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Timing and its variability are crucial for behavior. Consequently, neural circuits that take part in the control of
timing and in the measurement of temporal intervals have been the subject of much research. Here we provide
an analytical and computational account of the temporal variability in what is perhaps the most basic model
of a timing circuit—the synfire chain. First we study the statistical structure of trial-to-trial timing variability
in a reduced but analytically tractable model: a chain of single integrate-and-fire neurons. We show that this
circuit’s variability is well described by a generative model consisting of local, global, and jitter components.
We relate each of these components to distinct neural mechanisms in the model. Next we establish in simulations
that these results carry over to a noisy homogeneous synfire chain. Finally, motivated by the fact that a synfire
chain is thought to underlie the circuit that takes part in the control and timing of the zebra finch song, we
present simulations of a biologically realistic synfire chain model of the zebra finch timekeeping circuit. We
find the structure of trial-to-trial timing variability to be consistent with our previous findings and to agree with
experimental observations of the song’s temporal variability. Our study therefore provides a possible neuronal
account of behavioral variability in zebra finches.
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I. INTRODUCTION

Timing is critical for many behaviors, such as speech pro-
duction, playing a musical instrument, or dancing. However,
even the most stereotyped animal behaviors are significantly
variable from one iteration to the next. This so-called trial-
to-trial variability is ubiquitous and may serve important
functions in motor learning and adaptation [1–3]. Its sources
have therefore been of great interest to neuroscientists [2,4].

As behavior is controlled by the nervous system, it is
natural to look for the source of some of this variability in
the variable activity of neural circuits involved in the pro-
duction of behavior [2,4–7]. Indeed, the neural mechanisms
underlying behavioral timing have been extensively studied
experimentally [2,8–12], establishing links between temporal
variations of behavior and that of neural activity [13–20]. This
neural variability could result from multiple sources, such as
stochastic events at the level of ion channels [21], synapses
[22], and neurons [23]; chaotic activity of neural networks
[24,25]; and sensory inference errors [5]. Therefore, under-
standing the mechanisms and structure of timing variability
in neural circuits is necessary for understanding variability in
behavior.

In this paper we study temporal variability in one of the
most basic neural network models of timing—the synfire
chain [26–28]. The synfire chain is a feedforward network
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composed of pools of neurons that produce traveling waves
of synchronized spiking activity, as illustrated in Fig. 1. The
synchronization of spikes within a pool, and the sequential
propagation of activity across pools [Fig. 1(b)] allow the syn-
fire chain to serve multiple timing functions in a very natural
way. First, it can be used to keep time by simply counting the
pool which the spiking activity has reached. Second, it can
be used to produce precisely timed intervals defined by the
time elapsed between when activity arrives at a given pool and
when it arrives at a subsequent pool [Fig. 1(b)]. The synfire
chain can sustain activity indefinitely given sufficiently many
pools [27,29], or by arranging it in a circular topology such
that the final pool connects back to the first one [29]. While
the synfire chain is theoretically well studied [27,29–31] and
experiments support its existence in biological systems [32], a
theoretical account of its temporal variability is still lacking.

We are interested in the trial-to-trial variability in the tim-
ing of neural activity of a synfire chain. Such variability arises
from the millisecond-scale tempo differences across multiple
propagations of the spiking activity in the chain. We will focus
on trial-to-trial variability caused by the inherent noise and
fatigue in the neural system.

While it might seem small, millisecond-scale neural vari-
ability has been experimentally shown to correlate with
behavioral variability at the same timescale in songbirds
[16,18,20]. This finding is especially relevant since experi-
ments support the existence of a synfire chain architecture
in the songbird premotor cortex [32] for millisecond-scale
precise timekeeping of the birdsong, with total song dura-
tions of few hundreds of milliseconds [13,33]. Therefore our
findings may have direct implications for behavioral timing.
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FIG. 1. Timekeeping and trial-to-trial variability in synfire
chains. (a) The synfire chain is a feedforward network of pools of
neurons. In the figure, circles represent neurons and lines represent
synapses. A simple scheme to measure time intervals composed of K
successive pools is to mark the beginning and end of the interval by
the first spike of readout neurons corresponding to first and last pools.
(b) Spike trains produced by the synfire chain show a synchronized
activity that progresses pool-by-pool. Each point corresponds to the
time of a spike produced by a neuron in the chain. Color denotes
membership in a layer, each of which consists of a pool of ten neu-
rons. Various time intervals are shown. (c) Trial-to-trial variability in
the synfire chain. Spike times of six neurons from different pools are
plotted in different colors. Five different trials for each neuron are
shown.

Indeed, we will show that the statistical structure of temporal
variability in a synfire chain can possibly explain some of the
salient features of temporal variability in birdsongs [33–35].

We address these questions first in a simplified and analyt-
ically solvable model of trial-to-trial variability in a chain of
individual neurons (Sec. II). We derive analytical expressions
that describe the magnitude and statistical structure of tem-
poral variability in terms of inherent neural noise and fatigue
and verify our results with simulations. We use a generative
model introduced by Glaze and Troyer [35] to decompose
the variability covariance matrix into three components:
independent, global, and jitter. Next we address temporal vari-
ability in a noisy homogeneous synfire chain, which includes

multiple identical neurons per pool, by numerical simulations
(Sec. III). We show that our results from the analytically
tractable model qualitatively carry over to this more complex
model. We study the dependence of the various components
of variability on the number of neurons per pool of the chain.
Further, we relate the distinct neural mechanisms in the model
to the different components of variability obtained from the
generative model. Finally, we provide an application of our
results to birdsong. In zebra finches, experimental studies sup-
port the existence of a synfire chain structure in the premotor
nucleus HVC (proper name) [32], which takes part in the pro-
duction and timing of the birdsong. We simulate a biologically
realistic synfire chain model [32] and show that the statistical
structure and magnitude of its variability is consistent with
that observed in the analytically tractable and homogeneous
synfire chain model, and the zebra finch song (Sec. IV).

II. TRIAL-TO-TRIAL TIMING VARIABILITY
IN A CHAIN OF SINGLE NEURONS

In this section we describe the statistical structure of trial-
to-trial timing variability in an analytically tractable model: a
chain of N single leaky integrate-and-fire (IF) neurons. In this
simple model, each neuron is driven by excitatory synaptic
input from the previous neuron in the chain at time tps, which
we model by Is�(t − tps), where �(t ) is the Heaviside step
function. Though it would be more biologically realistic to use
an input kernel of finite duration, we make this analytically
convenient choice as we are only concerned with first-spike
times. We model the drive to each neuron from outside the
chain by a constant current I0, and the noise due to input fluc-
tuations, synaptic transmission and other cellular processes by
a zero-mean Gaussian process

√
τη(t ) with autocorrelation

σ 2τδ(t − t ′), where τ is the membrane time constant and σ

controls the standard deviation of the noise [36,37].
The subthreshold dynamics of the membrane potential V of

a given neuron in the chain is then governed by the Langevin
equation [36,37]

τV̇ (t ) = −V (t ) + I0 + Is�(t − tps) + √
τη(t ). (1)

When the neuron’s membrane potential reaches a firing
threshold Vth, the neuron produces a spike and resets its mem-
brane potential to Vr .

A. Local variability in a chain of single neurons

We want to study the variability in the first-spike times of
successive neurons in the chain. This problem differs from the
standard treatment of noisy and leaky IF neurons [36,37] in
that we are interested in trial-to-trial variability of intervals be-
tween different neurons’ spikes rather than long-time statistics
of the intervals between spikes generated by a single neuron.
However, we can map this problem to previous results in the
literature [36,37] by dividing it into two threshold-crossing
problems. First, we can determine the probability distribution
of a given neuron’s membrane potential at time tps using the
fact that it receives no synaptic input before the previous
neuron’s first spike. Then, given that its membrane potential
at time tps is V0 with probability P(V0), we can think of the
trial-to-trial variability in that neuron’s time to first spike after

052406-2



STATISTICAL STRUCTURE OF THE TRIAL-TO-TRIAL … PHYSICAL REVIEW E 102, 052406 (2020)

tps as the variability in the interspike intervals of a single leaky
IF neuron with Vr = V0.

To proceed we assume that tps is long enough such that
V (tps) has equilibrated. This assumption simplifies our cal-
culations and will be validated when our final results are
compared to simulations. Then the solution to the first prob-
lem is given by the stationary distribution of the membrane
potential, which was found in [36] to be

P(V ) = �(Vth − V )
2ντ

σ
exp

(
− (V − I0)2

σ 2

)

×
∫ (Vth−I0 )/σ

(V −I0 )/σ
du �

(
u − Vr − I0

σ

)
eu2

, (2)

where the firing rate ν is given by

ν = 1

τ
√

π

[∫ (Vth−I0 )/σ

(Vr−I0 )/σ
du eu2

(1 + erf (u))

]−1

. (3)

We will be interested in the limit of very low firing rates.
This limit is relevant to propagation of spiking activity in syn-
fire chains because a neuron in the chain spikes only when the
spiking activity reaches the pool to which the neuron belongs
and very rarely otherwise. Because noise is the main driver of
firing in the absence of external input, the very low firing rate
limit is given by assuming Vth − I0 � σ [37,38], which leads
to the standard approximations (see Appendix A 1 and [36])
of the firing rate as

ν ≈ Vth − I0

στ
√

π
exp

(
− (Vth − I0)2

σ 2

)
(4)

and the membrane potential distribution as

P(V ) ≈ 1√
πσ

exp

(
− (V − I0)2

σ 2

)
, (5)

which is the stationary limit of an Ornstein-Uhlenbeck process
with boundaries set at infinity.

We can calculate the mean and variance of the first-spike
interval, Tf s, defined as the time elapsed from tps to the arrival
of the first spike, using the mapping between our problem and
that of determining the statistics of the interspike intervals of
a single leaky IF neuron. Conditioned on V (tps) = V0, these
statistics are given by the standard expressions [36,37]

〈Tf s〉V0
= τ

√
π

∫ (Vth−I0−Is )/σ

(V0−I0−Is )/σ
du eu2

(1 + erf (u)) (6)

and

〈
δT 2

f s

〉
V0

= 2πτ 2
∫ (Vth−I0−Is )/σ

(V0−I0−Is )/σ
dx ex2

×
∫ x

−∞
du eu2

(1 + erf (u))2. (7)

We can then combine these results to compute the mean
and variance of the first-spike interval across trials. If we
approximate the distribution of initial membrane potentials
by the stationary Ornstein-Uhlenbeck process limit (5) in the
low-firing-rate regime Vth − I0 � σ , we obtain the lowest-

FIG. 2. Scaling of local trial-to-trial timing variability in a chain
of single neurons. The results of numerical experiments (Sec. II D)
are shown as dots, and the solid lines show the asymptotic approx-
imations obtained in Sec. II A. The ordinate shows the standard
deviation 〈δT 2

f s〉1/2 of the first-spike interval, and the abscissa shows
the standard deviation σ of the noise. Increasing values of Is are
indicated by darker shades of gray.

order asymptotic expansions

〈Tf s〉
τ

∼ log
( Is

I0 + Is − Vth

)
− σ 2

4(I0 + Is − Vth )2
(8)

and 〈
δT 2

f s

〉
τ 2

∼ σ 2

2(I0 + Is − Vth )2
(9)

in the limit of large synaptic input Is + I0 − Vth � σ (a de-
tailed derivation of these expressions is given in Appendix
A 2). The scaling of this variability with Is and σ for fixed
I0 and Vth is illustrated in Fig. 2 (see Sec. II D). In Appendix
A 3 we also derive asymptotics for 〈Tf s〉 and 〈δT 2

f s〉 using the
alternative approximation P(V0) ≈ δ(V0 − I0).

B. Correlated variability in a chain of single neurons

Thus far we have only considered sources of variability that
are independent across neurons. However, in biological neural
networks there are many possible mechanisms that could in-
troduce correlated variability, such as correlated external input
[4,7,37,38]. Here we consider a simple model for correlated
variability due to neural fatigue, i.e., a loss in a neuron’s
excitability due to effects like synaptic depression [39].

In our model the spiking threshold in a given trial is in-
creased by some multiple m ∈ {0, 1, . . . , mmax} of a small
increment δVth relative to the baseline threshold Vth. We as-
sume that, across trials, m is drawn from some distribution
with mean 〈m〉 and variance 〈δm2〉. Working in the regime
in which mmax δVth � I0 + Is − Vth, relevant to neurons in a
synfire chain which receive a barrage of inputs from the syn-
chronous firing of presynaptic pool of neurons, we can use our
previously obtained asymptotic expansions (8, 9) of the mean
and variance of the first-spike interval conditioned on Vth to
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obtain

〈Tf s〉
τ

∼ log
( Is

I0 + Is − Vth

)
+ δVth

I0 + Is − Vth
〈m〉 (10)

and 〈
δT 2

f s

〉
τ 2

∼ σ 2

2(I0 + Is − Vth )2

[
1 + 2

δVth

I0 + Is − Vth
〈m〉

]

+ δV 2
th

(I0 + Is − Vth )2
〈δm2〉 (11)

to lowest order in both δVth/(I0 + Is − Vth ) and σ/(I0 + Is −
Vth ) (see Appendix A 2 for details). If we now consider two
different neurons a and b, the trial-to-trial covariance of their
first-spike intervals T a

f s and T b
f s will be〈

δT a
f s δT b

f s

〉
τ aτ b

∼ δV a
thδV b

th(
Ia
0 + Ia

s − V a
th

)(
Ib
0 + Ib

s − V b
th

) 〈δm2〉 (12)

to lowest order in δV a
th/(Ia

0 + Ia
s − V a

th ) and δV b
th/(Ib

0 + Ib
s −

V b
th ).

Therefore we obtain a model in which the trial-to-trial
covariance matrix of the first-spike intervals of neurons in
the chain is the sum of a diagonal, local-to-a-neuron com-
ponent and a rank-1 global component. Concretely, if we
assume for simplicity that all neurons in the chain are iden-
tical, the covariance matrix of the first-spike intervals of the
neurons in the chain is given as � f s = σ 2

I I + σ 2
G11�, where

σ 2
I = τ 2 σ 2

2(I0+Is−Vth )2 [1 + 2 δVth
I0+Is−Vth

〈m〉] is the local component

of the first-spike-interval variance, σ 2
G = τ 2 δV 2

th
(I0+Is−Vth )2 〈δm2〉 is

the global component of the first-spike-interval variance, I
is the identity matrix, and 1 is the ones vector. If the neu-
rons were nonidentical, σI and σG would no longer be scalar
constants, and the covariance matrix would have the form
� f s = �I + σGσ�

G for a diagonal matrix �I and a vector σG.
This decomposition is illustrated in Fig. 3(a).

In the above calculation we assumed that one can perfectly
read out the first-spike times from the neurons of the chain.
However, it is unlikely that noise-free readout is possible in
biological timekeeping systems. In the presence of readout
noise, the first-spike-interval covariance matrix will have an
additional component that increases the variance of individual
intervals and introduces negative covariance between adjacent
intervals, a phenomenon known as timing jitter [35,40]. As-
suming for simplicity that the readout noise is homogeneous,
additive, and independent of other forms of variability and has
standard deviation σJ , the overall covariance matrix is given
as

� f s = σ 2
I I + σ 2

G11� + σ 2
J DD�, (13)

where D is the N × (N − 1) bidiagonal differencing matrix
with 1’s along the diagonal and −1’s along the subdiagonal:
Djk = δ jk − δ j(k−1).

C. From mechanism to statistical models of timing variability

In the preceding sections we have characterized the timing
variability inherent in a simple neural model. This calculation
showed that the covariance matrix of the intervals between
the first spikes of successive neurons in the chain could be

FIG. 3. Correlated trial-to-trial timing variability in a chain of
single neurons. (a) Schematic representation of the decomposition
of the interval-interval covariance matrix into local and global com-
ponents as described in Sec. II B (see expressions for σ 2

I and σ 2
G).

(b) Scaling of the local and global variability with interval duration.
The results of numerical experiments (see Sec. II D) are shown
by circles and squares for local and global variability, respectively,
while the predictions of asymptotic theory (see Secs. II B and II C)
are shown by solid and dashed lines. Realizations of the random
sampling used to generate intervals are plotted as individual markers.

decomposed into a diagonal local component, a rank-1 global
component, and a structured component resulting from imper-
fect readout of spike times. Strikingly, the same covariance
structure is present in statistical models of behavioral timing
variability [35,40]. In particular, it matches a Gaussian gen-
erative model for behavioral interval durations proposed for
the zebra finch song by Glaze and Troyer [35]. For a set of P
intervals, this model is parameterized by a vector w ∈ RP and
diagonal latent variable covariance matrices � ∈ RP×P and
� ∈ R(P−1)×(P−1). Then the vector of interval durations in the
μth trial is generated as

tμ = t̄ +
√

�ξμ + wzμ + D
√

�uμ, (14)

where t̄ is the average duration, and zμ ∼ N (0, 1), ξμ ∼
N (0, IP ), and uμ ∼ N (0, IP−1) are independent latent factors
that are independent and identically distributed across trials.
The interval duration covariance matrix in this model is thus

�int = � + ww� + D�D�. (15)

For homogeneously variable intervals, we can therefore as-
sociate each component of the covariance matrix in this
behavioral model to one of the components of the first-spike-
interval covariance matrix (13) in our neural model.

The connection between the statistical structures of neural
and behavioral variability also leads to a prediction for how
variability should scale with behavioral interval duration un-
der a simple timekeeping model. We assume that the basic
unit of time is measured via noisy readout of the first-spike
times T a

f s of neurons with covariance (13), and that longer
behavioral intervals TiK are formed by summing the durations
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of sequences of K first-spike intervals:

TiK =
iK∑

a=(i−1)K+1

T a
f s. (16)

Then, assuming for convenience that K evenly divides N , the
interval-interval covariances are given by sums of the corre-
sponding K × K submatrices of � f s. This summation yields a
N/K × N/K interval duration covariance matrix

�int = Kσ 2
I I + K2σ 2

G11� + σ 2
J DD�, (17)

where the scaling of the independent and global components
is trivial and that of the jitter component follows from the
observation that DD� is a tridiagonal matrix with sub- and
superdiagonal elements equal to −1, first and last diagonal el-
ements equal to +1, and other diagonal elements equal to +2.
Therefore, in this simple model for tracking longer intervals
of time, the assumption that the first-spike-interval covariance
matrix has the given structure implies that the interval covari-
ance matrix will have the same structure. Furthermore, the
different components of variability have distinct scalings with
interval length: the independent component scales linearly,
the global component quadratically, and the jitter component
is constant. We note that this scaling of local and global
components of variability is independent of the details of the
single-neuron model, provided that the covariance of the first-
spike intervals produced has the form of (13). This variance
decomposition and scaling with interval length are illustrated
in Fig. 3.

D. Numerical simulations

We compare the theoretical asymptotics we obtained in
Secs. II A, II B, and II C to the results of numerical exper-
iment. To study the scaling of local variability with noise
variance and synaptic strength as shown in Fig. 2, we perform
104 realizations of a single-neuron simulation. In these exper-
iments we fix τ = 20 ms, I0 = −70 mV, and Vth = −45 mV
while varying σ and Is. We integrate the Langevin equa-
tion (1) using the Euler-Maruyama method [41] augmented
by the reset rule with a time step of 	t = 10−3 ms. The
Euler-Maruyama stochastic integration method is an explicit
first-order accurate method in the absence of noise and accu-
rate to order 1/2 in the presence of noise. We find empirically
that increasing or decreasing the time step by factors of 10
does not influence the qualitative results. For all parame-
ter values tested, we observe good agreement between our
asymptotic approximation and the experimental results for the
mean first-spike interval. As shown in Fig. 2, for the lowest
synaptic strengths and largest noise variances, we observe
some discrepancy between asymptotic theory and experiment
for the first-spike-interval variance. This is unsurprising, since
in that regime Is + I0 − Vth is only around five times greater
than the standard deviation of the noise; hence higher-order
terms in the expansion are non-negligible (see Appendix A 2).

To study the influence of introducing neural fatigue as
described in Sec. II B, we simulate a chain of 80 identical
neurons using the methods described above. In these ex-
periments we fix σ = 1 mV and Is = 45 mV. Over the 104

realizations performed, we draw the parameter m from the

discrete uniform distribution on {0, . . . , 249}, with the spiking
threshold increment set in terms of the baseline threshold Vth

as δVth = 10−3Vth. We then define intervals of varying lengths
by grouping together uniformly randomly sampled sequences
of neurons as described in Sec. II C. We fit the generative
factor model described in Sec. II C to the intervals generated
by our network using the expectation-maximization algorithm
described in [35]. In Fig. 3(b), we plot the square root of the
local and global components of variability as a function of
interval duration to more clearly illustrate their scaling. We
observe good qualitative agreement between the theory and
the results of the numerical experiments.

III. TRIAL-TO-TRIAL TIMING VARIABILITY IN
A NOISY HOMOGENEOUS SYNFIRE CHAIN

In Sec. II we considered a chain of single neurons with
simplified dynamics and coupling for the sake of analytical
tractability. In this section we study variability in a more
realistic neural network, a synfire chain [26,27,42–44]. A
synfire chain is a feedforward network of multiple pools of
neurons, also termed nodes or layers, which are linked by
excitatory synaptic connections. We model the neurons in the
synfire chain as bursting neurons and add a set of readout
neurons. Bursts have been known to stabilize synfire chains
[30]; however, we note that the structure of variability does
not change if we model neurons that emit a single spike rather
than bursts.

We construct a chain of N pools, each composed of M iden-
tical neurons. Every neuron in a given pool i is connected to all
neurons in the next pool i + 1 with equal weights. We model
the synaptic input to each neuron by a low-pass filtered spike
train g(t ), and the noise due to noisy synaptic transmission
and other cellular processes by a zero-mean Gaussian process√

τmη(t ) with autocorrelation 〈η(t )η(t ′)〉 = σneuronδ(t − t ′).
Neurons in the first pool receive an extra input J (t ), which
is modeled as a rectangular pulse of height J0 and width Tp.
In addition to the per-neuron noise, we include another noise
term, which we refer to as “shared” noise. This noise ξ (t ) is
generated by a white Gaussian process but is shared across
all neurons in a given pool, with mean 〈ξ (t )〉 = 0 and au-
tocorrelation 〈ξ (t )ξ (t ′)〉 = σpoolδ(t − t ′). Our motivation for
including this additional noise term will become clear later.
Then the subthreshold dynamics of the membrane potential of
neuron j in pool i are given by

τmV̇ (i)
j = El − V (i)

j + J (i)
j (t ) + √

τmη
(i)
j (t )

+ g(i)
j (t ) + √

τmξ (i)(t ), (18)

where J (i)
j is zero for all i > 1. The synaptic input g(i)

j (t ) is
modeled by the low-pass-filtered spike train [37]

τsġ
(i)
j = −g(i)

j + τsIs

M

M∑
k=1

S−1∑
l=0

δ
(
t − t (i−1)

ps,k − τbl
)
, (19)

where t (i−1)
ps,k denotes the first-spike time of the kth neuron

of the (i − 1)th pool and Is sets the strength of synaptic
coupling. The neurons are modeled to emit a burst of S
spikes separated by a fixed interval τb, rather than a sin-
gle spike. When a neuron’s membrane potential reaches
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FIG. 4. Factor decomposition of the interval duration covariance matrix of the noisy homogeneous synfire chain model. (a) Full model
covariance matrix. (b)–(d) The covariance matrices of the latent factors resulting from applying the analysis method of [35] to the full model
shown in (a).

the firing threshold Vth, it is then fixed at that threshold
until the specified burst duration has elapsed, at which point
it is reset to Vr , and once again evolves according to the
subthreshold dynamics (18). As in Sec. II B, we model neu-
ral fatigue as a small increase in the membrane potential
threshold of all the neurons in the chain after each trial.
We also considered a different neural mechanism for fa-
tigue, a simplified model of synaptic depression. However,
the structure of the resulting trial-to-trial timing variability
is independent of which neural mechanism of fatigue we
implement.

For each pool in the chain we have a single readout neuron,
which receives synaptic input from all neurons of that pool
along with a white Gaussian noise input with mean zero and
autocorrelation σreadoutδ(t − t ′) [Fig. 1(a)]. The dynamics of
membrane potential and synaptic inputs for the readout neu-
rons are similar to those in (18) and (19) with the appropriate
inputs.

We study the statistical structure of timing variability in
this synfire chain model using numerical simulations. As for
the simple model (II D), we integrate the Langevin dynamics
(18), (19) using the Euler-Maruyama method, with a time step
of 10−2 ms. The parameter values we use are not unique and
are chosen to be in a biologically plausible range. Unless
otherwise noted, we simulate a chain of N = 81 pools of
M = 32 neurons each. We set the reset and resting potentials
to −70 mV, the baseline spiking threshold to −45 mV, and
the synaptic strength to Is = 45 mV. We fix the membrane
constant τm to 20 ms, the synaptic time constant τs to 5 ms,
the number of bursts S to 4, and the spacing of bursts τb

to 2 ms. Unless otherwise noted, we let the strengths of the
per-neuron, per-pool, and readout noise be 0.5, 1, and 3 mV,
respectively. As in Sec. II D, we fix the spiking threshold in-
crement δVth to 10−3Vth and draw the multiplicative increment
factor from the discrete uniform distribution on {0, . . . , 249}
for each trial. Propagation in a synfire chain is not always
successful [27,44]. We consider a trial to be successful if
the total number of spikes in the chain is between 4N and
4N + 0.1 (4N ), and if all readout neurons fire once. In the ex-
periments on which Figs. 4, 5, and 6 were based, two trials out
of 1000 were excluded from our simulations that included all
sources of noise. In Fig. 7(c) no trials were excluded from the
inset.

A. Relating neuronal mechanisms to different components
of trial-to-trial timing variability

In Sec. II B, we showed that introducing correlated vari-
ability to a chain of IF neurons through a simple model
of neural fatigue yields a spike interval covariance matrix
that is the sum of a local component and a rank-1 global
component. To test whether this structure is present in the
trial-to-trial timing variability of the noisy homogeneous syn-
fire chain model, we define intervals by grouping together
sequences of ten neurons, yielding intervals with a mean
duration of 59.5 ms and the covariance structure shown in
Fig. 4 (a). Then we take the full model covariance matrix
and use the generative model proposed in [35] (see Sec. II C)
to decompose it into three components—a local compo-
nent, a global component, and a jitter component, Fig. 4.

FIG. 5. Interval duration covariance matrices of the noisy homogeneous synfire chain model. (a) Interval duration covariance matrix for
the full model. (b)–(d) Interval duration covariance matrices due to chain noise, neural fatigue, and readout noise alone, respectively. In
Figs. 7 (a) and 7(b) we show the contribution of each of the noise sources in (18) to the interval duration covariance matrix separately.
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FIG. 6. Scaling of local, global, and jitter components of vari-
ability with interval duration in the noisy homogeneous synfire chain
model with 32 neurons per pool. Circular markers indicate the results
of numerical simulations, and dashed lines show power-law fits to
the data, with exponents of 0.46 and 1.00 for the local and global
components, respectively. No fit is shown for the jitter component,
as there does not exist a statistically significant Spearman correlation
between it and the interval duration (ρ = −0.09, p = 0.25).

We find that the resulting decomposition explains the co-
variance matrix well, with a standardized root-mean-squared
residual of 0.0067 [35]. Thus the statistical structure of trial-
to-trial timing variability in the noisy homogeneous synfire
chain model is consistent with that of the simple model,
with the addition of the component corresponding to readout
noise.

Next, we delineate the neural mechanisms behind the
components of variability by selectively including different
sources of noise. First we include only the chain noise, which
comprises the shared and the neuron-specific noise terms in
the input to a neuron shown in (18). In this case we recover
a diagonal covariance matrix, which we identify as local
variability Fig. 5(b). When we include only neural fatigue,
we recover the global component of variability, producing a
nearly rank-1 covariance matrix, Fig. 5(c). If we only include
noise in the readout neurons, the duration of neighboring
intervals are anticorrelated [Fig. 5(d)], corresponding to jitter.
This exercise allows us to identify distinct cellular and synap-
tic mechanisms that explain distinct components of temporal
variability: Chain noise contributes to the local component,
fatigue to the global component, and readout noise to the jitter
component.

B. Scaling of the components of variability
with interval duration

In Sec. II C we observed that if one groups multiple
neurons together to form intervals, the local component of
variability should scale with the square root of the interval
length while the global component should scale linearly with
interval length. This scaling is independent of the details of
the model and simply follows from the assumption that the
total trial-to-trial variability of the spike interval can be de-
composed into a local component and a global component,
both of which are uniform in magnitude across neurons. Ap-
plying the factor analysis method introduced in [35] to the
spike times produced by the noisy homogeneous synfire chain
model (Fig. 4), we find that the scaling of local and global
components of variability with interval length is consistent
with this prediction (Fig. 6).

FIG. 7. Noisy homogeneous synfire chain model: (a), (b) The
contribution of each of the noise sources in (18), the per-neuron noise
and the per-pool noise which is shared across neurons in the same
pool, to the covariance matrix of interval duration (Fig. 5). (c) Scaling
of interval variability with the number of neurons per pool due to the
two noise sources, the per-neuron noise (filled circles) and shared
noise among neurons in the same pool (open circles). The filled
black, gray, and light gray circles show the interval variability due
to per-neuron noise with σ = 1 mV, 2 mV, and 3 mV, respectively.
Solid lines are power-law fits to the data, with exponents of –0.95
(black line), –0.94 (gray line), and –1.04 (light gray line). Open cir-
cles show the same thing but for noise that is shared among neurons
in the same pool with σ = 1 mV. Error bars show the standard error
of the mean. The data point for per-neuron noise of σ = 3 mV and
M = 8 was excluded because the chain propagation failed in more
than 10% of trials

C. Scaling of local variability with pool size

In Figs. 7(a) and 7(b), we show the contribution of each
of the noise sources in (18), the per-neuron noise and the
per-pool noise which is shared across neurons in the same
pool, to the covariance matrix of interval duration. If we vary
the number of neurons per pool M, we find that the interval
duration variance due to per-neuron component of chain noise
falls as 1

M [Fig. 7(c)]. Thus, despite the fact that the system is
nonlinear, such noise adds quasilinearly. Therefore, to have a
non-negligible local component of variability in the noisy ho-
mogeneous synfire chain model, we must assume that neurons
belonging to the same pool receive shared noise. In Fig. 7(c)
we see that the interval variability due to this noise mechanism
is roughly independent of the number of neurons per pool.
Varying the number of neurons per pool did not have an effect
on the readout noise or fatigue. This is shown in the inset of
Fig. 7(c).
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FIG. 8. Contributions of different sources of noise in the HVC synfire chain model to the interval duration covariance matrix (model
modified from Long et al. [32]). (a) Interval duration covariance matrix for the full model. (b) Interval duration covariance matrix with chain
noise only. (c) Difference between covariance matrix with chain noise and fatigue and that with chain noise only. (d) Difference between
covariance matrix with readout and chain noise and that with chain noise only.

IV. THE STRUCTURE OF VARIABILITY IN A
BIOLOGICALLY REALISTIC SYNFIRE CHAIN MODEL

OF HVC IS CONSISTENT WITH THAT OBSERVED
IN THE ZEBRA FINCH SONG

The zebra finch song is a behavior for which a synfire chain
is thought to be involved in the timing of [45]. The zebra finch
songs consist of several introductory notes, followed by a few
renditions of a motif, sung in a very repetitive manner. Motifs
contain three to eight syllables. Syllables range from 50 to
100 ms and are separated by gaps. The timing of the song is
controlled by clocklike bursting in the premotor nucleus HVC,
particularly in HVC neurons projecting to the robust nucleus
of the arcopallium (RA). Many studies suggest that the under-
lying neural circuit behavior is consistent with a synfire chain
model [13,14,32,46,47]. Furthermore, experimental evidence
supports millisecond-scale correlations between HVC activity
and the song [16,18,20]. Thus we want to test if the trial-to-
trial variability in a synfire chain is also consistent with the
trial-to-trial variability observed in the song duration. Detailed
studies of the trial-to-trial variability in the highly stereotyped
zebra finch song were done by Glaze and Troyer [33–35].

We simulate a biologically realistic HVC synfire chain
model introduced in [32], which has been shown to agree
with measurements of neural variability in HVC. We provide
a detailed description of this model in Appendix B. This
model consists of a sequentially connected chain of 70 pools,
each containing 30 HVCRA neurons, along with a population
of 300 HVCI inhibitory interneurons. HVCRA neurons are
modeled as two-compartment bursting neurons incorporating

dendritic calcium spikes, while HVCI neurons are modeled as
single-compartment nonbursting neurons. Inhomogeneity is
introduced by randomizing the existence and strength of con-
nections between neurons. Briefly, HVCRA neurons connect
to HVCI neurons with probability 0.05, and HVCI neurons
connect to HVCRA neurons with probability 0.1. Each HVCRA

connects to an HVCRA neuron in the next pool with probabil-
ity P = 0.5 and a connection strength drawn from the uniform
distribution on [0, gEEmax/(30P)]. Each neuron receives noisy
synaptic input in the form of Poisson spike trains which
constitute the chain noise for this model. Synaptic fatigue
was modeled by modifying gEEmax as (1 − mδg)gEEmax, where
δg = 10−3, with gEEmax = 3 mS/cm2, and m drawn i.i.d.
across trials from the uniform distribution on {0, . . . , 249} as
before. All remaining model parameters values are set to those
used in Long et al. [32]. We read out timing information from
the chain using the readout model introduced in Sec. III. The
model was integrated using the Euler-Maruyama method with
a time step of 5 × 10−3 ms.

We first observe that the full model covariance matrix
of interval duration of this model [Fig. 8(a)] is similar to
that of the homogeneous synfire chain model [Fig. 5(a)] and
has the same structure and magnitude as the song syllable
interval duration covariance matrix reported by Glaze and
Troyer [35]. Glaze and Troyer [35] showed that the generative
model given in (14) is a good description of the statistical
structure of the zebra finch song interval duration variability.
We previously showed that the structure of variability of the
noisy homogeneous synfire chain model is well described by
this generative model (Sec. III); we find the same to be true

FIG. 9. Factor decomposition of the interval duration covariance matrix of the HVC synfire chain model (model modified from Long et al.
[32]). (a) Full model covariance matrix. (b)–(d) The covariance matrices of the latent factors resulting from applying the analysis method of
[35] to the full model shown in (a).
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FIG. 10. Scaling of the local, global, and jitter components of
syllable timing variability with interval duration in zebra finch song
(data from Glaze and Troyer [35]). Glaze and Troyer [35] recorded
songs of zebra finches, which are composed of a stereotyped se-
quence of syllables and gaps, a different sequence for each bird.
After identifying syllables and gaps, and their durations in each song,
they fitted the generative model described in Sec. II C to this dataset,
separately for each bird. Reported data in the figure is extracted from
their Fig. 3. Each data point represents a syllable-bird pair. As in
Fig. 6, we fit the relationships between interval duration and the
local and global components of variability with power laws, yielding
exponents of 0.53 and 1.14, respectively. No fit is shown for the jitter
component, as it is not significantly correlated with interval duration.

for the HVC synfire chain model (Fig. 9). The magnitude of
variability in the model for 50-ms intervals is of order 1 ms
(for each component), which is consistent with experimental
findings (Fig. 10; data from [35]). As in Sec. III A, we use the
results of Sec. II C to connect behavioral variability to neural
mechanisms. Consistent with our results in Sec. III A, we find
that the chain noise contributes to the local component of the
song variability, fatigue contributes to the global component,
and readout noise contributes to the jitter component (Fig. 8).

We also examine how the different components of vari-
ability in syllable duration scale with syllable duration. The
scalings of the components of variability of syllable duration
(Fig. 11) agree with the predictions of Sec. II C, as do previous
models [Figs. 3(b) and 6] and the experimental data (Fig. 10).

Finally, we note that unlike the noisy homogeneous synfire
chain model (Sec. III), there is no need to add per-pool noise,
which is shared across neurons in the same pool. That per-
pool noise was necessary in the noisy homogeneous synfire
chain model to obtain a non-negligible local component of
variability because the variability in input currents to dif-

FIG. 11. Scaling of the local, global, and jitter components of
interval duration variability in the HVC synfire chain model (model
modified from Long et al. [32]). As in Fig. 6, we fit the relationships
between interval duration and the local and global components of
variability with power laws, yielding exponents of 0.42 and 1.03,
respectively. No fit is shown for the jitter component, as it is not
significantly correlated with interval duration.

ferent neurons in a pool would otherwise be uncorrelated
(Sec. III C). In the HVC synfire chain model, sufficient local
variability is created by variable synaptic inputs due to uncor-
related presynaptic Poisson spike trains and correlated noisy
inputs from inhibitory neurons connecting to multiple neurons
in a pool.

V. DISCUSSION AND CONCLUSION

In this paper we presented analytical and computational
analyses of the trial-to-trial timing variability in synfire
chains. We first showed how variability scales with input
strength and noise level in a simple, analytically tractable
chain of single neurons in a low-firing-rate regime. We also
showed how trial-to-trial variability scales with interval du-
ration in this simple model. Then we demonstrated with
simulations that our main results carry to noisy homogeneous
synfire chains. We found that the statistical structure of timing
variability in the chain is well described by a generative model
which consists of local, global, and jitter components. Fur-
thermore, we were able to relate each of these components to
distinct neural mechanisms in the model. Finally, we showed
that our main results hold in a biologically realistic synfire
chain model of the premotor nucleus HVC in songbirds and
that the structure and magnitude of variability in the model
agree with that observed in songbird songs.

Our findings have important implications for the rela-
tionship between neural and behavioral variability. Even the
most stereotyped of animal behaviors, like the songs of zebra
finches, show significant trial-to-trial variability [34]. This
variability can be an unavoidable nuisance, or it might be
there for an advantageous reason, for example, to allow the
system to explore more of the behavioral space to help in trial-
and-error motor learning [1–3] or help in social contexts [48].
Therefore, understanding the mechanisms which generate and
regulate trial-to-trial variability has gained considerable inter-
est [2,4,7].

Particularly, it has been argued that some of this variabil-
ity is rooted in neural activity that controls behavior [2,4,7].
Measurements of neural activity show significant trial-to-trial
variability [2,4,7,49]. These variations are not independent
of behavior; for example, they are known to correlate with
behavioral choice in a trial-by-trial basis [50]. Given this
background, it is natural to ask whether temporal variability
of behavior should reflect the statistics and structure of tem-
poral variability of neural circuits that represent or govern
the behavior’s timing in a trial-to-trial basis [9,12]. Indeed,
interrelationships between the timings of neural dynamics and
behavior have been observed in various experimental studies
[13–20]. For example, Srivastava et al. [18] show that in
Bengalese finches millisecond-scale changes in the timing of
a single spike in a burst in respiratory muscle fibers predicts
significant differences in breathing dynamics and millisecond-
scale variations in precisely timed electrical stimulation of
respiratory muscles strongly modulate breathing output. This
millisecond-scale spike timing control of behavior extends to
other animals and behaviors [20].

As the temporal variability in zebra finch song and in
HVC neurons are both on the millisecond scale [13,15,32–
35], we speculated that they may be linked. We showed that
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the temporal variability observed in a biologically realistic
model of the zebra finch HVC chain [32] is consistent with
the magnitude and structure of the timing variability in the
zebra finch song. Thus our findings provide an example of
a detailed match between neural and behavioral variability
and suggest a possible neural account of behavioral vari-
ability. A direct experimental test of this suggestion would
be to look for correlations in a trial-by-trial basis between
millisecond-scale temporal variations in the song and spike
times of RA-projecting HVC neurons.

Potential weaknesses of our neural explanation of the zebra
finch song variability are the following. First, while the dom-
inant hypothesis for the song-timing circuit is a synfire chain
[32], this question is not fully settled. Further, recent work
suggests that the song-timing circuit may not even be fully
localized within the HVC but is distributed across multiple
areas [51]. If the distributed circuit is a synfire chain, which is
consistent with the results of Hamaguchi et al. [51], our results
still remain valid. Second, in zebra finches, variability of song
can be actively regulated through involving the lateral mag-
nocellular nucleus of the anterior neopallium (LMAN) [52].
Indeed Ali et al. [15] observed that LMAN lesions lead to
a reduction in the local component of song timing variability,
which was speculated to be mediated by indirect LMAN input
to HVC [53]. Another possible source of variability is sensory
inference errors [5]. HVC receives feedback auditory input
through the nucleus interfacialis of the nidopallium [54], and
altered auditory feedback can lead to temporal changes in the
song [55]. In the HVC synfire chain model [32], noise was
introduced as excitatory and inhibitory independent Poisson
spike trains, with no specific reference to where such trains
may come from and how could they be regulated. Third, the
song production pathway goes from HVC to RA, and then
from RA to the tracheosyringeal part of the hypoglossal nerve
(nXIIts), which then controls muscular contractions of the sy-
rinx. Neural variability in all these areas as well as variability
in muscular contractions contribute to temporal variability of
the song. In our model, all of this pathway’s contributions to
temporal variability are incorporated into the noise injected to
a readout neuron, which in turn contributes mostly to temporal
jitter. It is very possible that other components of variability
are affected by the downstream activity. Finally, a notion of
tempo variation that we did not consider arises from struc-
tural changes to the chain, such as homeostatic and synaptic
plasticity [15,46,47], or experimental perturbations [14]. In
birdsongs, these mechanisms can lead to tempo changes on
the order of tens of milliseconds [14,15,46,47], and when
naturally occurring, require thousands of song repetitions to
take effect [15].
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APPENDIX A: ASYMPTOTICS FOR THE CHAIN
OF INTEGRATE-AND-FIRE NEURONS

1. Stationary membrane potential distribution
in the low-rate limit

Here we review the approximate firing rate and stationary
membrane potential distribution in the low-rate limit Vth −
I0 � σ [36]. Inspecting the equation

ν = 1

τ
√

π

[∫ Vth−I0
σ

Vr −I0
σ

du eu2
(1 + erf (u))

]−1

, (A1)

we can see that the integral is dominated by the upper limit due
to the exponential. Making the change of variables u′ ≡ u/h,
h ≡ (Vth − I0)/σ , v ≡ (V0 − I0)/(Vth − I0), we have

ν = σ

τ
√

π (Vth − I0)

[∫ 1

v

du eh2u2
(1 + erf (hu))

]−1

≈ σ

2τ
√

π (Vth − I0)

[∫ 1

v

du eh2u2

]−1

≈ σ

2τ
√

π (Vth − I0)

[
eh2u2

2uh2

∣∣∣∣
1

v

]−1

≈ Vth − I0

στ
√

π
exp

(
− (Vth − I0)2

σ 2

)
, (A2)

where we integrated by parts in the third line. By a similar
argument, we can approximate the stationary distribution of
the membrane potential as∫ Vth−I0

σ

V −I0
σ

du �
(

u − V0 − I0

σ

)
eu2 ≈ 1

2ντ
√

π
(A3)

in this limit.

2. Moments of the first-spike interval
in the low-rate stationary limit

To derive the moments of the first-spike interval in the
low-rate stationary approximation, we start with the standard
results [given as (6) and (7) in the main text] for the mean and
variance conditioned on V0 [36,37]:

〈Tf s〉V0
= √

πτ

∫ (Vth−I0−Is )/σ

(V0−I0−Is )/σ
dy ey2

[1 + erf (y)] (A4)

and 〈
δT 2

f s

〉
V0

= 2πτ 2
∫ (Vth−I0−Is )/σ

(V0−I0−Is )/σ
dx ex2

×
∫ 0

−∞
dy e(x+y)2

[1 + erf (x + y)]2. (A5)

Considering the mean first-spike interval, we use the integral
representation of the error function as

1 + erf (x) = 2√
π

∫ 0

−∞
du e−(u+x)2

(A6)
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to write

〈Tf s〉V0

τ
= 2

∫ (Vth−I0−Is )/σ

(V0−I0−Is )/σ
dy ey2

∫ 0

−∞
du e−(u+y)2

=
∫ 0

−∞

du

u
e−u2

[e2u(I0+Is−V0 )/σ − e2u(I0+Is−Vth )/σ ],

(A7)

where we note the cancellation in the bracketed integrand that
ensures that it does not diverge as u → 0−. We can then easily
compute the expectation over the approximate distribution (5)
of V0 to obtain

〈Tf s〉
τ

=
∫ 0

−∞

du

u
e−u2

[eu2+2Isu/σ − e2u(I0+Is−Vth )/σ ], (A8)

which, though it does not have a simple closed-form solution,
is the integral of a bounded entire function that decays expo-
nentially fast at infinity (provided that Is > 0) and is therefore
well behaved.

To obtain a similar integral expression for the variance of
the first-spike interval, we recall the law of total variance,〈

δT 2
f s

〉 = 〈〈
δT 2

f s

〉
V0

〉 + 〈
δ
〈
Tf s

〉2
V0

〉
, (A9)

where the outer angle brackets denote averaging over the
distribution of V0 and follow the same procedure that we used
to derive 〈Tf s〉 to obtain〈〈

δT 2
f s

〉
V0

〉
τ 2

=4
∫ 0

−∞
du

∫ 0

−∞
dv

∫ 0

−∞
dw

e−(u+v+w)2+2uv

u + v + w

× [
e(u+v+w)2+2(u+v+w)Is/σ −e2(u+v+w)(I0+Is−Vth )/σ

]
(A10)

and〈
δ〈Tf s〉2

V0

〉
τ 2

=
∫ 0

−∞

du

u

∫ 0

−∞

dv

v
e−u2−v2

[e(u+v)2+2Is (u+v)/σ

− eu2+v2+2Is (u+v)/σ ]. (A11)

With these integral expressions in hand, we can now de-
rive asymptotic expansions for the moments. For brevity we
define the dimensionless scalars α ≡ (I0 + Is − Vth )/σ and
β ≡ (Vth − I0)/σ ; we will work in the limit of low baseline
firing rates β � 1 and large synaptic inputs α � 1. Rescaling
u by 2α in (A8), we can write the mean first-spike interval as

〈Tf s〉
τ

=
∫ 0

−∞

du

u
eu[e(β/α)u − e−u2/4α2

]

= log

(
α + β

α

)
−

∫ 0

−∞

du

u
eu[e−u2/4α2 − 1], (A12)

where we have split the integral into two pieces by adding and
subtracting one from the integrand and evaluated the first of
the remaining integrals. Expanding the remaining integrand
other than the overall exponential weight eu as a power se-
ries and integrating term-by-term using the relationship of
the integrand to the � function [56], we obtain the divergent

asymptotic series

〈Tf s〉
τ

∼ log

(
α + β

α

)
+

∞∑
k=1

(−1)k (2k − 1)!

4kk!α2k

∼ log

(
α + β

α

)
− 1

4α2
+ O(α−4), (A13)

which yields the lowest-order approximation given in the
main text.

We now consider 〈δT 2
f s〉. Converting the integral over the

negative octant in (A10) to an integral over the positive octant,
making the change of variables x ≡ u, y ≡ v + w, z ≡ w, and
parametrizing the domain of integration such that we integrate
first over z ∈ [0, y], we have〈〈

δT 2
f s

〉
V0

〉
τ 2

= 2
∫ ∞

0
dx

∫ ∞

0
dy

e−2α(x+y)

x(x + y)
[e2xy − 1]

× [
e−(x+y)2 − e−2β(x+y)]. (A14)

Then, adding the expression for 〈δ〈Tf s〉2
V0

〉 given in (A11) to

the above expression for 〈〈δT 2
f s〉V0

〉 as prescribed by the law of
total variance (A9), we have〈

δT 2
f s

〉
τ 2

=
∫ ∞

0
dx

∫ ∞

0
dy e−2α(x+y)[e2xy − 1]

×
[

2e−(x+y)2

x(x + y)
+ 1

xy

(
x − y

x + y

)
e−2β(x+y)

]
. (A15)

As it is antisymmetric about the line y = x, the second term in
the bracketed integrand will vanish under integration over the
positive quadrant, leaving〈

δT 2
f s

〉
τ 2

= 2
∫ ∞

0
dx

∫ ∞

0
dy

e−(x+y)2−2α(x+y)

x(x + y)

[
e2xy − 1

]
.

(A16)

Rescaling x and y by 2α and making the change of variables
u ≡ x + y, v ≡ x, we have

〈δT 2
f s〉

τ 2
= 2

∫ ∞

0

du

u

∫ u

0

dv

v
e−u2/4α2−u[ev(u−v)/2α2 − 1].

(A17)

Expanding the bracketed portion of the integrand as a power
series and observing that∫ u

0
dv vk (u − v)k+1 = k!(k + 1)!

(2k + 2)!
u2k+2, (A18)

we have, integrating over u term by term,〈
δT 2

f s

〉
τ 2

=
∞∑

k=0

k!

2k (2k + 2)!α2k+2

∫ ∞

0
du e−u2/4α2−uu2k+1.

(A19)

To allow us to apply standard asymptotic results to the remain-
ing integral, we note that it is related to Tricomi’s confluent
hypergeometric function U (a, b, z) as α2k+2(2k + 1)!U (k +
1, 1/2, α2) [56], and hence, shifting indices for convenience,
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we can write〈
δT 2

f s

〉
τ 2

∼
∞∑

k=1

(k − 1)!

2kk
U

(
k,

1

2
, α2

)
. (A20)

Using the standard result that

U (a, b, z) ∼ z−a

[
1 − a(a − b + 1)

z

+ a(a + 1)(a − b + 2)(a − b + 1)

2z2
+ O(z−3)

]
,

(A21)

for |z| � 1 [56] we have〈
δT 2

f s

〉
τ 2

∼ 1

2α2
− 1

8α4
+ O(α−6), (A22)

which yields the lowest-order approximation given in the
main text.

To obtain the asymptotic approximations for the timing
variability in the simple model for neural fatigue given in
the main text (10, 11, 12), we start from the asymptotic ex-
pansions without fatigue (8, 9) and apply the laws of total
expectation and total variance given the assumed distribution
of the parameter m. We then expand the resulting expressions
about the baseline spiking threshold Vth to lowest order in
δVth/(Is + I0 − Vth ), assuming that mmax δVth � Is + I0 − Vth,
yielding the asymptotic approximations (10) and (11).

3. Moments of the first-spike interval
in a δ-function approximation

In the previous Appendix and in the main text, we
considered the approximation of the distribution of initial
membrane potentials by the stationary Gaussian limit (5).
In this Appendix we consider a δ-function approximation
P(V0) ≈ δ(V0 − 〈V0〉). This approximation maps directly to
the standard treatment of leaky IF neurons with the appro-
priate replacement of Vr by I0. Here we review the derivation
of the corresponding asymptotic results [37,38]. In the limit
Vth − I0 � σ of low firing rates, we have 〈V0〉 = I0; hence we
fix V0 = I0 in this approximation. Considering the mean first-
spike interval, we again start from the standard expression (6)
with V0 set to I0 and rescale σy �→ y, yielding

〈Tf s〉
τ

=
√

π

σ

∫ Vth−I0−Is

−Is

dy ey2/σ 2
[
1 + erf

( y

σ

)]
. (A23)

In the limit Is + I0 − Vth � σ of large synaptic inputs, the
quantity y in the above integrand is always negative, and we
have y/σ � −1. Using the asymptotic expansion of the error
function for x � −1 [56],

erf (x) ∼ −1 + e−x2

√
π |x|

(
1 − 1

2x2
+ · · ·

)
, (A24)

we obtain

〈Tf s〉
τ

∼ log
( Is

Is + I0 − Vth

)
− σ 2

4

(
1

(Is + I0 − Vth )2
− 1

I2
s

)
(A25)

to lowest order. Similarly, for the variance of the first-spike
interval, we start with the standard expression (7) with V0 =
I0. Again, rescaling the variables of integration by σ and
using the asymptotic form of the error function, we obtain the
lowest-order approximation〈

δT 2
f s

〉
τ 2

∼ σ 2

2

(
1

(Vth − Is − I0)2
− 1

I2
s

)
. (A26)

Comparing these expressions to the corresponding results
(8, 9) in the approximation of the initial membrane potential
distribution by the stationary Gaussian distribution (5), we
observe that they are identical up to the presence of the −I−2

s
terms in the lowest-order approximations. The presence of
these terms in the δ-function approximation means that the
variability decreases more rapidly with increasing synaptic
strength and increases less rapidly with increasing noise vari-
ance σ 2 than in the Gaussian approximation.

APPENDIX B: DETAILS OF THE HVC
SYNFIRE CHAIN MODEL

In this Appendix we provide a detailed description of the
HVC synfire chain model from Long et al. [32]. This model
consists of a chain of 70 sequentially connected pools of
30 HVCRA neurons, along with a population of 300 HVCI

inhibitory interneurons. A given HVCRA neuron connects to
an HVCRA neuron in the next pool with probability P and
an excitatory synaptic conductance drawn from the uniform
distribution on [0, gEEmax/(30P)] mS cm−2, where gEEmax is
a dimensionless parameter. An HVCRA neuron connects to
an HVCI neuron with probability 0.05 and excitatory synap-
tic conductance drawn uniformly from [0, 0.5] mS cm−2.
Finally, an HVCI neuron connects to an HVCRA neuron with
probability 0.1 and an inhibitory synaptic conductance drawn
uniformly from [0, 0.2] mS cm−2. Long et al. [32] chose these
parameter values such that successful spike propagation was
possible for many values of gEEmax.

1. HVCRA dynamics

In the Long et al. [32] model, HVCRA neurons are
modeled as two-compartment bursting neurons. The so-
matic compartment contains leak, Na+, and delay-rectified
K+ conductances, while the dendritic compartment contains
leak, high-threshold Ca2+, and calcium-activated K+ con-
ductances. This model can generate dendritic calcium spikes,
which evoke stereotyped bursts of sodium spikes in the soma.
The membrane potentials Vs and Vd of the somatic and den-
dritic compartments obey the dynamics

CmAsV̇s = As(Is,L + Is,Na + Is,Kdr + Is,exc + Is,inh )

+ Is,ext + Vd − Vs

Rc
,

CmAdV̇d = Ad(Id,L + Id,Ca + Id,CaK + Id,exc + Id,inh )

+ Id,ext + Vs − Vd

Rc
; (B1)

we enumerate the definitions and values of all parameters in
Table I. The dynamics of the injected currents Is,ext and Id,ext
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TABLE I. HVCRA model parameters.

Name Description Value

As Area of somatic compartment 5000 μm2

Ad Area of dendritic compartment 10 000 μm2

Cm Membrane capacitance 1 μF/cm2

Rc Compartment coupling resistance 55 M�

GL Leak conductance 0.1 mS/cm2

GNa Na+ conductance 60 mS/cm2

GKdr Delay-rectified K+ conductance 8 mS/cm2

GCa High-threshold Ca++ conductance 55 mS/cm2

GCaK Ca-dependent K+ conductance 150 mS/cm2

EL Leak reversal potential −90 mV
ENa Na+ reversal potential 55 mV
EK K+ reversal potential −90 mV
ECa Ca++ reversal potential 120 mV
EI Inhibitory reversal potential −80 mV

are freely chosen, while the remaining currents are given as

Is,L = −GL(Vs − EL)

Is,Na = −GNam3
∞h(Vs − ENa )

Is,Kdr = −GKdrn
4(Vs − EK )

Is,exc = −gs,exc(t )Vs

Is,inh = −gs,inh(t )(Vs − EI )
(B2)

Id,L = −GL(Vd − EL)

Id,Ca = −GCar2(Vd − ECa )

Id,CaK = −GCaK
c

1 + 6[Ca]−1
(Vd − EK )

Id,exc = −gd,exc(t )Vd

Id,inh = −gd,inh(t )(Vd − EI ),

where gs,exc, gs,inh, gd,exc, and gd,inh are the total synaptic
conductances of the soma and dendrite. The gating variable
m(t ) = m∞(Vs) is an instantaneous function of Vs, while h, n,
r, c all evolve according to the dynamics

τxẋ = x∞ − x (B3)

for x ∈ {h, n, r, c}, where the activation functions are given as

m∞(Vs) = 1/(1 + exp[−(Vs + 30)/9.5]) (B4)

h∞(Vs) = 1/(1 + exp[(Vs + 45)/7]) (B5)

n∞(Vs) = 1/(1 + exp[−(Vs + 35)/10]) (B6)

r∞(Vd ) = 1/(1 + exp[−(Vd + 5)/10]) (B7)

c∞(Vd ) = 1/(1 + exp[−(Vd − 10)/7]), (B8)

and the time constants are given as

τh = 0.1 + 0.75/(1 + exp[(Vs + 40.5)/6])

τn = 0.1 + 0.5/(1 + exp[(Vs + 27)/15])

τr = 1

τc = 10; (B9)

TABLE II. HVCI model parameters.

Name Description Value

Cm Membrane capacitance 1 μF/cm2

GL Leak conductance 0.1 mS/cm2

GNa Na+ conductance 100 mS/cm2

GKdr Delay-rectified K+ conductance 20 mS/cm2

GKHT High-threshold K+ conductance 500 mS/cm2

EL Leak reversal potential −65 mV
ENa Na+ reversal potential 55 mV
EK K+ reversal potential −80 mV
EI Inhibitory reversal potential −75 mV

the units of all constants are implied. Finally, the calcium
concentration [Ca] evolves as

˙[Ca] = 0.1Id,Ca − 0.02[Ca]. (B10)

Synaptic conductances follow “kick-and-decay” kinetics:
g �→ g + G when a spike arrives at a synapse with conduc-
tance G; τ ġ = −g between spikes, for g ∈ {gexc, ginh}. The
synaptic time constants τexc and τinh are both fixed to 5 ms.

2. HVCI dynamics

In the Long et al. [32] model, HVCI neurons are mod-
eled as single-compartment neurons containing leak, Na+,
delay-rectified K+, and high-threshold K+ conductances.
The membrane potential V obeys the dynamics

CmV̇ = IL + INa + IKdr + IKHT + Iexc + Iinh; (B11)

the values of all parameters are given in Table II. The currents
are given as

IL = −GL(V − EL)

INa = −GNam3h(V − ENa )

IKdr = −GKdrn
4(V − EK )

(B12)
IKHT = −GKHTw(V − EK )

Iexc = −gexc(t )V

Iinh = −ginh(t )(V − EI )

for total excitatory and inhibitory synaptic conductances gexc

and ginh. The gating variables m, h, and n evolve according to
the dynamics

ẋ = αx(1 − x) − βxx, (B13)

for x ∈ {m, h, n}, where

αm = (V + 22)/(1 − exp[−(V + 22)/10])

αh = 0.7 exp[−(V + 34)/20]

αn = 0.15(V + 15)/(1 − exp[−(V + 15)/10])
(B14)

βm = 40 exp[−(V + 47)/18]

βh = 10/(1 + exp[−(V + 4)/10])

βn = 0.2 exp[−(V + 25)/80],

with implied units throughout. The gating variable obeys

ẇ = w∞ − w, (B15)
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where

w∞ = 1/(1 + exp[−V/5]). (B16)

The excitatory and inhibitory conductances obey the same
dynamics as for HVCRA neurons, except for the fact that the
excitatory time constant τexc is set to 2 ms.

3. Noise spike trains

The Long et al. [32] model introduces noise into the
neurons via independent Poisson spike trains. Each HVCRA

neuron receives excitatory and inhibitory spike trains at both

compartments, each generated from a homogeneous Pois-
son process with a rate of 100 Hz. The conductances of
each spike are drawn independently in time from a uniform
distribution on [0, 0.035] mS/cm2 for the somatic compart-
ment and [0, 0.045] mS/cm2 for the dendritic compartment.
Each HVCI neuron also receives excitatory and inhibitory
noise spike trains, generated from 250 Hz Poisson processes
with conductances drawn uniformly from [0, 0.45] mS/cm2.
With this noise model, the rms fluctuation in the membrane
voltage of each compartment of each HVCRA neuron is
about 3 mV, and the HVCI neurons spike spontaneously at
about 10 Hz.
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