in a uniaxial fashion along the fiber axis and
obtain the stress-strain curves for different strain rates. Stress-
strain curves obtained from our simulations are categorized
clearly into four regimes as in the experiments: (1) the elastic
regime, (2) the stress overshoot regime, (3) the steady-state
regime, and (4) the strain hardening regime. We estimate the
mechanical properties (the elastic modulus, the yield stress,
the steady-state stress, and the strain hardening modulus) that
characterize the stress-strain curve. They all increase with
an increase in the strain rate and differ from those of bulk
polymer glasses.

The difference in the mechanical properties between poly-
mer fiber glasses and bulk polymer glasses is attributed to the
fact that the mechanical response of polymer fiber glasses is
spatially heterogeneous. We calculate the local modulus of
polymer fibers for both core and surface regions. The elastic
modulus of the core region is similar to that of bulk polymer
glasses while the elastic modulus becomes lower in the sur-
face region.

The difference in the strain hardening modulus between the
polymer fiber glasses and the bulk polymer glasses may be
explained by observing the energetic and dissipative contribu-
tions to the stress. We find that the energetic stress contributes
mainly to the mechanical properties in the pre-yield regime
while the dissipative stress becomes dominant in the post-
yield regime. The slope of the dissipative stress of polymer
fiber glasses in the strain hardening regime is similar to that
of bulk polymer glasses. However, the slope of energetic stress
of fibers in the strain hardening regime is negative unlike the
slope of energetic stress of bulk polymer glasses (which is
close to zero). Such a negative slope of the energetic stress
leads to a smaller strain hardening modulus for the polymer
fiber glasses.

We also estimate the nonaffine displacement of polymers
during glassy polymer fibers. We find that highly nonaffine
particles are located mainly at the surface region and also
that the nonaffine displacement at the surface region shows
the correlated motion in the pre-yield. But, in the post-yield
regime, highly nonaffine particles are widespread throughout
the fibers.
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