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Collective cell migration is crucial to many physiological and pathological processes such as embryo de-
velopment, wound healing, and cancer invasion. Recent experimental studies have indicated that the active
traction forces generated by migrating cells in a fibrous extracellular matrix (ECM) can mechanically remodel
the ECM, giving rise to bundlelike mesostructures bridging individual cells. Such fiber bundles also enable
long-range propagation of cellular forces, leading to correlated migration dynamics regulated by the mechanical
communication among the cells. Motivated by these experimental discoveries, we develop an active-particle
model with polarized effective attractions (APPA) to investigate emergent multicellular migration dynamics
resulting from ECM-mediated mechanical communications. In particular, the APPA model generalizes the
classic active-Brownian-particle (ABP) model by imposing a pairwise polarized attractive force between the
particles, which depends on the instantaneous dynamic states of the particles and mimics the effective mutual
pulling between the cells via the fiber bundle bridge. The APPA system exhibits enhanced aggregation behaviors
compared to the classic ABP system, and the contrast is more apparent at lower particle densities and higher
rotational diffusivities. Importantly, in contrast to the classic ABP system where the particle velocities are
not correlated for all particle densities, the high-density phase of the APPA system exhibits strong dynamic
correlations, which are characterized by the slowly decaying velocity correlation functions with a correlation
length comparable to the linear size of the high-density phase domain (i.e., the cluster of particles). The strongly
correlated multicellular dynamics predicted by the APPA model is subsequently verified in in vitro experi-
ments using MCF-10A cells. Our studies indicate the importance of incorporating ECM-mediated mechanical
coupling among the migrating cells for appropriately modeling emergent multicellular dynamics in complex
microenvironments.

DOI: 10.1103/PhysRevE.102.052409

I. INTRODUCTION

Cell migration in an extracellular matrix (ECM), a complex
dynamic process involving a series of intracellular and extra-
cellular activities [1,2], is crucial to many physiological and
pathological processes including tissue regeneration, immune
response, and cancer progression [3–6]. It has been well estab-
lished that cell migration can be significantly influenced by
the microenvironment via chemotaxis [7], durotaxis [8–10],
haptotaxis [11], and contact guidance [12–14]. Migrating cells
can generate active pulling forces via actomyosin contraction
[15–17], which are transmitted to the ECM fibers through
focal adhesion complexes [18–20]. The active cellular forces
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can mechanically remodel the local ECM, e.g., by re-orienting
the collagen fibers, forming fiber bundles, and increasing the
local stiffness of the ECM [21–26]. Recent studies have in-
dicated that a delicate balance among the magnitude of the
pulling forces, the cell-ECM adhesion strength, and the ECM
rigidity is required to achieve an optimal mode of single-cell
migration [27].

In a multicellular system, the active pulling forces gener-
ated by individual cells can propagate in the ECM [28–32]
and can be sensed by distant cells [33]. This ECM-mediated
mechanical coupling among the cells could further influence
the migration of the individual cells, which in turn alters the
ECM structure and properties, leading to a rich spectrum
of collective migratory behaviors [34–37]. For example, our
in vitro experimental study (see details in Secs. II and III)
showed that highly motile MCF-10A cells migrating on a
thick layer (∼2 mm) of collagen-I gel develop strongly cor-
related dynamics via mechanically remodeled fiber bundles
bridging the migrating cells (see Fig. 1). In addition, it was
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FIG. 1. Confocal microscopy images showing strongly correlated migration of a pair of MCF-10A cells (green) on thick collagen gel
(∼2 mm) with a collagen concentration of 2 mg/ml. The scale bar is 30 μm. The contraction of the cells at the front edge mechanically
remodel the ECM, leading to the formation of fiber bundles (blue) bridging the migrating cells (green). It has been shown [36] that the
fiber bundles carry significant tensile forces, thus suggesting that the observed correlated migration dynamics resulted from the mechanical
communications among the cells via the remodeled fiber bundles.

shown that the fiber bundles carry significant tensile forces,
thus suggesting that the observed correlated migration dynam-
ics resulted from the mechanical communications among the
cells via the remodeled fiber bundles [36].

Many computational models have been developed to in-
vestigate the individual and multicellular migration dynamics
[38–40] as well as various subcellular processes involved in
cell migration [41–46]. Examples include vertex-based mod-
els [47], multistate cellular Potts models [48], and cellular
automaton models [49–52]. Recently, the influence of the
cell-ECM interactions and/or ECM-mediated indirect cell-
cell interactions on individual and collective or correlated
migration dynamics started to be explicitly considered and
incorporated in cell migration models [53–64]. For example,
Goychuk et al. [55] introduced a cellular Potts model for
cell migration that includes basic cell-ECM coupling. Abdel-
Rahman et al. recently developed a computational model
based on continuum mechanics that explicitly considers the
micromechanical coupling of a migrating cell and the two-
dimensional (2D) substrate [59] to successfully reproduce
durotaxis effects. Moreover, a novel model for investigating
cell migration in a model 2D ECM network guided by external
mechanical cues has been developed by Dietrich et al. that
explicitly considers the coarse-grained cytoskeleton of a mi-
grating cell as a part of the ECM network [60]. Very recently,
the 2D vertex cell model was coupled to an elastic network of
springs modeling the ECM, through dynamic focal adhesion
attached to the network nodes, which has been employed to
understand the effect of substrate stiffness on collective mi-
gration during wound healing and to measure traction forces
during cell migration [61–63]. Feng et al. recently developed a
single-cell migration model based on mechanical coupling of
a model cell and lattice model of the ECM network which has
successfully reproduced the durotaxis and contact guidance
effects [64].

The active-particle model is one of the most widely used
models for multicellular dynamics. In the seminal work of
Vicsek et al. [65], it was shown that local velocity correlation
among neighboring active particles can induce a dynamic
phase transition in the system. The Vicsek et al. model was
subsequently generalized to include cell-cell contact inter-
actions to investigate collective cellular dynamics such as
cell sorting [66]. More recently, the active Brownian parti-
cle model (and its different variants) has received intensive

attention. In these models, a migrating cell is treated as an
active particle whose dynamics is mainly determined by an
active self-propelling force, a random drift, and various effec-
tive particle-particle and/or particle-environment interactions
[67–69]. A wide spectrum of collective dynamics has been
observed and investigated in active-particle systems [70].

In this work, motivated by the experimental observation
that active pulling forces generated by migrating cells and
propagated via fiber bundles can lead to strongly corre-
lated migration dynamics [e.g., nearby cells effectively attract
each other and move towards each other (see Fig. 1)], we
develop an active-particle model with polarized effective
attractions (APPA) for modeling emergent multicellular mi-
gration dynamics regulated by ECM-mediated mechanical
communications. The APPA model generalizes the classic
active-Brownian-particle (ABP) model by imposing a pair-
wise polarized attractive force between the migrating cells
(modeled as active particles), which depends on the instan-
taneous dynamic states of cells including the position and
velocity alignment and mimics the effective mutual pulling
between the cells via the fiber bundle bridge.

The APPA model predicts enhanced aggregation behav-
iors compared to those predicted by the classic ABP model,
and the contrast is more apparent at lower particle densi-
ties φ (i.e., the fraction of space covered by the particles)
and higher rotational diffusivities Dr of the persistent cel-
lular velocity. Importantly, in contrast to the classic ABP
system where the particle velocities are not correlated for
all φ, the high-density phase of the APPA system (i.e.,
densely packed aggregates of the particles) exhibits strong
dynamic correlation, which is revealed by the velocity vec-
tor map and characterized by the slowly decaying velocity
correlation functions with a correlation length (i.e., the
length scale associated with the first local minimum of the
function) comparable to the linear size of the high-density
particle aggregate. The strongly correlated multicellular dy-
namics predicted by the APPA model is subsequently verified
in in vitro experiments observing MCF-10A cells migrat-
ing on 3D collagen gels, which exhibit strongly correlated
migration dynamics at high cellular densities. These re-
sults indicate the importance of incorporating ECM-mediated
mechanical coupling among the migrating cells for appropri-
ately modeling emergent multicellular dynamics in complex
microenvironments.
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We note that our focus here is mainly to elucidate the role
of the ECM-mediated mechanical coupling in giving rise to
the multicellular dynamics during the aggregation of the cells
from an initial low-density dispersed state rather than investi-
gating the collective arrangement and dynamics when the cells
already form a dense cluster. In the latter case, the epithelial
MCF-10A cells form stable cell-cell junctions upon mutual
contact with one another, which are crucial to the collective
dynamics of the dense cellular cluster and have been studied
via cellular Potts models and vertex-type models. Our APPA
model does not consider the effects of cell-cell adhesion
upon contact and therefore is more suitable for application
to investigate the initial phase of aggregation (i.e., before the
formation of dense clusters), during which the cell-cell con-
tact and the associated cell-cell junction formation are rare.
In Appendix B we show that incorporating cell-cell contact
adhesion does not qualitatively affect the observed dynamic
correlation and aggregation behaviors.

II. METHODS

A. Active particles with polarized effective attractions

Our APPA model generalizes the classic ABP model [70]
by introducing polarized attractions to model the effects of
ECM-mediated mechanical coupling between the cells. In
this section we describe the APPA model and its biophysical
background.

Cell migration in the fibrous ECM is a complex dynamic
process involving a series of intracellular and extracellular
activities [1,2], which can be significantly influenced by the
heterogeneity of local ECM microstructure [71–73] and me-
chanical properties [74–77]. A migrating cell also generates
active pulling forces [15–17], which are transmitted to the
ECM fibers via focal adhesion complexes [18–20]. Such ac-
tive forces remodel the local ECM, e.g., by reorienting the
collagen fibers, forming fiber bundles, and increasing the
local stiffness of the ECM [21–26]. Importantly, the remod-
eled fiber bundles can efficiently transmit the active (pulling)
forces generated by the cells, enabling mechanical dialogues
between the migrating cells. As illustrated in Fig. 1, fiber
bundles typically form between two cells migrating towards
each other and connect the polarized pulling ends of the
cells. This allows the pulling forces generate by one cell
to propagate to and be sensed by the other cell and vice
versa.

Accordingly, we phenomenologically model the effects of
this mechanical dialogue here using effective attraction be-
tween the cells (see Fig. 2). Since cell velocity is typically
aligned with the polarization direction, the effective attraction
is also polarized (instead of being isotropic). We also note that
the fiber bundles disappear as the cell polarization direction
changes, e.g., when the two cells are moving away from one
another (see Fig. 1). This suggests that the fiber bundles,
the structural support for the effective attractions between
the cells, are mainly due to elastic ECM remodeling and are
temporary [37]. Therefore, in our model, we consider the
polarized effective attraction only existing between a pair of
migrating cells that are moving towards each other (see the
mathematical details below). The underlying ECM network

FIG. 2. Schematic illustration of the effective polarized attrac-
tion between two migrating cells, which depends on both the
positions and velocities of the cells. Specifically, the effective at-
traction is nonzero only when the two cells are moving towards
one another (i.e., with the velocities antiparallel, aligned within a
prescribed tolerance).

and the remodeled fiber bundles will not be explicitly consid-
ered in our model.

Specifically, we consider the dynamics of active particles
with polarized effective attractions described by the general-
ized overdamped Langevin equation, i.e.,

ṙi(t ) = v0ei + μFECM
i +

√
2Dtηi(t ), (1)

where the subscript i is the particle index, v0 is the persistent
speed of the particle, ei is a unitary vector characterizing the
persistent speed direction and subject to rotational diffusion
with the diffusion coefficient Dr , Dt is the translational diffu-
sivity of the particle, and ηi(t ) is a unitary white noise with the
correlation function 〈ηi(t ) · η j (t

∗)〉 = δi j (t − t∗). The param-
eter μ is the cellular mobility and FECM

i is the total force due to
ECM-mediated mechanical coupling among migrating cells.
These model parameters are determined by cell phenotype,
ECM microenvironment, and stochastic subcellular processes
such as actin polymerization and cell-ECM adhesion turnover.
In our subsequent simulations, we select numerical values
for the model parameters (provided in Sec. III) based on
experimental data of MCF-10A cells migrating on 3D colla-
gen gels (see [78]).

We also consider that each particle (cell) possesses a hard-
core exclusion volume modeled as a hard sphere with radius
Rc = 10 μm (corresponding to the characteristics radius of
the cells), which prevents the overlapping of the particles
upon contact. We also note that in the case of the absence
of FECM

i , the APPA model [cf. Eq. (1)] reduces to the classic
active Brownian particle model, which describes single-cell
migration in a statistically homogeneous ECM (e.g., one
with uniform collagen density and random fiber orientations).
We note that although the primary APPA model introduced
here does not explicitly consider cell-cell contact adhesion,
we investigate the effects of the contact adhesion by adding
an adhesive layer enclosing the cells. The details of this
generalized APPA model with contact adhesion and the re-
sults are discussed in detail in Appendix B and indicate that
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cell-cell contact adhesion (at least as modeled here) does not
qualitatively affect the aggregation behaviors and dynamic
correlations among the cells.

The total force FECM
i due to ECM-mediated mechanical

coupling is given by

FECM
i =

∑
j

f a
i j (ri j, ṙi, ṙ j )u0

i j, (2)

where the sum is over all neighboring particles of particle i, u0
i j

is the unit vector pointing from particle i to j, and f a
i j is the

pairwise polarized attraction between particles i and j, which
depends on the particle separation distance ri j as well as the
dynamic state of the particles (i.e., ṙi and ṙ j), i.e.,

f a
i j (ri j, ṙi, ṙ j ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε
rα for ri j > (Ri + Rj )

for ṙi·(r j−ri )
|ṙi||(r j−ri )| > 1 − δ

for ṙ j ·(ri−r j )
|ṙ j ||(ri−r j )| > 1 − δ

0 otherwise.

(3)

Here the force parameter ε characterizes the strength of the
effective polarized attraction, which mainly depends on the
cell phenotype and ECM mechanical properties; Ri and Rj are
the radii of particles i and j, respectively, and δ is a threshold
that quantifies the degree of antiparallel alignment of the cell
velocities, which is a necessary condition for ECM-mediated
mechanical coupling. This parameter can be estimated by ex-
perimentally tracking cell pairs that exhibit strongly correlated
migration dynamics (see [78]). In Sec. III C we systematically
investigate the effect of δ on the overall aggregation behaviors
of the APPA system.

We note that the exponent α in the power-law scaling 1/rα

characterizes the propagation and decay of the active force
generated by a contractile cell in the ECM and α = 1 for
an elastic continuum. On the length scale considered here,
contractile cells can be considered as force dipoles character-
ized by α > 1. On the other hand, the unique force chains in
the ECM promote the long-range transmission of the forces,
leading to α < 1 [32]. Thus, the extract outcome of these two
opposite effects is not obvious and is difficult to quantitatively
verify experimentally. Here we will use α = 1 for subsequent
simulations and explore the effects of α. As shown in [78],
our simulations indicate that varying α does not qualitatively
change the behavior of the system (including aggregation and
dynamic correlation), although it does affect the density at
which significant clustering occurs (see [78]).

Equations (1)–(3) are employed in subsequent simulations
of the active particles with polarized attractions. In particular,
the particles are initially randomly placed in a periodic square
simulation domain without overlapping. The initial velocities
of particles are randomly oriented with the same magnitude
v0. The particles are then evolved according to Eq. (1), where
the velocities and positions of the particles are updated at dis-
cretized time steps dt . Specifically, the Euler-forward scheme
is employed to perform numerical integration (see Appendix
A for details). The updated velocity vector is rescaled to v0

while keeping its direction, accounting for the damping effects
of the ECM that is not explicitly modeled here. The persistent
direction of each particle is also updated by changing it by a
small angle randomly selected from the interval [−Dr, Dr]π ,

due to rotational diffusion. Particle overlaps are removed by
pushing each particle back by half of the overlapping distance
along their center-center direction. The procedure is repeated
until the stationary state of the system is achieved and the
simulation is terminated.

B. Mean cluster size and velocity correlation function

We quantify the morphological evolution of the APPA
systems using cluster statistics. Specifically, at a given time
step, the particles are grouped into different clusters. We
consider that two particles belong to the same cluster if the
distance between their centers is less than a threshold, i.e.,
di j < Ri + Rj + δd , where δd is a numerical threshold to
take into account fluctuations of cell size and shape. In our
simulations, we use δd = 0.1Rc (where Rc is the radius of the
cell), based on confocal images of migrating cells.

We compute the mean cluster size [79–81] to quantify the
degree of clustering or aggregation of the particles, i.e.,

S =
∑∞

k=1 k2nk∑∞
k=1 knk

, (4)

where k is number of particles that a cluster contains. A cluster
containing k particles is called a k cluster. In addition, nk is
the probability that a randomly selected cluster in the system
is a k cluster, which is computed by dividing the number of
k clusters by the total number of clusters. It can be seen from
Eq. (4) that S ∈ [0, 1]. A large S value (e.g., S ∼ 1) indicates
that the majority of particles are contained in one or a small
number of dominant clusters, while a small S value indicates
that the particles in the system are scattered and the level of
aggregation is low.

We also compute the rate of clustering � to quantify how
fast the aggregation occurs in different systems. Specifically,
� is defined as the average slope of S(t ) up to the time step ts
at which the stationary state is achieved, i.e.,

� = 1

ts

∫ ts

0
S′(τ )dτ, (5)

where S′(τ ) = dS
dt |t=τ is the local slope at t = τ on the S(t )

curve.
In addition, we employ the velocity correlation function

to quantify the correlated particle dynamics on the two-body
(pair) level, i.e.,

C(r) =
〈

ui · u j

|ui||u j |
〉
, (6)

where u is the instantaneous particle velocities, | · | indicates
the magnitude of the vector, r is the cell-center distance be-
tween a pair of cells i and j, and 〈·〉 indicates the average
over all cell pairs. Perfectly correlated pair dynamics is as-
sociated with C(r) = 1. This is the case when the velocities
of all particles are perfectly aligned, e.g., indicating that the
cells are following one another during collective migration. In
contrast, C(r) = −1 is associated with antiparallel velocities,
i.e., when the cells are moving towards one another. In addi-
tion, C(r) = 0 indicates no correlations among the particles
(migrating cells).
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C. Cell migration experiment

We perform in vitro experiments to observe and quantify
migration dynamics of MCF-10A mammary epithelial cells
on top of a 3D collagen gel (∼2 mm thick) and in a 2D
Petri dish (solid polystyrene substrate) as the control group.
In particular, MCF-10A cells marked with green fluorescent
protein (GFP) were obtained from China Infrastructure of
Cell Line Resource. The culture medium of MCF-10A-GFP
is Dulbecco’s modified Eagle’s medium-F12 (Corning) sup-
plemented with 5% horse serum (Gibco), 1% penicillin or
streptomycin (Corning), 20 ng/ml of human EGF (Gibco),
10 μg/ml of insulin (Roche Diagnostics GmbH), 100 ng/ml
of cholera toxin (Sigma-Aldrich), and 0.5 μg/ml of hydrocor-
tisone (Sigma-Aldrich).

Type I collagen extracted from rat tail tendon (Corning)
was diluted and the pH was neutralized to ∼7.2. Then the
collagen solution was spread on the substrate in the Petri dish
and incubated at 37 ◦C for 30 min until polymerized into a 3D
matrix with a thickness of around 2000 μm. The final collagen
concentration was 2 mg/ml for the tests. The cell suspension
covered the matrix and stayed in the cell incubator overnight
before imaging. For a collective cell migration test, 0.5 μl
of cell suspension with different concentrations of cells was
dropped on top of the collagen gel or solid in the Petri dish
and then incubated for 2 h before imaging.

Time-lapse images were obtained using both a confo-
cal laser scanning microscope (CLSM) with a 25× water
immersion objective and an automatic inverted fluorescent
microscope (Nikon Ti-E) with a 10× objective. Both micro-
scopes were equipped with an on-stage cell-culture incubator
to provide a constant temperature of 37 ◦C with humidity of
5% CO2. Collagen fibers could be imaged via the reflection
mode of the CLSM as previously studied. An inverted mi-
croscope was used to observe the cell migration correlation in
large populations in a 2-min time interval. Imaris software was
used to reconstruct the 3D images captured from the CLSM
and the tracking analysis. Repeated seeding was carried out
and robust clustering behaviors were repeatedly observed.
Quantitative cell tracking was carried out for representative
systems, based on which the cluster statistics and velocity
correlation data were collected.

We note that the MDA-MB-231 cells are typically used
for collective migration experiments due to their weak cell-
cell adhesion. The MDA-MB-231 cells are not used here
because these cells can degrade the ECM and invade into
the gel. This not only makes the observation and tracking
of cell migration difficult, but also induces other mecha-
nisms that would bias their migration. For example, the cell
migration can be affected by the pore distribution in the
gel, and the cells tend to follow one another along a mi-
crochannel formed by a leading cell. All these additional
mechanisms would mask the influence of ECM-mediated me-
chanical coupling. On the other hand, MCF-10A cells can
generate significant pulling during migration to remodel the
ECM and remain on the surface of the collagen gel, which
makes them better candidates for the present study. Our focus
is the dynamics of the aggregation process from an initial
disperse state during which long-time stable cell-cell contact
is rare.

III. RESULTS

A. Enhanced aggregation and dynamic correlation
due to long-range mechanical coupling

We employ the APPA model to investigate the correlated
dynamics of multicellular systems resulting from ECM-
mediated mechanical coupling, such as the MCF-10A cells
migrating on 3D collagen gel. In this system, the strong motil-
ity of the MCF-10A cells can result in large active pulling
forces, which propagate and influence the migration of other
cells via the remodeled fiber bundles (see Fig. 1).

To demonstrate the distinct dynamics resulting from the
APPA model, in particular, the polarized effective attractions
that mimic the mechanical dialogues between the cells, we
also simulate the system using the classic ABP model. As
shown in Sec. III B, the ABP system corresponds to MCF-10A
cells migrating in a 2D Petri dish, without ECM-mediated
long-range mechanical coupling. Unless otherwise specified,
the following parameters are used in our simulations: v0 =
0.5 μm/min, ε = 10 nN/μm, μ = 0.12 μm2/nN min, and
δ = 0.104 (corresponding to a misalignment angle tolerance
of ∼π/30). In addition, we set the translational diffusivity
Dt = 0.01 μm2/min, which is low compared to the persistent
speed and is consistent with the experimental observation that
MCF-10A cells on 3D collagen exhibit strong ballisticlike
motions (see [78]). We will explore two distinct values of
rotational diffusivity: Dr = 0.05, which is estimated based on
single-cell migration trajectories (see [78]), and Dr = 0.01,
which is selected to demonstrate the enhanced aggregation
behavior of the APPA model compared to the ABP model,
due the ECM-mediated mechanical coupling. In Sec. III C
we systematically explore the effects of Dr by construct-
ing phase diagrams of APPA systems. The values of the
model parameters are calibrated and determined based on
experimental data associated with the observation of a small
number of MCF-10A cells migrating on 3D collagen gel (see
[78]). For each set of model parameters, five independent
simulations with distinct initial configurations are carried out
and the results reported are ensemble averaged over these
simulations.

We first investigate the systems with high rotational diffu-
sivity (i.e., Dr = 0.05). High Dr values correspond to rapid
relaxing of the persistent velocities, which is known to dimin-
ish particle clustering in classic ABP systems. This can be
clearly seen in the top row of Fig. 3, which shows snapshots
of the classic ABP system at different particle densities φ ∈
[0.1, 0.5] (i.e., the fraction of the simulation box area covered
by the particles). No significant particle clustering occurs until
at a very high particle density φ = 0.5. On the other hand, the
APPA system starts to show significant aggregation behavior
at intermediate densities, e.g., φ = 0.3 (see the bottom row of
Fig. 3). The clustering behaviors of the two different systems
at varying particle densities are also quantified using time-
dependent cluster statistics. The top row of Fig. 4 shows the
evolution of mean cluster size S [see Eq. (4) for definition]
in both the classic ABP system and the APPA system. It can
be seen that S increases rapidly in the APPA system with
φ � 0.3 and asymptotically approaches unity, indicating the
emergence of a dominant cluster containing the majority of
particles in the system. This is also consistent with the results
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FIG. 3. Distinct aggregation behaviors at varying particle densities and high rotational diffusivity Dr = 0.05 rising in the classic ABP
systems (top row) and in the APPA systems (bottom row). The radius of the particles is Rc = 10 μm and the linear size of the periodic square
simulation domain is L = 500 μm. The particle densities from left to right are φ = 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.

of the clustering rate � shown in the middle row. It can be
seen that at lower densities (φ � 0.2), the ABP and APPA sys-
tems possess similar �, while for φ � 0.3 the APPA system
exhibits much higher �, indicating significantly faster aggre-
gation. We note that the APPA system at φ = 0.2 exhibits
interesting S dynamics, which seems to show a very low yet
positive clustering rate. Although no significant aggregation
behavior was observed for the duration of our simulations,
which is relevant to the timescale associated with the cell

migration experiments, we cannot rule out the possibility that
aggregation would eventually occur over a very long time in
this system.

Importantly, the APPA system exhibits distinct dynamic
correlations compared to the ABP system at high particle den-
sities. This can be clearly seen from the velocity correlation
function C(r) shown in the bottom row of Fig. 4. It can be
seen that C(r) ≈ 0 for all r and all φ in the classic ABP
system, regardless of the emergence of particle aggregation,

FIG. 4. Comparison of the cluster statistics S (top row) [cf. Eq. (4)], the rate of clustering � (middle row), and velocity correlation functions
C(r) (bottom row) [cf. Eq. (6)] associated with the classic ABP systems and the APPA systems at high rotational diffusivity Dr = 0.05 and
varying particle densities. The particle densities from left to right are φ = 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. The unit of time t is hours.
The unit of distance r is given by the length of the square simulation box.
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FIG. 5. Velocity maps (in which the velocity vector associated with each particle is shown as an arrow at the particle center) showing
distinct velocity correlations at varying particle densities and high rotational diffusivity Dr = 0.05 rising in the classic ABP systems (top row)
and in the APPA systems (bottom row). The particle densities from left to right are φ = 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.

indicating that the particles are not dynamically correlated
in the system. In contrast, the APPA system exhibits strong
dynamic correlations, evidenced by the slow decaying of C(r),
which emerges for φ � 0.3, coinciding with the emergence
of the particle aggregation in the corresponding system. To
further understand the emergence of this dynamic correlation,
we investigate the particle velocity distribution in the APPA
system. Figure 5 shows the velocity maps, in which the ve-
locity vector associated with each particle is shown as an
arrow at the particle center. It can been seen that the velocities
of the particles within the dominant cluster exhibit strong
local and intermediate-range alignment correlation. We note
that the strong velocity correlations are established during the
early stage of the aggregation process, before the formation
of dense clusters (see [78]). Therefore, this distinct dynamics
might result from the effective polarized attractions in the
APPA system.

We now investigate the systems with low rotational dif-
fusivity Dr = 0.01. It is known that low Dr enhances the
clustering in the classic ABP system. Indeed, as shown in the
top row of Fig. 6, the ABP system starts to show enhanced

clustering behavior at φ = 0.4 (as quantified by the higher
clustering rate � compared to the Dr = 0.05 case) and sig-
nificant aggregation is observed at φ = 0.5. The enhanced
clustering behavior is much more significant in the APPA
system, in which a single dominant cluster emerges even at the
lowest density φ = 0.1. This is also quantified via the time-
dependent mean cluster size S and the associated clustering
rate � shown, respectively, in the top and middle rows of
Fig. 7. Moreover, strong dynamic correlations are observed
in the APPA system for all particle densities φ ∈ [0.1, 0.5],
which is consistent with the emergence of particle clusters at
low densities. The dynamic correlations can be clearly seen
in the velocity maps (see Fig. 8) and the corresponding slow
decay in the velocity correlation functions C(r) shown in the
bottom row of Fig. 7.

These results indicate that the polarized effective attraction
mimicking the influence of the mechanical dialogue among
the cells can lead to significantly enhanced dynamic corre-
lations among particles. We note that enhanced clustering
behavior is also nontrivial since the effective attraction is not
isotropic but depends on the direction of the velocities of the

FIG. 6. Distinct aggregation behaviors at varying particle densities and low rotational diffusivity Dr = 0.01 rising in the classic ABP
systems (top row) and in the APPA systems (bottom row). The radius of the particles is Rc = 10 μm and the linear size of the periodic square
simulation domain is L = 500 μm. The particle densities from left to right are φ = 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.
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FIG. 7. Comparison of the cluster statistics S (top row) [cf. Eq. (4)], the rate of clustering � (middle row), and velocity correlation functions
C(r) (bottom row) [cf. Eq. (6)] associated with the classic ABP systems and the APPA systems at low rotational diffusivity Dr = 0.01 and
varying particle densities. The particle densities from left to right are φ = 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. The unit of time t is hours.
The unit of distance r is given by the length of the square simulation box.

cells. In the next section we verify these model predictions
using in vitro experiments.

B. Experimental verification via MCF-10A cells
on 3D collagen gel

To test the predictions of the APPA model, we observe in
vitro the migration of multiple MCF-10A cells on 3D colla-
gen I hydrogel with a collagen concentration of 2 mg/ml and
thickness of ∼2 mm. Single-cell migration dynamics is ac-

quired by recording and analyzing cell trajectories after a 12-h
culture (see Sec. II for details). The fibrous microstructure
of collagen gels can support long-range force propagation,
which is crucial to mechanical signaling among the cells. The
strong motility of the MCF-10A cells can generate significant
contractile forces during migration and thus potentially induce
strong cell-ECM mechanical coupling.

We randomly distribute the MCF-10A cells on a collagen-
based ECM with two distinct cell densities, i.e., ∼104 and
5 × 104 cells/cm2, corresponding to the simulation values,

FIG. 8. Velocity maps (in which the velocity vector associated with each particle is shown as an arrow at the particle center) showing
distinct velocity correlations at varying particle densities and low rotational diffusivity Dr = 0.01 rising in the classic ABP systems (top row)
and the APPA systems (bottom row). The particle densities from left to right are φ = 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.

052409-8



MODELING MULTICELLULAR DYNAMICS REGULATED BY … PHYSICAL REVIEW E 102, 052409 (2020)

FIG. 9. Verification of the predicted enhanced aggregation and
dynamic correlation in the APPA system using in vitro experiments
of MCF-10A cells on 3D collagen gels. Tracked cell trajectories,
associated with two densities (a) ∼104 cells/cm2 and (b) 5 × 104

cells/cm2, correspond to the simulation values (i.e., φ ≈ 0.1 and 0.5,
respectively) for 6 h after initial seeding. The color of the trajectory
(from yellow to dark blue) reflects the tracking time. It can be seen
that the trajectories in the low-density system are largely uncorre-
lated, while the cell migration in the high-density systems exhibits
strong correlation and an overall centripetal motion consistent with
the APPA model predictions. (c) Evolution of the mean cluster size S,
which clearly indicates aggregation behavior at high cellular density.
(d) Velocity correlation function C(r), where the slower decay at high
cellular density indicates the stronger correlated dynamics resulting
from the collective centripetal migration mode.

i.e., φ ≈ 0.1 and 0.5, respectively. We observe rapid and
strong aggregation in the high-density system while the cells
in the low-density system remain separated [see Fig. 9(a) and
9(b)]. In particular, Figs. 9(a) and 9(b) show, respectively, the
tracked cells trajectories associated with these two distinct cell
densities for 6 h. It can be seen clearly that in both cases,
the MCF-10A cells exhibit strong motility. In the low-density
case [Fig. 9(a)], the cell migration is largely uncorrelated. In
contrast, the cell migration in the high-density case [Fig. 9(b)]
is strongly correlated, exhibiting an overall centripetal motion
leading to aggregation. This collective dynamics is in good
qualitative agreement with the APPA model predictions.

We also compute the cluster statistics S [Fig. 9(c)] as well
as the velocity correlation functions C(r) [Fig. 9(d)], based on
the trajectory data via cell tracking. Consistent with the sim-
ulation results, the cells within the cluster in the high-density
system exhibit strong dynamic correlations, as indicated by
the long-range slowly decaying C(r), as well as the strong
centripetal migration dynamics. The cells in the low-density
system are largely uncorrelated, evidenced by the flat velocity
correlation function and the random cell motions.

To further verify the role of ECM-mediated mechanical
coupling, we carry out control experiments by observing
MCF-10A cells in a 2D Petri dish. Specifically, the cells are
initially randomly distributed on solid polystyrene substrate
with a number density ∼5 × 104 cells/cm2, and the sub-
strate is not able to transmit active cellular forces over long
distances. As shown in Fig. 10(a), no significant collective
dynamics or clustering behaviors are observed during the 6-h
tracking. In fact, the cells only exhibit random motions near
their original positions. The evolutions of the mean cluster
size S and the velocity correlation function C(r) are shown
in Figs. 10(b) and 10(c), respectively, both of which indicate
no significant aggregation or correlations among the migrat-
ing cells. These results clearly indicate the significant role
of the ECM-mediated mechanical coupling in the observed
enhanced aggregation and dynamic correlations of MCF-10A
cells on 3D collagen gel.

C. Phase diagram of active particles with polarized attractions

The results in previous sections indicate that the polarized
effective attractions may play an important role in giving rise
to unique collective dynamics in multicellular systems (such
as the strong dynamic correlation within cell aggregates). In
an actual multicell-ECM system, the cell phenotype, ECM
microstructure, and physical properties can all affect the active
force transmission and thus the effective attraction in our
model. In this section we systematically vary the key model
parameter δ [cf. Eq. (3)] that determines the region of influ-
ence of the polarized forces and investigate its effects on the
overall aggregation behavior and collective dynamics of the
system.

In particular, for each δ, we map the observed collective
behaviors of the APPA system at different rotational diffusiv-
ity Dr ∈ [0.01, 0.16] and particle density φ ∈ [0.1, 0.5] to a
phase diagram, where the aggregation or clustering phase and
dispersion or scattered phase are distinguished. Note that the
particles in the aggregation phase also possess strong dynamic
correlations. Figure 11 shows the phase diagrams of the APPA
system for varying δ, Dr , and φ. For a given δ, the aggregation
phase emerges at relatively low Dr and high φ. We note that
the classic ABP model can be obtained by setting δ = 0. By
increasing δ, i.e., the force influence region, the aggregation-
dispersion phase boundary is pushed to higher Dr and lower φ,
indicating enhanced aggregation behaviors due to mechanical
communication. We note that the largest δ considered here
corresponds to a misalignment angle tolerance of π/20, which
is still relatively small. The numerical data including the clus-
ter statistics for generating the phase diagrams are provided
in [78]. We note that one possible way to experimentally
vary the influence range of the ECM-mediated mechanical
coupling is to systematically control and engineer the EMC
microstructure, including the mesh density, fiber lengths, pore
size [82,83], and fiber orientations [84].

IV. CONCLUSION

Motivated by recent experimental evidence that ECM-
mediate mechanical coupling among migration cells reg-
ulates their collective dynamics, we have developed an
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FIG. 10. (a) MCF-10A cells in a 2D Petri dish (solid polystyrene substrate) with a number density ∼5 × 104 cells/cm2. The substrate is
not able to transmit active cellular forces over long distances. No significant collective dynamics or clustering behaviors are observed in the
6-h tracking. The cells only exhibit random motions near their original positions. Also shown are (b) the evolution of the mean cluster size S
and (c) the velocity correlation function C(r), both of which indicate no significant aggregation or correlations among the migrating cells.

active-particle model with polarized effective attractions,
which generalizes the classic active-Brownian-particle model.
Specifically, in the APPA model, pairwise polarized attractive
forces are imposed between the particles moving towards one
another, which mimics the effective mutual pulling between
the cells via the fiber bundle bridge. The APPA system ex-
hibits enhanced aggregation behaviors compared to the classic
ABP system, and the contrast is more apparent at lower
particle densities φ and higher rotational diffusivities Dr . Im-
portantly, in contrast to the classic ABP system where the
particle velocities are not correlated for all particle densities,
the high-density phase of the APPA system exhibits strong
dynamic correlation, which is characterized by the slowly de-
caying velocity correlation functions C(r) with a correlation
length comparable to the linear size of the high-density phase
domain (i.e., the cluster of particles).

We validated our model by qualitatively reproducing the
collective dynamics of MCF-10A breast cancer cells migrat-
ing on 3D collagen gels, including the enhanced aggregation
behaviors and strongly correlated multicellular migration dy-
namics, which result from the ECM-mediated mechanical
coupling among the migrating cells. Our study indicates the

importance of incorporating ECM-mediated mechanical cou-
pling among the migrating cells for appropriately modeling
emergent multicellular dynamics in complex microenviron-
ments.

Although currently focusing on 2D multicellular systems
(e.g., nonmetastatic MCF-10A breast cancer cells migrating
on top of a 3D ECM), our model can be readily generalized to
investigate the migration of mesenchymal cells (e.g., invasive
MDA-MB-231 breast cancer cells) in a 3D ECM. The key
modification is to explicitly incorporate the effects of ECM
degradation by the cells, which leads to microchannels that
bias cell migration in addition to the ECM-mediated me-
chanical coupling. In addition, the effects of chemotaxis and
cell-cell adhesion can also be incorporated into the model to
investigate a wide range of cell lines with different pheno-
types.

Finally, we note that the APPA model is a simple phe-
nomenological model that generalizes the ABP model by
incorporating pairwise polarized attractions mimicking the
effects of ECM-mediated mechanical couplings. In principle,
this ECM-mediated mechanical coupling can be directly mod-
eled by explicitly considering the fiber network microstructure

FIG. 11. Phase diagrams of the APPA system for varying δ, Dr , and φ. Each diagram is associated with a fixed δ, and collective behaviors
of the APPA system at different rotational diffusivity Dr ∈ [0.01, 0.16] and particle density φ ∈ [0.1, 0.5] are mapped to two distinct phase
regions, i.e., the aggregation or clustering phase and dispersion or scattered phase. The colors indicate the values of mean cluster size S.
Increasing δ (i.e., the region of influence of the polarized attractions) leads to enhanced aggregation or clustering behavior and thus stronger
dynamic correlation in the aggregation phase. From left to right, δ = 0, 0.00015, 0.004, and 0.012, respectively corresponding to misalignment
angle tolerance of 0, π/180, π/36, and π/20. We note that the classic ABP model is associated with δ = 0.
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of the ECM as well as the mechanical coupling of migration
cells and ECM fibers via focal adhesion complexes [36].
However, the computational cost for the latter would be sig-
nificantly higher than the APPA model and it is challenging to
employ it for modeling large multicellular systems.
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APPENDIX A: NUMERICAL INTEGRATION SCHEME FOR
SOLVING THE OVERDAMPED LANGEVIN EQUATION

Here we present the numerical schemes for integrating the
stochastic Langevin equation that governs the dynamics of
the APPA system. In particular, given the initial positions
and velocities, the velocities of the particles are computed
following Eq. (1). The new particle positions are then deter-
mined by Euler integration of the standard equation of motion.
Specifically, the velocity of a particle v(ti ) = dr/dt at time
step ti is evaluated over a sequence of K equally spaced time
steps, i.e., 0 � i � K − 1, between the initial time t0 and final
time t f . The size of the time step dt = ti+1 − ti is fixed during
the simulation and is chosen such that the average magnitude
of the displacement dr = ri+1 − ri between ti+1 and ti is about
0.01Rc (i.e., about 1% of the particle radius). The change in r
is the accumulated dr over all time steps.

Let v(ti ) = v0e denote the initial velocity of a particle at
time ti, where v0 is the persistent speed and e is a unit vector
characterizing the persistent direction. The position of the
particle at time ti+1 is given by

r(ti+1) = r(ti ) + v0e(ti )dt +
√

2Dtη(ti )dt, (A1)

which includes both a ballistic part and a diffusive part. The
particle velocity is updated as follows. We first compute a
temporal velocity vtemp using the current velocity v0e(ti ) and
the effects of ECM-mediated mechanical coupling, i.e.,

vtemp = v0e(ti ) + μFECM(ti ), (A2)

where FECM(ti ) is computed based on the positions and veloc-
ities of particles at time ti according to Eqs. (2) and (3). Next
the persistent direction is updated:

e(ti+1) = vtemp

|vtemp| . (A3)

Finally, the direction unit vector e(ti+1) specified by an angle
θ(ti+1) is updated following the Langevin equation, i.e.,

θ(ti+1) = θ(ti ) +
√

2Drη(ti)dt, (A4)

where Dr is the rotational diffusivity. The new persistent
velocity of the particle is then given by v0e(ti+1), which is
plugged in Eq. (A1) to compute the new positions, and the

FIG. 12. Illustration for modeling cell-cell adhesion. (a) Each
particle is composed of an exclusion core and an adhesive layer.
(b) The adhesive layers can overlap and the adhesion force is pro-
portional to the contact area.

new velocities are then updated according to Eqs. (A2)–(A4).
These steps are repeated for all particles and all time steps.

APPENDIX B: EFFECTS OF CELL-CELL CONTACT
ADHESION

In order to study the effects of cell-cell contact adhesion
on the collective migration dynamics of the multicellular sys-
tems, which was not explicitly incorporated in our primary
APPA model, we modify the APPA model to add an adhesive
layer surrounding the exclusion core (see Fig. 12 for illus-
tration). In particular, a particle includes two parts, i.e., the
exclusion core and the adhesion shell (or layer). The radius
of the particle core (same as the primary model Rc = 10 μm)
and the thickness of the shell or layer (δRs = 0.15Rc) are the
same for all particles, which are selected based on confocal
imaging data of contacting cell pairs. The adhesion shells of
particles can overlap, while the cores cannot overlap as in

FIG. 13. Comparison of clustering dynamics resulting from the
APPA model with and without cell-cell contact adhesion at ρ = 0.1
and Dr = 0.05. Snapshots show particle configurations (a) without
and (b) with contact adhesion forces. Also shown are (c) the cluster
statistics S and (d) the velocity correlation function C(r).
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FIG. 14. Comparison of clustering dynamics resulting from the
APPA model with and without cell-cell contact adhesion at ρ = 0.5
and Dr = 0.05. Snapshots show particle configurations (a) without
and (b) with contact adhesion forces. Also shown are (c) the cluster
statistics S and (d) the velocity correlation function C(r).

the primary model. When particle shells overlap, there is an
attractive force between the centers of the particles, which is
given by

Fa(r) = ka(2Rs − r)d0, (B1)

where Rs = Rc + δRs is the radius of the shell, r is the dis-
tance between the centers of the two particles, d0 is the unit
directional vector of the attraction, and ka is the coefficient of
the attractive force. The motion of particles is described by the
overdamped Langevin equation in the form

ṙi(t ) = v0ei + μFECM
i +

√
2Dtηi(t ) + μFa

i , (B2)

which is numerically integrated using the same procedure
described in Appendix A.

Figures 12–16 show a comparison of the clustering dynam-
ics at low and high cell densities ρ = 0.1 and 0.5, respectively,
in systems with and without contact adhesion forces, and
at different rotational diffusivities Dr . It can be seen that
although at low densities, adhesion tends to better stabilize
small clusters and the dynamics of the systems as quantified
by cluster statistics and velocity correlation functions are al-
most the same.

One possible explanation is that the activity of the particles
is sufficient to stabilize large clusters at sufficiently high local
density. For example, two particles migrating toward each
other and forming a cluster can only separate when their
persistent velocity directions are both changed to the opposite
directions. Therefore, incorporating contact adhesion, at least
in the present model, does not seem to significantly influence
the aggregation dynamics. We also realize that the current
model for modeling cell-cell adhesion might not be the ideal
and most accurate one to capture the collective dynamics of

FIG. 15. Comparison of clustering dynamics resulting from the
APPA model with and without cell-cell contact adhesion at ρ = 0.1
and Dr = 0.01. Snapshots show particle configurations (a) without
and (b) with contact adhesion forces. Also shown are (c) the cluster
statistics S and (d) the velocity correlation function C(r).

cell clusters, for which the vertex-based models would be
more appropriate. We expect that increasing the strength of
adhesion would enhance the rate of clustering, but would not
qualitatively change the aggregation behaviors.

FIG. 16. Comparison of clustering dynamics resulting from the
APPA model with and without cell-cell contact adhesion at ρ = 0.5
and Dr = 0.01. Snapshots show particle configurations (a) without
and (b) with contact adhesion forces. Also shown are (c) the cluster
statistics S and (d) velocity correlation function C(r).
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