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Optimizing energetic cost of uncertainty in a driven system with and without feedback
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Many biological functions require dynamics to be necessarily driven out of equilibrium. In contrast, in various
contexts, a nonequilibrium dynamics at fast timescales can be described by an effective equilibrium dynamics
at a slower timescale. In this work, we study two different aspects: (i) the energy-efficiency tradeoff for a
specific nonequilibrium linear dynamics of two variables with feedback and (ii) the cost of effective parameters
in a coarse-grained theory as given by the “hidden” dissipation and entropy production rate in the effective
equilibrium limit of the dynamics. To meaningfully discuss the tradeoff between energy consumption and the
efficiency of the desired function, a one-to-one mapping between function(s) and energy input is required. The
function considered in this work is the variance of one of the variables. We get a one-to-one mapping by
considering the minimum variance obtained for a fixed entropy production rate and vice versa. We find that
this minimum achievable variance is a monotonically decreasing function of the given entropy production rate.
When there is a timescale separation, in the effective equilibrium limit, the cost of the effective potential and
temperature is the associated “hidden” entropy production rate.
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I. INTRODUCTION

Adaptation, kinetic proofreading, and motor transport are
a small set of examples of cellular processes that are neces-
sarily nonequilibrium. These processes require a finite rate of
energy input to perform the desired function [1–3]. A natural
question is whether an increase in the energy input leads to
an increase in the efficiency of the desired function(s) of such
nonequilibrium systems.

At the core of a sensory adaptation dynamics is a negative
feedback control circuit, for which there are tradeoffs among
adaptation error, energy input, and adaptation speed [4–7].
Similar tradeoffs in other negative feedback circuits exist
[8,9]. In kinetic proofreading, there are tradeoffs among dis-
crimination efficiency, time, and energy consumption [10,11].
For the directed motion of motor proteins, the speed depends
on the Adenosine triphosphate (ATP) input [12,13]. The cell’s
efficiency in estimating the concentration of ligands improves
with an increase in the rate of energy consumption [3,14–17].
These studies seem to indicate that the performance of energy-
consuming tasks improves when increasing the rate of energy
input into the system. However, a recent study shows that, for
some of the processes mentioned above, an increase in the
rate of energy dissipation leads to a decrease in the efficiency
of the desired function, for some value of parameters [18].

Through an example of a linear feedback dynamics, we
show that these seemingly contradictory observations are due
to lack of a one-to-one mapping between the function(s)
and the rate of energy consumption. A meaningful discus-
sion of the energy-efficiency tradeoff requires a well-defined
optimization problem, which leads to a one-to-one mapping
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between the rate of energy consumption and the desired func-
tion. As is shown later, this is achieved by first optimizing
the function for given energy input and then studying this
optimum as the value of the energy input is changed. In an
alternative approach, for a class of functions, the ambiguity
in energy-efficiency tradeoff can be resolved by the cele-
brated thermodynamic uncertainty relations (TUR) [19–21].
For example, using TUR, universal bound on the molecular
motor efficiency has been obtained [22]. However, the class
of functions to which TUR applies does not cover many of the
biologically relevant functions, such as variance of molecule
number and adaptation error, to name a few.

In contrast to the processes mentioned above, which are
necessarily described by a nonequilibrium model, are the pro-
cesses which, at timescales of interest, can be successfully
described by an effective equilibrium model, even though the
underlying processes at faster timescales are nonequilibrium.
For instance, frequently, the cell cortex is effectively described
by effective surface energy, although the underlying dynamics
are nonequilibrium due to ATP consumption by actin and
molecular motors. The effective tension description has been
extensively used to model tissue shapes using vertex models
[23,24].

An effective equilibrium limit of a nonequilibrium process
has been a subject of various recent studies in active matter
[25–29]. For a driven dynamic with a timescale separation,
the effective equilibrium limit is obtained by integrating the
fast degree of freedom. The remaining slow variables describe
the resulting effective equilibrium theory with effective pa-
rameters like effective temperature and effective potential that
retain some memory of the integrated out fast variables. The
steady-state entropy production rate (EPR) and heat dissipa-
tion rate (HDR) are zero; however, the limiting value of the
EPR obtained from the full dynamics, in general, may be
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nonzero. This difference in EPR and HDR has been referred
to as “hidden” EPR (HEPR) and “hidden” HDR (HHDR)
[30–36]. In this work, we interpret the HHDR as the measure
of energetic cost for generating the effective parameters.

In this work, we study two different aspects: (i) the energy-
efficiency tradeoff for a specific nonequilibrium model and
(ii) the cost of effective parameters of the coarse-grained
theory given by the “hidden” EPR. We analyze the stochas-
tic dynamics of two coupled variables x and y given by
overdamped Langevin equations for two different couplings:
feedforward and with feedback. For both feedforward and
feedback dynamics, we analyze the effective equilibrium limit
when there is a clear timescale separation in the dynamics;
i.e., the dynamics of one of the variables (y) is much faster
than that of the other (x). We consider two models for the
separation of timescales, referred to as model 1 and model 2
in Ref. [37]. For concreteness, the variables x and y are taken
to be positions of two point particles. However, the analysis
and the results of this work are valid more generally. For
instance, the variables x and y may represent concentrations
of chemical components, with temperate baths replaced by
chemical baths. This is frequently the case for biological
signaling networks that are driven by the chemical potential
difference of ATP and ADP [38–40].

For the energy-efficiency tradeoff, the function considered
in this work is the steady-state variance of variable x. In dif-
ferent biological contexts, both increase and decrease of this
variance can be the desired goal. For instance, feedforward
dynamics lead to an increase in effective temperature, which
leads to a faster reaction rate in a diffusion-limited reaction by
increasing the diffusion. In contrast, dynamics with negative
feedback leads to a decrease in effective temperature; hence,
it reduces the variability that can be the desired for protein
synthesis [41–44]. Thus, we see that for the same function,
variance of x, the efficiency depends on the underlying cir-
cuit. This is very different than the function of variance of
probability current fluctuations for which universal bounds
exist, given by the thermodynamics uncertainty relations, that
is independent of any specific model [19–21].

Following are the main results: (i) The two commonly
used models of stochastic forcing in the feedforward process
(model 1 and model 2 in Ref. [37]) lead to very different val-
ues of variance and HEPR in white noise limit [see Eqs. (11)
and (12)]. This result shows the importance of including the
correct physical model to compute the HEPR. (ii) A one-to-
one mapping between the function (variance of x) and the cost
(HDR and EPR) exists for feedforward dynamics. We find
that the variance or effective temperature increases with an
increase in EPR at a given timescale of dynamics. (iii) For
dynamics with feedback, a one-to-one mapping between vari-
ance and EPR is obtained by minimizing the variance for a
given EPR and vice versa. We find that the minimum variance
is a monotonically decreasing function of the given EPR.
Equivalently, for a given variance, the minimum EPR required
is a monotonically increasing function [see Eqs. (37) and
(39)]. This shows that, for the model studied, there is a clear
tradeoff between the variance and the EPR.

In the following, we compute the correlation between
the EPR and the HDR with the variance of x, first for the

feedforward dynamics in Sec. II and then for the feedback
dynamics in Sec. III.

II. PARTICLE DRIVEN
BY AN ORNSTEIN-UHLENBECK PROCESS

We first consider a feedforward dynamics where the
particle at x is driven by the particle at y, and y is an Ornstein-
Uhlenbeck process (OUP). The dynamics is taken to be linear,
valid for small perturbations around the steady state of a
nonlinear dynamics. In this limit, the overdamped Langevin
dynamic of particles positioned at x and y is taken to be

ẋ = −μx(x − αy) +
√

2Txμxξx(t ), (1)

ẏ = −μy

τ
y + 1

τ ε

√
2Tyμyξy(t ), (2)

where μx and μy are the mobilities of particles x and y
respectively, Tx and Ty are temperatures corresponding to
the heat bath of particle x and y respectively, and ξx(t ) and
ξy(t ) are Gaussian white noise of zero mean and correlation
〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′), where i, j ∈ {x, y}. The separation
of timescale between x and y is made explicitly by τ . In
general, the correlation time of y and its variance may scale
differently with τ . This difference in scaling is captured by ε;
the mobility scales as τ−1 and the fluctuation scales as τ 1−2ε .
From Eq. (2), the correlation function when (t + t ′) � τ is
〈y(t )y(t ′)〉 = τ 1−2εTy exp(−μy|t − t ′|/τ ).

The two choices of ε commonly used in the literature
are ε = 1/2 and ε = 1, referred to as model 1 and model 2,
respectively, in Ref. [37]. In Ref. [30], where the stochas-
tic driving is due to a fluctuating harmonic potential, the
dynamics under fast switching correspond to the Langevin
equations (1) and (2) with ε = 1/2. This is also the case
when y is connected to a given temperature bath and the
timescale separation is due to the scaling of the mobility
μy. For ε = 1/2, limτ→0〈y(t )y(t ′)〉 = 0. In contrast, most ef-
fective equilibrium models of active particles driven by an
OUP use ε = 1 [26]. Effective equilibrium theories have been
constructed in the limit τ → 0 using the value ε = 1, in this
case limτ→0〈y(t )y(t ′)〉 = 2Tyδ(t − t ′). See Ref. [37] for the
discussion on the implication of difference in choices of ε in
the context of glass dynamics.

Using the framework of stochastic thermodynamics [2,45],
the external work done on the particle x by particle y is
given by ẇext = 〈α yẋ〉. This work is dissipated as heat in the
temperature bath Tx. The heat flow into the bath Tx can be
calculated using one of the standard methods from stochastic
thermodynamics framework [2,46,47]. In this work, we use
the Harada-Sasa relation [46,47] to compute the HDR and
EPR.

The correlation function of x is defined as

Cxx(t ) = 〈x(t ) − 〈x〉〉〈x(0) − 〈x〉〉, (3)

where (and in the rest of the paper) 〈·〉 denotes the ensemble
average at steady state. From Eq. (1), we get 〈x(t )〉 = 0. Us-
ing Parseval’s theorem [48], the steady-state variance of x is
given by

〈x2〉ff =
∫ ∞

−∞

dω

2π
C̃xx(ω), (4)
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where the tilde denotes the Fourier transform defined as
φ̃(ω) = ∫ ∞

−∞ dt e−iωtφ(t ). The subscript “ff” denotes feed-
forward dynamics. Obtaining the correlation spectrum from
Eqs. (1) and (2), and using Eq. (4), we get the steady-state
variance of x as

〈x2〉ff = Tx + μxα
2Tyτ

2−2ε

μy + μxτ
, (5)

where the first term on the right is the direct contribution
due to temperature bath Tx and the second term is due to the
coupling to temperature bath Ty.

The linear response function for a small force δ fp is defined
as [49]

〈x〉δ − 〈x〉 =
∫

χx(t − t ′)δ fp(t ′)dt ′, (6)

where 〈·〉δ denotes the ensemble average over the steady state
of the perturbed dynamics. Using Eqs. (1) and (2), we get the
response function in frequency space as χ̃x = 1/(−iω + μx ).

From the response and correlation function, the heat dissi-
pation rate can be obtained using the Harada-Sasa, which, for
zero mean velocity reads as [46,47]

hx = 1

μx

∫ ∞

−∞

dω

2π
[ω2C̃xx(ω) − 2ωTxχ̃

′′
x (ω)], (7)

where we have used the relation C̃vv = ω2C̃xx and χ̃ ′
v = ωχ̃ ′′

x .
Note that we have used Tx as the temperature of the heat bath
connected to x. If Tx includes athermal contributions, then the
corresponding fast degrees of freedom need to be included to
obtain correct EPR and HDR. Since there is no feedback of x
on y, the HDR corresponding to variable y is zero. The heat
flow into bath Tx is the work done by the the variable y on
x. Note that this work is due to an external energy source,
apparent from the nonconservative coupling between x and y.
The EPR is given by σ = hx/Tx. Using Eq. (7), we get

σ = Tyμyμxα
2τ 1−2ε

Tx(μy + μxτ )
. (8)

Without the form of explicit timescale separation τ , this EPR
has been obtained in various other contexts [30,36,50,51].

A. Fluctuation and dissipation rate

From Eqs. (5) and (8), we get a one-to-one mapping
between the variance of x and entropy produced over the
timescale τ/μy,

〈x2〉ff

Tx
= 1 + τ

μy
σ. (9)

Thus, we see that, for the feedforward dynamics, increasing
EPR at a given timescale τ/μy leads to an increase in the
variance of x. If the goal is an increase of variance, then it
does seem to hold an energy-efficiency trade-off, and more
energy needs to be spent to attain higher variance. However,
if the goal is the reduction of variance, then it seems that
spending more energy leads to less efficiency. Indeed, the min-
imum variance and EPR is for α = 0. This highlights again
the importance of making a correct guess for the function
corresponding to the given dynamics.

B. Effective equilibrium limit

In the limit τ → 0 and ε � 1 (for ε > 1 the adiabatic limit
does not exist), the two-variable nonequilibrium dynamics
reduces to the following effective equilibrium dynamics:

ẋ = −μxx +
√

2Teffμx ξx, (10)

where the effective temperature is given by

Teff

Tx
=

{
1 ε < 1,

1 + μxα
2Ty

μyTx
ε = 1.

(11)

The variance 〈x2〉ff = Teff . The EPR corresponding to Eq. (10)
is zero; however, �σ = limτ→0 σ 	= 0, where �σ is the
HEPR given by

�σ

μx
=

⎧⎨
⎩

0 ε < 1/2,

Tyα
2/Tx ε = 1/2,

∞ ε > 1/2.

(12)

We see that �σ is finite only for ε � 1/2. Consistent with
Ref. [30], we get finite HEPR for ε = 1/2, which depends
on the parameters of the fast variable even though effective
dynamics in Eq. (10) does not. If ε > 1/2, we need to include
faster degrees of freedom like inertial relaxation; this intro-
duces a high-frequency cutoff leading to a finite HEPR [36].
For ε = 1/2, the effective temperature to leading order in τ

reads

Teff

Tx
= 1 + τ

μxα
2Ty

μyTx
, (13)

the second term on the right is the increase in effective tem-
perature due to the nonequilibrium driving, and the HEPR to
leading order in τ reads

�σ

μx
= Tyα

2

Tx

(
1 + τ

μx

μy

)
, (14)

where the second term on the right can be seen as the addi-
tional energetic cost for increasing the effective temperature.

III. WITH FEEDBACK

We now consider the dynamics with feedback. As before,
the dynamics is linearized around the steady state of the non-
linear dynamics. The stochastic dynamics reads

ẋ = −μx(x − αy) +
√

2Txμxξx(t ), (15)

τ ẏ = −μy(y − kx) + τ 1−ε
√

2Tyμyξy(t ), (16)

where, as before, ξx(t ) and ξy(t ) are Gaussian white noise of
zero mean and unit variance, α and k are the feedback param-
eters, and the separation of timescale is made explicit through
τ and ε. The dynamics is stable for k α < 1. Figure 1(a) shows
the stable regions and the schematic of the feedback in k and
α parameter space. For k α > 0 the feedback is positive, and
for k α < 0 the feedback is negative.

Of particular interest is the case of negative feedback that is
relevant for various biological function, like noise reduction in
protein synthesis [41,42,44], homeostasis [43], and adaptation
[4]. Since velocity is odd under time reversal whereas the
variable x and y are even under time reversal, the stochastic
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FIG. 1. (a) Plot of the stable region in the k and α parameter
space [the dynamics is stable for k α < 1 (shown in gray)] and the
schematic of the feedback circuit in different quadrants. The feed-
back is positive for k α > 0 and negative for k α < 0. (b) Plot of the
variance of x as function of k and α. When the feedback is positive,
〈x2〉fb > 〈x2〉ff , and when the feedback is negative,〈x2〉fb < 〈x2〉ff . In
the region between the line α = 0 and αTy + kTx = 0, the variance
of x is less that that without its coupling with y, i.e., 〈x2〉fb < Tx .

thermodynamic analysis of Eqs. (15) and (16) differs from that
of velocity-dependent negative feedback studies of molecular
refrigeration [52–55] and of particle dynamics in a viscoleas-
tic medium [56].

The steady-state variance of x after substituting correla-
tion spectrum obtained from Eq. (4) and using Eqs. (15) and
(16) is

〈x2〉fb = Txμxτ

μy + μxτ
+ μyTx + α2τ 2−2εTyμx

(1 − kα)(μy + μxτ )
. (17)

Figure 1(b) shows the variance of x as a function of k and α

for τ = 1. The various regions of the parameter space are dis-
cussed in the Sec. III C. The HDR corresponding to variable
x is given by Eq. (7), which upon substituting correlation and
response functions obtained from Eqs. (15) and (16) gives

hfb
x = μyμx

μy + μxτ
(τ 1−2εTyα

2 − k α Tx ). (18)

The first term in the bracket is the HDR into the bath Tx due
to the driving by the bath Ty, and the second term is the HDR
due to feedback.

In contrast to the feedforward case, the HDR correspond-
ing to the variable y is now nonzero. Taking the effective
temperature corresponding to y as τ 1−2εTy, the HDR of y using
Harada-Sasa relation is given by

hy = τ

μy

∫ ∞

−∞

dω

2π
[ω2C̃yy(ω) − 2ωTyτ

1−2εχ̃ ′′
y (ω)]. (19)

Substituting the correlation and the response function ob-
tained from Eqs. (15) and (16) into Eq. (19) after integration
gives

hfb
y = μyμx

μy + μxτ
(Txk2 − kαTyτ

1−2ε ). (20)

Similar to hfb
x , the first term in the bracket is the dissipation

rate due to the driving by the bath Tx and the second term
is due to the feedback. The total HDR hfb = hfb

x + hfb
y , upon

substituting Eqs. (18) and (20), is given by

hfb =
(

1 − k

α

)
hfb

x , (21)

FIG. 2. The plot shows the sign of the heat flow into the tempera-
ture baths as function of the feedback parameters. When the feedback
is negative, the heat dissipation rate for heat baths associated with
x and y is positive. For positive feedback, in the region between
the lines αTy = kTx and α = 0 (k = 0) hfb

y < 0 (hfb
x < 0), and in the

region between the lines k = α and αTy = kTx the total heat flow is
negative (hfb < 0).

and the total EPR is given by

σ fb = hfb
x

Tx
+ hfb

y

Tyτ 1−2ε
, (22)

which upon substituting in Eqs. (18) and (20) gives

σ fb = τ 2ε−1μyμx(Txk − τ 1−2εTyα)2

TxTy(μy + μxτ )
. (23)

A. Conservative versus nonconservative coupling

The dynamics given by Eqs. (15) and (16) are nonequilib-
rium due to the nonconservative coupling between x and y and
the difference in temperature of the two baths (Tx 	= Ty). The
dynamics for conservative coupling is of the form

ẋ = μx∂x�(x, y) +
√

Txμxξx(t ), (24)

ẏ = μy

τ
∂y�(x, y) + 1

τ ε

√
Tyμyξy(t ). (25)

For Tx = Ty, the steady state is given by the Boltzmann distri-
bution P(x, y) ∝ e−β�(x,y) and the HDR and EPR are zero. For
Tx 	= Ty, there is a finite EPR and HDR at steady state; how-
ever, the total heat flow must be zero because the heat flows
from the “hotter” to the “colder” bath [57,58]. In Eqs. (15) and
(16), the coupling is conservative only when k = α for which
the potential is � = x2/2 + y2/2 − k x y. In this case, from
Eq. (21), we get hfb = 0. When the coupling is nonconserva-
tive, i.e., k 	= α, the total HDR hfb 	= 0. The nonzero heat flow
implies that external variables driving the system are implicit
in the dynamics through the nonconservative coupling. This
external driving acts as a work reservoir; for hfb > 0, there is
a net work done on the system, and for hfb < 0, the work is
being extracted from the system.

Figure 2 shows the sign of total heat flow. The total heat
hfb = 0 when the coupling is conservative (k = α) and when
the dynamics can be mapped to an effective equilibrium dy-
namics (Tyα = Txk). In the region between these two lines,
h < 0 (shown in green); i.e., there is a net heat flow out of
the system. In the rest of the parameter space, there is net
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heat flow into the system. As we can see from Eq. (23),
independent of the sign of hfb

x , hfb
y , and hfb, the EPR given

by Eq. (23) is always positive. However, if only one of the
variables is considered, say x, then the corresponding EPR as
given by hfb

x /Tx will be negative when the HDR is negative
[59,60].

Some physical examples of nonconservative coupling are
hydrodynamic interaction in the presence of nonequilibrium
fluctuations [61–64], effective interaction between chemically
interacting particles [65], signaling networks, and gene net-
works. For more discussion, see Ref. [66].

B. Effective equilibrium limit

Similar to feedforward case, in the limit τ → 0 and ε � 1
we get the following effective one-variable dynamics:

ẋ = −μx(1 − k α)x +
√

Teffμxξx, (26)

where Teff is given by Eq. (11). The effect of feedback is
apparent in the stiffness of the harmonic potential and the ef-
fective temperature. The steady-state variance of x as obtained
from Eq. (26) is

lim
τ→0

〈x2〉fb = Teff

(1 − k α)
. (27)

The EPR corresponding to Eq. (26) is zero; however, the
“hidden” EPR �σ = limτ→0 σ fb 	= 0. Using Eq. (23), we get

�σ

μx
=

{ ∞ ε 	= 1/2,
(Txk−Tyα)2

TxTy
ε = 1/2.

(28)

In the following, we focus on the physically relevant case
of ε = 1/2. Unlike the feedforward case, the variance in the
effective theory depends upon the parameters of the integrated
out variable. We see that for a given timescale μx there is
no one-to-one mapping between the EPR and the variance.
For a given EPR, the variance can be tuned by changing the
feedback parameters. However, a one-to-one mapping is ob-
tained when the question is set as a well-defined optimization
problem. What is the minimum value of variance for a given
entropy production rate and timescale?

The minimum value of variance for a given value of HEPR
obtained by minimizing Eq. (27) for �σ given by Eq. (28)
(for ε = 1/2) is

�∗ = 4

4 + S∗ , (29)

where S∗ = �σ/μx and �∗ = min(〈x2〉fb/Tx ). Thus, we see
that for given effective temperature Tx there is a one-to-
one mapping between the minimum of the variance and
�σ/μx. Specifically, min(〈x2〉fb) is a monotonically decreas-
ing function of the HEPR. Inverting Eq. (29), we get S∗ =
4(1/�∗ − 1), for �∗ < 1; this gives the relation between the
minimum EPR required to attain a variance �∗. For �∗ � 1,
the HEPR S∗ = 0. The HHDR in the medium is obtained by
taking the limit τ → 0 in Eq. (21). The minimum HHDR
defined as H∗ = min(limτ→0 hfb/μxTx ) required to achieve
variance �∗ is

H∗ = (1 + √
Ty/Tx )2

4
S∗, (30)

and thus we see that the HHDR depends on the temperature of
bath driving the fast variable Ty. Equation (29) can be written
as the following inequality:

〈x2〉fb

Tx
� 4

4 + �σ/μx
. (31)

C. Fluctuation and the dissipation rate

To analyze the general case, where there is no timescale
separation, we set τ = 1. Using the definition r ≡ Ty/Tx and
d ≡ μx/μy, Eq. (17) reads

〈x2〉fb

Tx
= (1 + d ) + d α(α r − k)

(1 − k α)(1 + d )
. (32)

It can be shown that the variance 〈x2〉fb is a monotonically
increasing function of r and k and a monotonically decreas-
ing function of d . The variance is nonmonotonic in α, the
minimum of 〈x2〉fb obtained from Eq. (32) is at α = 1/k −√

(k2 + d r)/k2d r. Figure 1(b) shows the effect of feedback
on the variance. As is well established [41,42], negative
feedback leads to reduction of variance, i.e., 〈x2〉fb < 〈x2〉ff .
Moreover, in a subregion of the negative feedback parame-
ter space, between the line αTyμx = −kTxμy and α = 0, the
variance of x with feedback is less than that without any
coupling with y, i.e., 〈x2〉fb < Tx. In the stable regions of the
first and third quadrants, the feedback is positive (k α > 0)
and the fluctuation is larger than that without feedback, i.e.,
〈x2〉fb > 〈x2〉ff . The EPR in Eq. (23) for τ = 1 reduces to

σ fb

μx
= (k − rα)2

r(1 + d )
. (33)

The minimum value of the EPR is σ fb = 0. The EPR is zero
along the line αTy = kTx, and for this value the fluctuation
dissipation relation is satisfied; hence, the dynamics can be
mapped to the following effective equilibrium model:

ẋ = −μx(x − αy) +
√

2Txμx ξx(t ), (34)

ẏ = −μ(ry − αx) +
√

2Txμ ξy(t ), (35)

where μ = μyTy/Tx. This mapping is not unique; scaling of
the mobility and the effective temperature leads to equivalent
models with identical steady-state distribution. The total heat
dissipation rate from Eq. (21) is given by

hfb

μxTx
= (α − k)(r α − k)

(1 + d )
. (36)

Energy-efficiency tradeoff

Does increase in EPR lead to a decrease in the variance?
Figure 3 shows the fluctuation and the EPR along different
sections of the parameter space. Along the line αTxμy =
−kTyμx, the variance is constant 〈x2〉fb = Tx but the EPR
depends on the feedback parameters; the minimum of EPR
is at k = α = 0 [Fig. 3(a)]. In contrast to this, along the line
Tyα = kTx, the EPR is zero but the variance depends on the
feedback parameters; the minimum of variance is at k = α

[Fig. 3(b)]. In general, we can find regions in the parameter
space where the variance decreases with an increase in the
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FIG. 3. Plot of the entropy production rate and the variance as
given by Eqs. (33) and (32) of the main text, for d = 1, r = 2, along
different section of the parameter space. For (a) αTyμx = −kTxμy,
the variance is constant and equal to that without the coupling with y,
i.e., 〈x2〉fb = Tx , whereas the EPR depend upon the feedback parame-
ters. In contrast, along (b) αTy = kTx , the dynamics is at an effective
equilibrium (σ = 0) and the variance depends upon the parameter
values. For (c) conservative coupling (α = k) and when the coupling
is (f) feedforward (k = 0), both EPR and variance are correlated and
depend upon the parameter values. In general, as show in panels
(d) and (e), the variance and EPR can show divergent trends.

EPR as well as regions where the variance increases with an
increase in the EPR [Figs. 3(d) and 3(e)].

As shown in the effective-equilibrium limit, there is a
one-to-one mapping between the minimum variance for a
given EPR and vice versa. For min(〈x2〉fb) > Tx, the minimum
EPR required is zero. For min(〈x2〉fb) < Tx, a finite minimum
EPR is required. The minimum value of EPR is obtained by
minimizing the function in Eq. (33) for a variance given by
Eq. (32). After minimization, we get

S∗ = 4�∗(1 − �∗)(1 + d )

[(1 + d )�∗ − d]2 , (37)

where S∗ = σ/μx, �∗ = min(〈x2〉fb)/Tx. For d → 0, this re-
duces to the HEPR in one-variable limit, given by Eq. (29).
The minimum fluctuation for a given EPR is obtained by
inverting this equation. This inverted function is plotted in
Fig. 4(a); we see that the minimum variance is a monotoni-
cally decreasing function of the EPR. Thus, we see that, in this
particular case, an increase in the EPR budget leads to a de-
crease in the variance. The limiting values are limS∗→0 �∗ =
Tx and limS∗→∞ �∗ = dTx/(1 + d ).

The value of parameters for which the minimum variance
is attained are

α∗ =
√

(1 + d )(−1 ± √
1 + d + d S∗)√

d2 r S∗ , (38)

and k∗ = rα∗ + √
(1 + d )r S∗. The contour of minimum EPR

S∗ is the line k = rα ± √
S∗r(1 + d ). In the region between

the origin and this line, the EPR is less than S∗; hence, the line
of EPR S∗ has to be tangent to the contour of given variance
�∗ [see Fig. 4(b)]. This can be easily verified by calculating

FIG. 4. (a) Plot of the minimum value of the variance for a fixed
EPR and timescale as function of the given EPR and timescale, for
d = 1 and r = 2, and (b) the plot showing the curves with constant
value of variance (blue) and constant entropy production rate (red).
The minimum value of the variance for a given EPR and vice versa
is given by the intersection of the two curves at �∗ and S∗.

the tangent to the curve in Eq. (32) for �∗ = 〈x2〉fb)/Tx at
point k∗ and α∗ as given by Eq. (38).

We emphasize that here we have taken the constraint to be
the EPR. However, the constraint could very well be the total
HDR. For r = 1, the HDR and EPR are proportional; hence
the minimum HDR required to attain a given variance is H∗ =
TxS∗. When r 	= 1, the minimum dissipation can be obtained
by minimizing Eq. (36) for a variance given by Eq. (32). We
can express Eq. (37) as an inequality of the from

σ

μx
� 4〈x2〉fb(Tx − 〈x2〉fb)(1 + d )

Tx((1 + d )〈x2〉fb − d Tx )2 . (39)

Note that this inequality is not of the standard form obtained
in thermodynamic uncertainty relations (TUR) [19–21]. This
is not surprising since the variance is even under time re-
versal; it is well defined for equilibrium dynamics. For
functions like motor efficiency, TURs can be used which
provide a fundamental bound, independent of the details of the
model [22].

IV. DISCUSSION

In summary, we consider two interacting particles x and y
that are driven out of equilibrium by nonconservative forces
and connected to different temperature baths. We calculate
the steady-state variance of x, heat dissipation, and entropy
production rate when the coupling between the particles is
feedforward and when there is feedback.

An effective one-particle description is obtained when
there is a separation of timescales between the dynamics of
the two particles. In this limit, the parameters of the slow vari-
able x depend upon its coupling with the integrated out fast
variable y. For the feedforward case, the effective parameter
is the effective temperature. In the presence of feedback, the
effective theory is described by an effective potential and an
effective temperature. The “hidden” entropy production rate
for the two cases with and without feedback depends upon the
relative scaling of the temperature Ty and the mobility μy. The
HEPR is the cost associated with the effective parameters in
the coarse-grained equilibrium theory. When the feedback is
negative, the large stiffness of the effective potential (smaller
variance) requires larger HHDR and HEPR.
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In the absence of timescale separation, the variance of x,
the EPR, and the HDR depend on the ratio of the mobil-
ities (d = μx/μy). The lower bound on the variance is set
at Txd/(1 + d ). Negative feedback is always nonequilibrium,
and for suitable values of the parameter, it leads to a reduction
of variance in comparison to the independent dynamics.

Does an increase in energy dissipation always lead to an
improvement in function (variance of x)? We find that for
a given timescale, the relation between EPR and variance
could be very heterogeneous. For instance, the EPR can be
changed without affecting the variance and vice versa. A sim-
ilar observation has been made in Ref. [18], which contradicts
the results in Ref. [4]; the latter shows a tradeoff between
speed-energy error and the former shows that the efficiency
does not always improve with an increase in energy. In this
paper, we argue that the tradeoff problem in these studies is ill
posed since there is no one-to-one mapping possible between
function(s) and energy consumption without setting up a well-
defined optimization problem. This is even more obvious for
a higher dimensional problem involving more variables and
parameters.

A one-to-one mapping between the energy dissipation and
efficiency is obtained by minimizing the dissipation as a func-

tion of variance or vice versa. We find that there is a minimum
entropy production rate required to decrease the variance be-
low its value in the absence of feedback. This minimum value
increases with a decrease in the variance. Thus, for the reduc-
tion of fluctuation by negative feedback, as the energy input
increases, the minimum variance decreases. However, it is far
from clear that any function which requires the dynamics to
be necessarily nonequilibrium leads to such energy-efficiency
relation. A more general analysis in a higher dimension should
be a useful future direction to explore. The results obtained in
this paper should be useful in understanding the evolutionary
trajectory of the biological signaling and gene networks that
have evolved for improved efficiency under energetic con-
straints [67,68].
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