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Electrostatics of charged dielectric spheres with application to biological systems. III.
Rigorous ionic screening at the Debye-Hückel level
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The unequivocal role of electrostatic forces in biological (and colloidal) systems underscores the importance
of attaining accurate and rapid calculations of electrostatic forces if one wishes to faithfully simulate the elec-
trostatic aspect of a biological system. This paper makes significant progress toward this aspect as it rigorously
incorporates ionic screening at the Debye-Hückel level for an electrolyte system containing dielectric spheres of
finite radii. We investigated earlier this system without mobile ions via a surface charge method. However, the
need for computing a large number of Wigner rotation matrix elements per configuration can significantly slow
down the numerical calculations. This difficulty was recently overcome by our Wigner-matrix-free formalism.
Unfortunately, in that method ions can only be included individually, making it impractical to investigate, for
example, ionic screening in a system modeled by charged dielectric spheres immersed in a solution of mobile
ions. Here, we overcome this difficulty by extending the surface charge method to treat ions implicitly. Previous
treatments of charged dielectric spheres in a solution of mobile ions did not emphasize the energy reciprocity of
electrostatics and are largely limited to a few spheres and/or special symmetries. Our new formalism respects
reciprocity and accommodates arbitrarily many dielectric spheres of different dielectric constants and sizes while
being rigorous at the Debye-Hückel level. The differences, and the relationship, between our new implicit ion
treatment and our previous ion-free (or explicit ion) approach are described. A closed form for the electrostatic
energy with implicit ions is also provided. This new formalism speeds up the computation of the electrostatic
energy in the presence of ions, and accommodates permanent and induced multipoles that are very important
when the polarization effect needs to be correctly included. We also mention how the proposed method can be
transformed to a numerical method for use with arbitrary nonspherical surfaces.

DOI: 10.1103/PhysRevE.102.052404

I. INTRODUCTION

Apart from being generally important at the molecular
level, electrostatic interactions are crucial for biomolecular
systems and colloidal solutions. In both cases there are many
charged objects, biomacromolecules in the former and col-
loids in the latter (and often a large number of small ions),
embedded in the (polar) solvent, which for biological system
is water. For a colloidal solution with macroscopic colloids
the system’s energy can be calculated classically, ignoring the
quantum effects. Although quantum effects exist in biologi-
cal systems, except for extremely small systems, it remains
impractical to apply precise, full-fledged quantum methods to
them due to the exponential increase of Hilbert space dimen-
sions with the degrees of freedom. Therefore, considerable
effort has been invested in classical approaches [1], which
are often categorized according to how the solvent water is
treated. Explicit solvent methods treat each water molecule
at the level of atomic detail, while implicit solvent methods
replace the individual water molecules with some type of
smoothed out version.

*yyu@ncbi.nlm.nih.gov

Explicit solvent methods, such as TIPnP [2], allow descrip-
tion of biomolecular systems at finer detail, but the absence of
mutual polarization of molecules in these models can be a crit-
ical deficiency sometimes. The implicit solvent methods [3,4]
are in principle less computationally intensive when larger
systems are considered; however, their application is limited
to systems where fine details of solute-solvent interactions do
not play a major role. Both formalisms can take into account
ions explicitly when only a few ions are considered; when
a large number of ions enter the consideration, even at low
concentration level, an implicit ion approach is called for.

Focusing on ion-free or few-ion scenarios, we have ear-
lier devised the surface charge method [5,6]. Although this
formalism may be applied to molecular shapes other than
spheres [7], we have thus far applied it mainly to the clas-
sical systems of dielectric spheres with either a piecewise
continuous [8] or a narrow but smooth [9] dielectric function
at the spherical boundaries. If the bodies are embedded in
a dielectric medium, they provide an implicit solvent model
and the bodies represent the biomolecules and ions while the
solvent is modeled by the dielectric continuum. If, however,
the bodies are considered to be in vacuum, the model becomes
an explicit solvent model in which biomolecules, ions, and
water molecules are modeled explicitly with their own pa-
rameters. These models readily include polarization effects,
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and the model in [8] was previously used to investigate the
accuracy of our classical formalism in describing interactions
between atomic-sized objects [10]. It was found that this
dielectric-sphere model is surprisingly accurate down to dis-
tances where chemical bonds start to form. In [8,9], a rigorous
formalism allowing a point charge at the center of each sphere
was established. In [11], an arbitrary free charge distribution
forming higher permanent multipoles was incorporated. It was
shown that having the multipole sources inside the dielectric
spheres and on the spherical surfaces are equivalent [11]. For
later convenience, we denote by “method I-in” the method
having multipole sources inside the spheres and by “method
II-on” the method having multipole sources on the spherical
surfaces. Although the induced surface charge densities ap-
pear different in the two methods, the observable total surface
charge densities (induced plus permanent) in either method
satisfy the same set of linear equations, implying the same
solution. More recently, by further extending a formula men-
tioned a few decades ago, we managed to bypass the needed
computations for Wigner rotation matrix elements [8,11] and
were able to significantly speed up the numerical computation
[12]. The formalism introduced in [8,9,11,12] allows one to
find a solution with arbitrary accuracy for an arbitrary num-
ber of interacting dielectric spheres with arbitrary permanent
multipoles at their centers or surfaces.

To extend this formalism to incorporate a large number of
mobile ions, one needs an implicit ion approach. It is not
surprising that systems of dielectric spheres immersed in a
solution of mobile ions at low concentration, in addition to
being used for modeling biomolecules [13], have long been
studied for colloidal [14] and electrolyte [15] systems. For
example, the system of two dielectric spheres immersed in
electrolyte solution describable by the Debye-Hückel theory
has been studied [16–20]. Existing treatments mainly focused
on the off-center expansion of spherical harmonics functions,
but did not emphasize the important reciprocity property in
electrostatics and were largely limited to a few spheres and/or
special symmetries. One aim of this paper is to rectify these
issues and to provide a rigorous formalism at the Debye-
Hückel level. The differences, and the relationship, between
our new implicit ion treatment and our previous ion-free (or
explicit ion) approach will be described. A useful closed form
for the electrostatic energy of an arbitrary number of dielectric
spheres of different dielectric constants and sizes with implicit
ions will also be provided. Evidently, it is inappropriate to
assume all biomolecules to have spherical shape. To this end,
we provide a general numerical approach rooted in the current
formalism to accommodate arbitrary molecular surfaces.

We should note that the formalism proposed by Lotan
and Head-Gordon [13] is similar to ours in many aspects.
However, important differences remain. The boundary con-
dition requires reexpansion of spherical harmonics around an
arbitrary origin. In the formalism of [13], prior to solving the
boundary condition equations, two procedures are required
for each pair of spheres: (i) assuming the relative orientation
between the two sphere centers are along the ẑ direction,
reexpand (via numerical iteration) spherical harmonics around
one sphere center to that around the other sphere center, and
(ii) perform a rotation to bring the local ẑ axes to the vector
in the laboratory coordinate system. This is similar to our

employment of Wigner rotations [8,11] although we provide
the Wigner rotation matrix elements analytically. Under the
formalism described in this paper, all the needed reexpansions
are analytically derived and are completely free from the need
of Wigner rotation.

In order to make this paper both self-contained and read-
able, we begin with an outline section that, in addition to
giving an overview of the technical aspects of the paper, pro-
vides readers having different levels of interest in the details
with corresponding reading paths. Technical derivations that
might obstruct the flow of the paper are relegated to the ap-
pendices. Before ending the introduction, we would also like
to emphasize that the goal of this paper is to provide a rigorous
treatment and efficient calculation method of ionic screening
at the Debye-Hückel level. Evidently, further development is
necessary to achieve the goal of rigorously describing real
biological systems.

II. OUTLINE

In addition to the introduction, readers are encouraged to
read this section before moving to other sections.

The mathematical development of the current paper crit-
ically depends on the following two expansion formulas of
modified spherical Bessel functions of the second kind (with
r1 < r2 and �R = r1 − r2):

k0(κR) = k0(κ| �R|) = e−κ|r1−r2|

κ|r1 − r2|
= 4π

∑
�,m

i�(κr1)k�(κr2)Y m
� (r̂1)Y m

�
∗(r̂2), (1)

kL(κR)Y M
L (R̂) =

∑
�1,�2,m1,m2

(−1)�1+�2 HLM
�1m1�2m2

i�1 (κr1)

×Y m1
�1

(r̂1) k�2 (κr2)Y m2
�2

(r̂2), (2)

where

HLM
�1m1�2m2

≡ CL0
�10�20 CLM

�1m1�2m2

√
4π

2L + 1

√
(2�1 + 1)(2�2 + 1);

(3)
CLM

�1m1�2m2
= 〈�1�2; m1m2|�1�2; LM〉 is the Clebsch-Gordan co-

efficient, and i�(k�) is the modified spherical Bessel function
of the first (second) kind satisfying the modified Helmholtz
equation

[∇2 − κ2]

{
i�(κr)Y m

� (r̂) = 0,

k�(κr)Y m
� (r̂) = 0.

Formula (1) appears in almost every mathematical physics
book; hence we use it as a known result and as the start-
ing point for proving formula (2). A similar form of (2) in
terms of the regular spherical Bessel functions can be found
in [21] and in Ref. [22]. A proof of (2) is provided in our
Appendix A. Identities such as Y m

�
∗(r̂) = (−1)mY −m

� (r̂) and
Y m

� (−r̂) = (−1)�Y m
� (r̂) yield seemingly different but equiva-

lent forms for (2). It is worthwhile to point out that formula
(2) is also a way to expand the spherical harmonics around a
different center in the region where the modified Helmholtz
equation for the potential is applicable. In fact, the off-center
expansions used by [17] and [18], when fully carried out,
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must agree with (2). However, taking care of the off-center
expansion is only part of the work needed. To complete the
theory, one has to obtain the proper substitution rule needed
for dielectric spheres of finite radii. This latter part is de-
scribed in Sec. V in connection with Sec. IV.

Prior to Sec. IV, Sec. III is a comparatively light read. We
begin with the Poisson equation, then introduce the inhomo-
geneous modified Helmholtz equation and then join the two
into one equation. We then introduce the reciprocity of the
electrostatic energy. This section paves the way for later devel-
opment. In Sec. IV, we show how the two equivalent surface
charge methods in the ion-free case [11] remain equivalent
in the presence of mobile ions. Then, in Sec. V, we derive
the needed substitution rule for the potential expressions that
make possible the treatment of dielectric spheres of finite radii
immersed in a dielectric solvent containing mobile ions.

The general formalism including multiple dielectric
spheres is given in Sec. VI. In this section, the electrostatic
energy of an arbitrary number of dielectric spheres in ionic
solvent is derived. Discussed and described in Sec. VII are
some important and nontrivial aspects of this new formalism.
We also provide here some numerical results of the correct
energy for two dielectric spheres.

Readers interested in the full details of the derivation
should first go through Sec. III and Appendix B. Then go
over Secs. IV and V and Appendices C and D. Then go to
the formalism Sec. VI and then the results and discussion
section (Sec. VII) and Appendix A and then Appendix E,
within which the reciprocity is proved for an arbitrary number
of charged dielectric spheres. Readers only interested in the
content of the new formalism may glance through Sec. III,
Eqs. (21) and (27) and the paragraphs leading to and following
them, and then go straight to the formalism section, and look
at the figures and figure captions in the results and discussion
section. Readers who only want to use the formalism may
even skip the formalism section but pay attention to Eqs. (14),
(27), (37), (38), and (48) and apply them in Eq. (49) to solve
for the effectively observable surface charge strength. Then
one may obtain the total electrostatic energy via Eq. (58) and
the total interaction energy via Eq. (59).

III. UNIFICATION OF POISSON AND INHOMOGENEOUS
HELMHOLTZ EQUATIONS AND RECIPROCITY

IN ELECTROSTATICS

Let �(r) be the electric potential at point r. The Poisson
equation reads

∇2�(r) = −4π [ρt (r) + ρion(r)], (4)

where ρt = ρ f + ρind contains all immobile charge densities
including both the freely imposed charge density ρ f (or, in
short, free charge density) and the induced charge density
ρind in response to the electric field. Assume that the mobile
ions of various species are in thermal equilibrium and follow
the Boltzmann distribution. That is, for species s ions, each
carrying charge qs, the charge density ρs(r) is assumed to be

ρs(r) = csqse
−β

qs
εo

�(r),

where β equals 1/(kBT ) with T being the temperature and
kB being the Boltzmann constant, cs represents the average

particle number density of species s ion, and εo is the dielectric
constant of the fluid populated by mobile ions. The charge
density due to mobile ions is thus given by

ρion =
∑

s

csqse
−β

qs
εo

�(r). (5)

Keeping only to linear order in �, one has

ρion ≈
(∑

s

csqs

)
− β

εo

(∑
s

csq
2
s

)
�(r) = 0 − 1

4π
κ2�(r),

(6)
where κ2 ≡ 4π

β

εo
(
∑

s csq2
s ). Note that the neutrality of total

ion charge demands that
∑

s csqs = 0. With (6), the Pois-
son equation (4) is turned into a modified inhomogeneous
Helmholtz equation

[∇2 − κ2]�(r) = −4πρt (r) (7)

in the region where mobile ions are present. Equation (7)
constitutes the Debye-Hückel description of an electrolyte.
Instead of going through Boltzmann distribution, one may
arrive at the Debye-Hückel description by directly assuming
that the local charge density of s-type ions is

cs(r) = cs

[
1 − β

qs

εo
�(r)

]
.

Since cs is the average concentration of the s ion type, inte-
grating over the volume accessible by mobile ions yields∫

cs(r) dr → cs

(∫
dr
)

.

This means that one needs to have (with sm being the ion-type
of maximum charge magnitude)∣∣∣∣

∫
β

qsm

εo
�(r)dr

∣∣∣∣ 

∫

dr. (8)

This is plausible as β can be small, the sign of �(r) may vary
by region of the space reachable by ions, and in particular
�(r) → 0 exponentially as |r| = r → ∞; see Sec. IV.

In the regime without mobile ions, say inside the dielectric
spheres, one still has the Poisson equation. One may write
a single expression uniting both cases; to proceed, let us
begin with some notations. Consider N dielectric spheres,
A1, . . . ,AN , immersed in an infinite solvent medium of di-
electric constant εo and with mobile ions present. The jth
dielectric sphere A j , centered at R j with radius a j , has a
dielectric constant ε j . We may thus write down the equation
satisfied by the electric potential

[∇2 − κ2(r)]�(r) = −4πρt (r), (9)

where

κ2(r) = κ2
N∏

j=1

θ (|r − R j | − a j ),

with θ (x) being the Heaviside theta function: taking value 1
for x > 0 and 0 for x < 0. The electric potential �(r), aside
from satisfying Eq. (9) and being continuous across the dielec-
tric boundaries, must satisfy Eq. (19) or Eq. (20) depending on
whether one wishes to proceed with method I-in (viewing the
permanent multipoles as inside the spheres) or with method
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II-on (viewing the permanent multipoles as on the spherical
surfaces) [11].

When there are no mobile ions in the system, κ = 0 ev-
erywhere, and Eq. (9) reduces to the starting point of our
ion-free (or explicit ion) surface charge method with the net
fixed charge density ρt also comprising both the induced
charge density ρind and the free charge density ρ f . The very
fundamental idea of the surface charge method is that the
electric potential can be written as a linear superposition of
the potential produced by both free charge and the yet-to-be-
determined induced (surface) charge.

For clarity, let us choose the average position of the
dielectric spheres, 1

N

∑N
j=1

�Rj , as the origin. The dielec-
tric spheres are all thus within a finite radius Rmax of the
origin. The space under consideration contains the region
r � Rmax within which mobile ions move freely. Designate
by �1·(r) [�2·(r)] the potential produced by charge dis-
tribution ρ1

n = ρ1
f + ρ1

ind + ρ1
ion = ρ1

t + ρ1
ion (ρ2

n = ρ2
t + ρ2

ion)
alone. A simple form of the reciprocity theorem is that (due to
ρion = −κ2�/4π )∫

V
ρ1

t (r)�2·(r) dr =
∫

V
ρ2

t (r)�1·(r) dr,

which can be proved easily:∫
V

[
�2·(r)ρ1

t (r) − �1·(r)ρ2
t (r)

]
dr

=
∫

V
{−�2·(r)[∇2 − κ2(r)]�1·(r)

+�1·(r)[∇2 − κ2(r)]�2·(r)} dr
4π

=
∫

V
{�1·(r)∇2�2·(r) − �2·(r)∇2�1·(r)} dr

4π

=
∫

∂V
{�1·(r)∇�2·(r) − �2·(r)∇�1·(r)} · d �S

4π
→ 0 (10)

because � decays exponentially at spatial infinity r → ∞; see
Sec. IV. This identity, however, is not very useful as neither∫

V ρ1
t (r)�2·(r) dr nor

∫
V ρ2

t (r)�1·(r) dr represents interaction
energy between the two charge distributions.

We now use a physical argument to elucidate a more useful
form of reciprocity in electrostatics. As shown in Appendix
B, via an energy minimization method, one can see that both
ρ

1(2)
ind and ρ

1(2)
ion are solely determined by ρ

1(2)
f . The interaction

energy between these two charge distributions, ρ1
f and ρ2

f ,
may be computed either by

Uint =
∫

ρ1
f (r)�2·(r) dr (11)

or by

Uint =
∫

ρ2
f (r)�1·(r) dr. (12)

The former expression corresponds to the energy needed,
without counting the self-interaction due to ρ1

ind or ρ1
ion acting

on ρ1
f , to bring ρ1

f from spatial infinity to its designated place
with ρ2

f (hence ρ2
ind) already in position; the latter expression

corresponds to the same final configuration but with ρ1
f (hence

ρ1
ind ) in place first before bringing in ρ2

f . Since the interaction
energy only depends on the free charge configuration, both
expressions must yield identical interaction energy. This reci-
procity property was not emphasized by most previous treat-
ments on this subject. We shall show that the correct theory at
the Debye-Hückel level explicitly respects the reciprocity.

IV. ONE DIELECTRIC SPHERE

We begin with a dielectric sphere A of radius a with a free
charge distribution inside the sphere. The charge and dielectric
sphere system is placed in an ionic solution that has no net
charge. In this simple system, we will learn about the appro-
priate boundary condition to use in the limit of negligible ion
radii.

For convenience, we shall take the center of the dielectric
sphere as the origin. (With N = 1, this conforms to our earlier
choice of having 1

N

∑N
i=1

�Ri as the origin.) Assume the radius
of the ions to be δ. Let us define, for later convenience,
b = a + δ. Evidently, for regime r < b, the potential obeys
Poisson’s equation, while for r > b, it follows the modified
Helmholtz equation. Consider first some charge distribution
ρ(s) inside (with |s| < d < a) the dielectric sphere with di-
electric constant ε. Let the region a < r < b have dielectric
constant ε′ and the region r > b εo. Now consider the d < r <

a region. The electric potential due to the charge distribution
inside can be written as∫

ρ(s)/ε

|s − r| ds =
∑
l,m

4π

2l + 1

1

rl+1
Y m

l (r̂)
∫

ρ(s)

ε
slY m

l
∗(ŝ) ds

=
∑
l,m

4π

2l + 1

1

rl+1
Y m

l (r̂)
q lm

ε

=
∑
l,m

√
4π

2l + 1

al

rl+1
Y m

l (r̂)
Q lm

ε
, (13)

where the multipole moment is defined in the usual way,

q lm ≡
∫

ρ(s) sl Y m
l

∗(ŝ) ds (14)

and

r̂ = r
|r| = r

r
, ŝ = s

|s| = s
s
, Qlm ≡

√
4π

q lm

al
.

Evidently, Qlm summarizes the free charge distribution. When
a free charge is placed inside the dielectric sphere, there will
be induced bound charge that reduces the charge strength by
a factor of ε. That is why we see the Qlm above is divided by
ε. In [11] we established the equivalence of having qlm inside
the sphere (with charge strength screened or reduced by the
multiplication factor 1

ε
), and having Qlm on the surface of the

sphere (r = a). Remember that we call the former method I-in
and the latter method II-on. The goal of the current section
is to describe below that even in the presence of mobile ions,
method I-in and method II-on are still equivalent. The detailed
proof is provided in Appendix C.

Since we are primarily interested in the limit δ → 0 (or
b → a), we will summarize the results in Appendix C under
such a limit. Let us emphasize again that, with Qlm de-
noting the induced surface charge strengths, the net surface
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charge strengths Q̆lm equal Qlm + Qlm
ε

for method I-in and
equal Qlm + Qlm for method II-on. For r < a, we have two

expressions (C8) and (C9), displayed again below, corre-
sponding to method I-in and method II-on, respectively,

�I−in(r < a) =
∑
lm

√
4π

2l + 1
Y m

l (r̂)

[(
Q<

lm + Q>
lm

(a

b

)l+1) rl

al+1
+ Qlm

ε

al

rl+1

]

=
∑
lm

√
4π

2l + 1
Y m

l (r̂)

[
Qlm

rl

al+1
+ Qlm

ε

al

rl+1

]
, (15)

�II−on(r < a) =
∑
lm

√
4π

2l + 1
Y m

l (r̂)
[
Q<

lm + Q>
lm

(a

b

)l+1
+ Qlm

] rl

al+1

=
∑
lm

√
4π

2l + 1
Y m

l (r̂)[Qlm + Qlm]
rl

al+1
=
∑
lm

√
4π

2l + 1
Y m

l (r̂) Q̆lm
rl

al+1
. (16)

Those two expressions coincide at r = a, yielding

�(r = a) =
∑
lm

√
4π

2l + 1
Y m

l (r̂)
Q̆lm

a
.

In the region r > a, the potential satisfies the modified
Helmholtz equation and is supposed to decay to zero as r →
∞. Hence the general solution should be

�out (r > a) =
∑
l,m

Dlm kl (κr)Y m
l (r̂). (17)

Matching the values of both potential expressions at r = a
allows one to determine Dlm, leading to

�out (r > a) =
∑
l,m

Dlm kl (κr)Y m
l (r̂)

=
∑
l,m

√
4π

2l + 1

kl (κr)

kl (κa)

Q̆lm

a
Y m

l (r̂). (18)

The other boundary condition for method I-in is written as

εo
∂�out

∂r

∣∣∣∣
r=a+

= ε
∂�I−in

∂r

∣∣∣∣
r=a−

(19)

and for method II-on as

εo
∂�out

∂r

∣∣∣∣
r=a+

= ε
∂�II−on

∂r

∣∣∣∣
r=a−

− 4πσ f , (20)

where

σ f (ŝ) =
∞∑

l=0

l∑
m=−l

√
4π σ f lmY m

l (ŝ) and Qlm = 4πa2σ f lm.

After summarizing the results from Appendix C, let us now
apply the boundary conditions from method I-in and method
II-on to obtain the induced surface charge strengths, and hence
the solvation energy. Let us first solve for Qlm in method I-in

via (19):

εo

∑
l,m

√
4π

2l + 1
κ

k′
l (κa)

kl (κa)

Q̆lm

a
Y m

l (r̂)

= ε
∑
lm

√
4π

2l + 1
Y m

l (r̂)

[
Qlm

l

a2
− Qlm

ε

l + 1

a2

]

= ε
∑
lm

√
4π

2l + 1
Y m

l (r̂)

[
Q̆lm

l

a2
− Qlm

ε

2l + 1

a2

]

= ε
∑
lm

√
4π

2l + 1
Y m

l (r̂)Q̆lm
l

a2
−

√
4π
∑
lm

Y m
l (r̂)

Qlm

a2
,

leading to

Q̆lm = 2l + 1

ε l − εo(κa) k′
l (κa)

kl (κa)

Qlm (21)

or (because here Q̆lm = QI−in
lm + Qlm

ε
)

QI−in
lm =

[
2l + 1

ε l − εo(κa) k′
l (κa)

kl (κa)

− 1

ε

]
Qlm

=
√

4π

[
2l + 1

ε l − εo(κa) k′
l (κa)

kl (κa)

− 1

ε

]
qlm

al
. (22)

Not surprisingly, when we use (20) to solve for Qlm in method
II-on, we also obtain

Q̆lm = 2l + 1

ε l − εo(κa) k′
l (κa)

kl (κa)

Qlm
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except that now Q̆lm = QII−on
lm + Qlm. Hence, for method II-

on,

QII−on
lm =

[
2l + 1

ε l − εo(κa) k′
l (κa)

kl (κa)

− 1

]
Qlm

=
√

4π

[
2l + 1

ε l − εo(κa) k′
l (κa)

kl (κa)

− 1

]
qlm

al
. (23)

In the multiple-sphere case, �I−in and �II−on will contain con-
tributions from other spheres. However, the contribution from
sphere j will always appear through the observable surface
charge strengths Q̆ j

lm and thus does not affect the proof above.
It is worthwhile to ponder the difference

QII−on
lm − QI−in

lm =
[

1

ε
− 1

]
Qlm =

√
4π

[
1

ε
− 1

]
qlm

al
.

This extra part comes from smearing to the surface the in-
duced bound charges that are originally attached to the free
charges inside the sphere. These induced bound charges must
be excluded from calculation of solvation energy. That is,
computation of solvation energy under method II-on is less
direct as shown below.

Under method I-in, the solvation energy is simply given by

U I−in
s = 1

2

∫
ρ f (r)

[∑
lm

√
4π QI

lm

2l + 1
Y m

l (r̂)
rl

al+1

]
dr

= 1

2

∑
lm

√
4π

2l + 1

q∗
lm QI

lm

al+1

= 1

2

∑
lm

4π

2l + 1

[
2l + 1

ε l − εo κa k′
l (κa)

kl (κa)

− 1

ε

]
q∗

lm qlm

a2l+1

= 1

2

∑
lm

[
2l + 1

ε l − εo κa k′
l (κa)

kl (κa)

− 1

ε

]
Q

∗
lmQlm

(2l + 1)a
. (24)

On the other hand, under method II-on, when computing
solvation energy the smeared induced bound charges must be
removed from consideration, leading to using QI

lm instead of
QII

lm:

U II−on
s = 1

2

∫
σ f (r̂)

[∑
lm

√
4π QI

lm

2l + 1
Y m

l (r̂)
1

a

]
dS

= 1

2

∑
lm

4πa2

2l + 1

σ ∗
lm QI

lm

a
= 1

2

∑
lm

Q
∗
lmQI

lm

(2l + 1)a

= 1

2

∑
lm

4π

2l + 1

[
2l + 1

ε l − εo κa k′
l (κa)

kl (κa)

− 1

ε

]
q∗

lm qlm

a2l+1

= 1

2

∑
lm

[
2l + 1

ε l − εo κa k′
l (κa)

kl (κa)

− 1

ε

]
Q

∗
lmQlm

(2l + 1)a
. (25)

Having obtained the solvation energy of the sphere, we are
ready to proceed to the second goal.

V. SYSTEM EQUIVALENCE AND THE
SUBSTITUTION RULE

As mentioned in the introduction, the equivalence be-
tween method I-in (putting the multipole sources inside of
a sphere) and method II-on (putting the multipole sources
on the surface of the same sphere) was established for the
ion-free case in [11]. In Sec. IV and Appendix C, we further
demonstrate the equivalence of these two methods when the
dielectric spheres are immersed in an ionic solution that is
describable by the Debye-Hückel theory. Consequently, we
may consider only the case where the multipole sources,
when present, are on the spherical surfaces. Remember that
although the total observable surface charge strengths Q̆lm

equal Qlm + Qlm
ε

for method I-in and equal Qlm + Qlm for
method II-on, both methods yield identical equations for Q̆lm.
Hence the physically observable Q̆lm is the same for both
methods. For our development here, it is slightly easier to use
method II-on.

In our system, the presence of dielectric spheres of finite
radii introduces spherical regions having κ2 = 0. Following
our surface charge method, we may write down the poten-
tial produced by the free charge distribution and the yet to
be determined induced charge distribution in the spatial re-
gion where κ2 �= 0, and apply the boundary conditions to
obtain the induced surface charge distribution, hence the po-
tential in the κ2 �= 0 region. As for the potential inside the
spheres, because it satisfies the Laplace equation, one may
write down the most general solution and determine the co-
efficients by demanding continuity with the potential outside
the spheres.

For example, if one wishes to calculate the potential near
the outside of a dielectric sphere caused by a free point charge
outside the sphere in the mobile ion reachable region, one
needs to add the contribution from the point charge using
Eq. (1) and the contribution from the induced surface charge.
This task will be easier if one can build an equivalent system
with κ2 constant everywhere while computing the potential
outside the dielectric spheres. The spherical symmetry of (18)
offers such a possibility, and the goal of the current section is
to use the single-sphere example to bring out the correspon-
dence principle needed for finite a.

Placing permanent multipoles qlm on the surface, the po-
tential outside the sphere is given by the expression (18)

�out (r > a) =
∑
l,m

√
4π

2l + 1

kl (κr)

kl (κa)

Q̆lm

a
Y m

l (r̂)

=
∑
l,m

√
4π

2l + 1

kl (κr)

kl (κa)

Qlm + Qlm

a
Y m

l (r̂).

Now remember from (C2) that Qlm = 4πa2σ f lm = √
4π

qlm

al

corresponds to the permanent multipole qlm placed on
the spherical surface while Qlm = 4πa2σlm corresponds to
the induced multipole that exists only on the spherical
surface.

The spherical symmetry in (18) prompts us to compare it
with a similar system of a spherical shell of charge density
σt = σ f + σ (with Q̆lm = 4πa2σt lm) in a solution of mobile
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ions. Namely, using Eq. (1),

�pseudo(r, r > a) =
∫

σt (r̂′)
|r − ar̂′|e−κ|r−ar̂′|dS′

=
∑
lm

(4πa2κ ) kl (κr)Y m
l (r̂)il (κa)

×
∫

σt (r̂
′)Y m

l
∗(r̂′)d
′

=
∑
lm

√
4π [(κa)il (κa)]kl (κr)

Q̆lm

a
Y m

l (r̂).

(26)

By comparing (26) with (18),

�out (r) =
∑
l,m

√
4π

2l + 1

1

kl (κa)
kl (κr)

Q̆lm

a
Y m

l (r̂),

we find that by introducing a substitution rule

Q̆lm ⇒ Q̆+
lm ≡ Q̆lm

(κa)(2l + 1)il (κa)kl (κa)
, (27)

we can turn �pseudo into the true �. Let T̂ denote such an
operation. We thus have

T̂ �pseudo(r, r > a)

=
∑
lm

√
4π (κa) il (κa) kl (κr)

T̂ [Q̆lm]

a
Y m

l (r̂)

=
∑
lm

√
4π (κa) il (κa) kl (κr)

Q̆+
lm

a
Y m

l (r̂)

=
∑
lm

√
4π

2l + 1

kl (κr)

kl (κa)

Q̆lm

a
Y m

l (r̂) = �out (r).

This substitution rule in effect introduces a multipole-
dependent correction factor (for both Qlm and Qlm, and hence
Q̆lm)

Tl (a) = 1

(κa)(2l + 1)il (κa)kl (κa)
(28)

due to the dielectric sphere having a finite radius. Note that
Tl � 1 always. To justify this point, let us first make the fol-
lowing observation. As a → 0, the presence of the dielectric
inside the spherical shell becomes less and less important,
and we expect the correction factor Tl (a) → 1 as a → 0. We
find this is exactly the case because when x 
 1, il (x) ≈
xl/(2l + 1)!!, kl (x) ≈ (2l − 1)!!/xl+1. That is, in terms of the
multipole potential, one may use the substitution rule (i.e., the
correction factor) to correct the calculated potential (outside
the dielectric spheres) while assuming mobile ions are present
everywhere.

In a system containing N spheres, at a spatial point r not
inside any of the spheres, one may thus write down the poten-
tial as the sum of the contribution from each sphere. In other
words, one may compute the potential at r from N spherical
shells of charge distributions in a space filled with mobile ions
and then apply the substitution rule (27). However, in order to
compute the induced surface charge strength on sphere Ak ,
for example, we will need to compute the radial derivative of

the potential due to all other spheres j �= k while using Rk , the
center of Ak , as the origin. It is tempting simply to use Eq. (2)
to obtain the expansion of the potential due to other spheres
A j �=k around Rk . However, because Ak is a dielectric sphere
without mobile ions inside, such an expansion is valid only
when |r − Rk| � ak , that is, when r is outside Ak .

To examine if the substitution rule (27) is all we need, we
check, in Appendix D, reciprocity in electrostatics: Interaction
energy V (1)

int is the work done to bring to r0 charge multipoles
q′

l ′m′ when multipoles qlm were already placed either inside or
exactly on the surface of the sphere; interaction energy V (2)

int
is the work done to bring the multipoles qlm to the inside or
the surface of the sphere when q′

l ′m′ were already placed at r0.
Reciprocity demands that V (1)

int = V (2)
int .

As shown in Appendix D, the condition of reciprocity
reduces to the following rule:

(κa)2

εo
εo

i′l (κa) − il (κa) k′
l (κa)

kl (κa)

ε l − εo
k′

l (κa)
kl (κa) (κa)

⇒ 1

ε l kl (κa) − εo k′
l (κa) (κa)

.

This turns out to be an exact identity. If one defines Fl (x) ≡
i′l (x)kl (x) − k′

l (x)il (x), one has [because both il and kl satisfy
the differential equation f ′′

l + 2
x f ′

l − (1 + l (l+1)
x2 ) fl = 0]

dFl

dx
= kl (x)i′′l (x) − il (x)k′′

l (x) = −2

x
Fl (x) ⇒ Fl (x) = Cl

x2
.

By using the fact that when x 
 1, il (x) ≈ xl/(2l + 1)!!,
kl (x) ≈ (2l − 1)!!/xl+1, one sees that Cl = 1, that is,

(κa)2[i′l (κa)kl (κa) − k′
l (κa)il (κa)] = 1. (29)

Therefore, we have explicitly verified the reciprocity:

V (2)
int = V (1)

int . (30)

The substitution rule (27) is all we need for making easy the
calculation of the system’s total and interaction energies.

VI. FORMALISM FOR ANY NUMBER
OF DIELECTRIC SPHERES

After establishing the substitution rule (27), we now de-
scribe the general formalism for an arbitrary number of
dielectric spheres. Let us first review some notations. We
consider N dielectric spheres, A1, . . . ,AN , immersed in an
infinite medium of dielectric constant εo. Except for the re-
gions occupied by the N dielectric spheres, mobile ions are
present everywhere in the medium. The vector from the center
of Al to an arbitrary point P is rl . The angle between rl and
the z axis is θl ; the azimuthal angle of rl with respect to the
coordinate system is φl . The jth dielectric sphere A j , centered
at R j with radius a j , has an effective free permanent surface
charge density σ

j
f (r̂ j ) and consists of a material with dielectric

constant ε j . The induced surface charge density on sphere A j

is σ
j

i (r̂ j ). When considering the boundary condition imposed
on Ak , we need to consider the potential produced by charges,
be they permanent or induced, from all spheres. For later
convenience, we introduce the vector �Lk→ j = R j − Rk that
points from the center of Ak to the center of A j .

The objective is to find the total electrostatic energy and
the interaction energy of such a system of N dielectric spheres
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embedded in an unbounded dielectric ionic solution. To that
end, one wishes to calculate for an arbitrary point in space
the electrical potential, which is a linear superposition of the
potentials of the free surface charge distributions σ

j
f ( j =

1, . . . , N) and the induced surface charge densities σ
j

i ( j =
1, . . . , N):

�pseudo(r) =
N∑

j=1

∫
A j

σ
j
f (r̂ j ) + σ

j
i (r̂ j )

|r − R j − a j r̂ j | e−κ|r−R j−a j r̂ j |dS j

=
N∑

j=1

∫
A j

σ
j

t (r̂ j )

|r − R j − a j r̂ j |e−κ|r−R j−a j r̂ j |dS j, (31)

where we have used r̂ j ≡ r j/|r j | to represent an arbitrary
unit vector, hence its associated polar angles, emanating from
the center of A j . As mentioned in [5,8,11,12], the induced
surface charge densities are not known; rather, they are ob-
tained by enforcing the boundary condition at the surface of
each sphere. Application of the boundary condition requires
that the total potential of the known free surface charge dis-
tributions [σ j

f (r̂ j )’s] and the still unspecified surface charge

densities [σ j
i (r̂ j )’s] be calculated just inside and just outside

the surface of each sphere. When the total potential near a
sphere Ak is expressed in terms of a set of spherical harmonics
with Rk as the origin, the boundary conditions will yield alge-
braic equations which, when solved, give the induced surface
charge densities in terms of known quantities.

Starting with Eq. (31), let us consider the potential at a
point r outside sphere A j , meaning that |r − R j | > a j . The
contribution from sphere A j to the potential at r has two parts:
one from the permanent surface charge distribution σ

j
f and

the other from the induced surface charge density σ
j

i on the
spherical surface of A j . As in [8], we write σ

j
i( f )(r̂i ) as

σ
j

i( f )(r̂ j ) = σ
j

i( f )(θ j, φ j ) =
∞∑

l=0

l∑
m=−l

√
4π σ

j
i( f )lmY m

l (θ j, φ j )

and define the induced and permanent surface charge strengths

Q j
lm = 4πa2

jσ
j

ilm, Q
j
lm = 4πa2

jσ
j
f lm.

Writing via (1) (with r j = a j r̂ j and |r − R j | > a j)

e−κ|r−R j−a j r̂ j |

|r − R j − a j r̂ j | = 4πκ
∑
l,m

il (κa j )Y m
l

∗(r̂ j ) kl (κ|r − R j |)

× Y m
l

(
r − R j

|r − R j |
)

,

we may express the potential contribution from sphere A j at
r as

�
pseudo
j (r) =

∫
A j

σ
j

t (r̂ j )e−κ|r−R j−a j r̂ j |

|r − R j − a j r̂ j | dS j

= 4πκ
∑
l,m

il (κa j ) kl (κ|r − R j |)Y m
l

(
r − R j

|r − R j |
)

a2
j

×
∫
A j

σ
j

t (r̂ j )Y
m

l
∗(r̂ j )d
i

=
√

4πκ
∑
l,m

il (κa j ) kl (κ|r − R j |)

×Y m
l

(
r − R j

|r − R j |
)

Q̆ j
lm. (32)

As expected, one may turn this expression into the true poten-
tial contribution from sphere j by applying T̂ :

� j (r) = T̂
[
�

pseudo
j (r)

] =
√

4πκ
∑
l,m

il (κa j ) kl (κ|r − R j |)

× Y m
l

(
r − R j

|r − R j |
)

Q̆ j+
lm . (33)

When r is close to the surface of another sphere Ak (k �= j),
that is, when r = Rk + rk with rk ≈ ak , we shall write � j (r)
purposely as � j→k (Rk + rk ). Let us rewrite � j→k (Rk + rk ) as
(using (33), (2) and with ak � rk < |�Lk→ j |)

� j→k (Rk + rk, rk > ak ) =
√

4πκ
∑
�1,m1

i�1 (κa j ) k�1 (κ|rk + Rk − R j |)Y m1
�1

(
rk + Rk − R j

|rk + Rk − R j |
)

Q̆ j+
�1m1

=
√

4πκ
∑
�1,m1

i�1 (κa j ) k�1 (κ|rk − �Lk→ j |)Y m1
�1

(
rk − �Lk→ j

|rk − �Lk→ j |

)
Q̆ j+

�1m1
(34)

=
√

4πκ
∑
�1,m1

i�1 (κa j ) Q̆ j+
�1m1

∑
l,�2,m,m2

(−1)l+�2 H �1m1
lm�2m2

il (κrk )Y m
l (r̂k ) k�2 (κLk→ j )Y

m2
�2

(L̂k→ j )

=
√

4πκ
∑
lm

il (κrk )Y m
l (r̂k )

[∑
�1,m1

i�1 (κa j ) Q̆ j+
�1m1

∑
�2,m2

(−1)l+�2 H �1m1
lm�2m2

k�2 (κLk→ j )Y
m2
�2

(L̂k→ j )

]
. (35)

The expression above is for rk > ak . The potential produced by the surface charge σ
j

t in the region rk < ak satisfies the Laplace
equation. It has the following general solution:

� j→k (rk < ak ) =
∑
l,m

B j→k
lm

rl
k

al+1
k

Y m
l (r̂k ).
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By matching the expression above with (35) at rk = ak , we see that

B j→k
lm =

√
4π (κak ) il (κak )

∑
�1,m1

i�1 (κa j ) Q̆ j+
�1m1

∑
�2,m2

(−1)l+�2 H �1m1
lm�2m2

k�2 (κLk→ j )Y
m2
�2

(L̂k→ j ).

That is, � j→k (Rk + rk ) takes, when rk < ak , the following form which we will need for the boundary condition calculation:

� j→k (Rk + rk, rk < ak ) =
√

4π (κak )
∑
l,m

il (κak )
rl

k

al+1
k

Y m
l (r̂k )

×
[∑

�1,m1

i�1 (κa j ) Q̆ j+
�1m1

∑
�2,m2

(−1)l+�2 H �1m1
lm�2m2

k�2 (κLk→ j )Y
m2
�2

(L̂k→ j )

]
. (36)

Note that

Q̆ j
lm = Q

j
lm + Q j

lm, (37)

Q
j
lm =

√
4π

q j
lm

al
j

, (38)

with the conventional notation for the spherical multipole
moment (14), and

Q̆ j+
lm = T̂

[
Q̆ j

lm

] = Tl (a j )
(
Q

j
lm + Q j

lm

) = Q
j+
lm + Q j+

lm . (39)

That is, when a charge distribution inside sphere A j yields
multipole q j

lm, this charge distribution may be effectively re-

placed by Q
j
lm on the surface, see [11,12] and Sec. IV, and it

appears as Q
j+
lm if one pretends that everywhere in the space is

accessible by mobile ions. Recall that in terms of effectively

observable surface charge strengths, Q̆ j
lm = Q j

lm + Q
j
lm/ε j for

method I-in and Q̆ j
lm = Q j

lm + Q
j
lm for method II-on. The

boundary conditions for the two methods are different but both
boundary condition equations reduce to the same one, despite
the fact that the Q j

lm (induced surface charge strengths) appear
different in the two cases.

Let us now focus on method II-on and write down the total
electrostatic energy

U II−on = 1

2

∫
ρ f (r) �(r)dr

= 1

2

N∑
k=1

∫
Ak

σ k
f (r̂k ) �e(Rk + akr̂k )dSk, (40)

where by taking the analog from (18) we have defined �e as

�e(Rk + rk ) =
∑
j �=k

� j→k (Rk + rk ) +
⎧⎨
⎩
∑

l,m

√
4π

2l+1
kl (κrk )

ak kl (κak ) Q
k
lmY m

l (r̂k ), [rk > ak],∑
l,m

√
4π

2l+1
rl

k

al+1
k

Qk
lmY m

l (r̂k ), [rk < ak],

=
∑
j �=k

� j→k (Rk + rk ) +
⎧⎨
⎩

√
4πκ

∑
l,m il (κak ) kl (κrk )Y m

l (r̂k ) Qk+
lm , [rk > ak],

√
4πκ

∑
l,m il (κak ) kl (κak ) rl

k

al
k
Y m

l (r̂k ) Qk+
lm , [rk < ak].

(41)

Before moving on, let us further note that

�II−on
f (Rk + rk ) =

⎧⎨
⎩
∑

l,m

√
4π

2l+1
kl (κrk )

ak kl (κak ) Q
k
lmY m

l (r̂k ), [rk > ak],∑
l,m

√
4π

2l+1
rl

k

al+1
k

Q
k
lmY m

l (r̂k ), [rk < ak],

=
⎧⎨
⎩

√
4πκ

∑
l,m il (κak ) kl (κrk )Y m

l (r̂k ) Q
k+
lm , [rk > ak],

√
4πκ

∑
l,m il (κak ) kl (κak ) rl

k

al
k
Y m

l (r̂k ) Q
k+
lm , [rk < ak],

(42)

is not included in the computation of �e(rk ) because the free charges are treated as frozen in place and the potential energy
associated with the frozen configuration within each sphere is a constant, albeit possibly infinite, that can be excluded. However,
this term cannot be dropped when applying the boundary condition near the surface of Ak because it is the total potential that
must be used for computing the derivatives near the outside of the spherical dielectric interface. That is, when applying the
boundary condition near the surface of Ak , we need to use

�b(Rk + rk ) = �e(Rk + rk ) + �II−on
f (Rk + rk ) ≡

∑
j �=k

� j→k (Rk + rk ) + �k→k (Rk + rk ). (43)
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The last term above, which we call �k→k , has been worked out in Sec. IV [see Eqs. (16) and (18)]. Basically,

�k→k (Rk + rk ) =
⎧⎨
⎩
∑

l,m

√
4π

2l+1
kl (κrk )

ak kl (κak ) Q̆
k
lmY m

l (r̂k ), [rk > ak],∑
l,m

√
4π

2l+1
rl

k

al+1
k

Q̆k
lmY m

l (r̂k ), [rk < ak],

=
⎧⎨
⎩

√
4πκ

∑
l,m il (κak ) kl (κrk )Y m

l (r̂k ) Q̆k+
lm , [rk > ak],

√
4πκ

∑
l,m il (κak ) kl (κak ) rl

k

al
k
Y m

l (r̂k ) Q̆k+
lm , [rk < ak].

(44)

We are now ready to apply the boundary condition

εo
∂�b(rk )

∂rk

∣∣∣∣
a+

k

= εk
∂�b(rk )

∂rk

∣∣∣∣
a−

k

− 4πσ k
f = εk

∂�b(rk )

∂rk

∣∣∣∣
a−

k

−
√

4π

a2
k

∑
lm

Q
k
lmY m

l (r̂k ). (45)

For later convenience, we shall multiply the boundary condition equation above by a2
k . We shall first work out the equation for

the component having angular dependence Y m
l (r̂k ). We begin by considering the left-hand side:

εo a2
k

∂�b(rk )

∂rk

∣∣∣∣
a+

k

→ εo

√
4π (κak )2

⎧⎨
⎩il (κak )k′

l (κak )Q̆k+
lm +

∑
j �=k

i′l (κak )

×
[ ∑

�1m1�2m2

i�1 (κa j ) Q̆ j+
�1m1

(−1)l+�2 H �1m1
lm�2m2

k�2 (κLk→ j )Y
m2
�2

(L̂k→ j )

]}
. (46)

The right-hand side becomes

εka2
k

∂�b(rk )

∂rk

∣∣∣∣
a−

k

− 4πσ k
f a2

k → εk

√
4π (κak )

⎧⎨
⎩l il (κak )kl (κak )Q̆k+

lm − Q
k
lm

(κak ) εk
+
∑
j �=k

l il (κak )

×
[ ∑

�1m1�2m2

i�1 (κa j ) Q̆ j+
�1m1

(−1)l+�2 H �1m1
lm�2m2

k�2 (κLk→ j )Y
m2
�2

(L̂k→ j )

]}
.

Equating the left-hand side and the right-hand side of the boundary condition equation, we thus have (after getting rid of the
common factor

√
4π )

Q
k
lm = (κak )il (κak )kl (κak )

[
l εk − (κak ) k′

l (κak )

kl (κak )
εo

]
Q̆k+

lm +
∑
j �=k

(κak )

[
l εk − (κak )i′l (κak )

il (κak )
εo

]

×
[ ∑

�1m1�2m2

il (κak ) i�1 (κa j ) Q̆ j+
�1m1

(−1)l+�2 H �1m1
lm�2m2

k�2 (κLk→ j )Y
m2
�2

(L̂k→ j )

]
. (47)

For later convenience, let us define

Dj (�) ≡ 1

(κa j )

1

�ε j − (κa j )i′�(κa j )
i�(κa j )

εo

and Vj (�) = i�(κa j )k�(κa j ) + εoDj (�). (48)

We may thus rewrite the boundary condition equation as

Q
k
lm = D−1

k (l )il (κak ) kl (κak )
l εk − (κak ) k′

l (κak )
kl (κak ) εo

l εk − (κak )i′l (κak )
il (κak ) εo

Q̆k+
lm +

∑
j �=k

D−1
k (l )

×
[ ∑

�1m1�2m2

il (κak )i�1 (κa j ) Q̆ j+
�1m1

(−1)l+�2 H �1m1
lm�2m2

k�2 (κLk→ j )Y
m2
�2

(L̂k→ j )

]

= D−1
k (l )Vk (l )Q̆k+

lm +
∑
j �=k

∑
�1m1

D−1
k (l )

× il (κak )i�1 (κa j )

[∑
�2m2

(−1)l+�2 H �1m1
lm�2m2

k�2 (κLk→ j )Y
m2
�2

(L̂k→ j )

]
Q̆ j+

�1m1
, (49)
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where we have applied (29) to

il (κak ) kl (κak )
l εk − (κak ) k′

l (κak )
kl (κak ) εo

l εk − (κak )i′l (κak )
il (κak ) εo

= il (κak ) kl (κak )

[
1 + εo

(κak )i′l (κak )
il (κak ) − (κak ) k′

l (κak )
kl (κak )

l εk − (κak )i′l (κak )
il (κak ) εo

]

= il (κak ) kl (κak ) + εo

(κak )

1

l εk − (κak )i′l (κak )
il (κak ) εo

= il (κak ) kl (κak ) + εo Dk (l ). (50)

We may rewrite (49) as (with l → �k, m → mk, �1 → � j, m1 → mj, �2 → l, m2 → m)

Q
k
�kmk

= D−1
k (�k )Vk (�k )Q̆k+

�kmk
+
∑
j �=k

D−1
k (�k )

⎡
⎣ ∑

� j m j lm

i�k (κak )i� j (κa j ) Q̆ j+
� j m j

(−1)l+�k H
� j m j

�kmk lm kl (κLk→ j )Y
m

l (L̂k→ j )

⎤
⎦. (51)

By defining the matrix M (k, j) having elements

M�kmk ,� j m j ≡
∑
lm

i�k (κak )i� j (κa j ) (−1)l+�k H
� j m j

�kmk lm kl (κLk→ j )Y
m

l (L̂k→ j ), (52)

the expression inside square bracket of (51) can be written as

M�kmk ,� j m j Q̆ j+
� j m j

.

Note that we may rewrite (52) as (using �k + � j + l needing to be even by H
� j m j

�kmk lm and
∑

m H
� j m j

�kmk lmY m
l = ∑

m H �kmk
� j m j lmY m

l
∗)

M�kmk ,� j m j ≡
∑
lm

i�k (κak )i� j (κa j ) (−1)�k H
� j m j

�kmk lm kl (κLj→k )Y m
l (L̂ j→k )

=
∑
lm

i�k (κak )i� j (κa j ) (−1)� j+lH �kmk
� j m j lm kl (κLj→k )Y m

l
∗(L̂ j→k ) = M∗

� j m j ,�kmk
, (53)

implying that

M (k, j)† = M ( j,k).

One may rewrite the boundary condition equation in yet another form that is useful solely for analytical development:

Dk (�k )Q
k
�kmk

= Vk (�k )Q̆k+
�kmk

+
∑
j �=k

⎡
⎣ ∑

� j m j lm

i�k (κak )i� j (κa j ) Q̆ j+
� j m j

(−1)l+�k H
� j m j

�kmk lm kl (κLk→ j )Y
m

l (L̂k→ j )

⎤
⎦. (54)

Equation (49) or Eq. (51) allows us to solve for Q̆k+
lm (hence Q̆k

lm) in terms of permanent multipole sources Q
k
lm with

k = 1, 2, . . . , N .
Note that knowing Q̆k

lm is equivalent to knowing σ k
t (r̂k ). Because σ k

f (r̂k ) is the input, hence known, we thus may learn about

the induced surface charge density σ k (r̂k ) = σ k
t (r̂k ) − σ k

f (r̂k ), hence Qk
lm. Having obtained Q̆k

lm (hence Qk
lm = Q̆k

lm − Q
k
lm), we

may wish to use (40) to compute the total electrostatic energy. However, caution needs to be exercised as this is incorrect. As
explained near the end of Sec. IV, the extra induced surface charge strength −[1 − 1

ε
]Qlm comes from smearing to the surface

the induced bound charges that are originally attached to the free charges inside the sphere. These induced bound charges must
be excluded from energy calculation. In expression (40), however, the interaction energy between this extra induced surface
charge strength and the effective permanent surface charge strength is included. Hence, technically speaking, (40) does not give
the correct total electrostatic energy. However, if one defines an auxiliary solvation energy (for sphere k)

U k,II−on
s;aux = 1

2

∫
σ f (r̂)

[∑
lm

√
4π Qk;II−on

lm

2l + 1
Y m

l (r̂k )
1

ak

]
dSk = 1

2

∑
lm

4πa2
k

2l + 1

σ k∗
lm Qk;II−on

lm

ak

= 1

2

∑
lm

Q
k∗
lm Qk;II−on

lm

(2l + 1)ak
= −1

2

∑
lm

4π

2l + 1

[
2l + 1

(κak ) εo
k′

l (κak )
kl (κak ) − ε l

+ 1

]
qk∗

lm qk
lm

a2l+1
k

, (55)

then one may subtract
∑N

i=1 U i,II−on
s;aux from (40) to arrive at the correct interaction energy. A simple calculation shows that the

extra energy contained in U II−on is simply

N∑
k=1

[
U k,II−on

s;aux − U k,II−on
s

] = 1

2

N∑
k=1

∑
lm

4π

2l + 1

(
1

εk
− 1

)
qk∗

lmqk
lm

a2l+1
k

= 1

2

N∑
k=1

∑
lm

1

2l + 1

(
1

εk
− 1

)
Q

k∗
lmQ

k
lm

ak
. (56)
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Hence, we may write the total electrostatic energy of the system as

U = U II−on − 1

2

N∑
k=1

∑
lm

1

2l + 1

(
1

εk
− 1

)
Q

k∗
lmQ

k
lm

ak
= U II−on −

N∑
k=1

U k,II−on
s;aux +

N∑
k=1

U k,II−on
s . (57)

And not surprisingly,

Uint = U −
N∑

k=1

U k,II−on
s = U II−on −

N∑
i=1

U i,II−on
s;aux .

Now let us write down U II−on explicitly by using (40), (41), and (35):

U II−on = 1

2

N∑
k=1

∫
Ak

σ k
f (r̂k ) �e(Rk + akr̂k )dSk

= 1

2

N∑
k=1

⎧⎨
⎩
∑
lm

Q
k∗
lm

(
Q̆k

lm − Q
k
lm

)
(2l + 1) ak

+
∑
j �=k

∫
Ak

σ k
f (r̂k ) � j→k (Rk + akr̂k )dSk

⎫⎬
⎭

= κ

2

N∑
k=1

∑
lm

[
il (κak )kl (κak )Q

k∗
lmQ̆k+

lm − Q
k∗
lmQ

k
lm

(2l + 1) (κak )

]

+κ

2

N∑
k=1

∑
j �=k

{∑
lm

il (κak )Q
k∗
lm

[∑
�1,m1

i�1 (κa j )Q̆
j+
�1m1

∑
�2,m2

(−1)l+�2 H �1m1
lm�2m2

k�2 (κLk→ j )Y
m2
�2

(L̂k→ j )

]}
.

Applying this result to (57), one has the total electrostatic energy

U = κ

2

N∑
k=1

∑
lm

[
il (κak )kl (κak )Q

k∗
lmQ̆k+

lm − Q
k∗
lmQ

k
lm

(2l + 1) (κak ) εk

]
+ κ

2

N∑
k=1

∑
j �=k

{∑
lm

il (κak )Q
k∗
lm

×
[∑

�1,m1

i�1 (κa j )Q̆
j+
�1m1

∑
�2,m2

(−1)l+�2 H �1m1
lm�2m2

k�2 (κLk→ j )Y
m2
�2

(L̂k→ j )

]}
. (58)

The interaction energy is obtained via

Uint = U −
N∑

k=1

U k,II−on
s

= κ

2

N∑
k=1

∑
lm

(
il (κak )kl (κak )Q

k∗
lmQ̆k+

lm − Q
k∗
lmQ

k
lm[

εk l − εo κa k′
l (κa)

kl (κa)

]
(κak )

)

+κ

2

N∑
k=1

∑
j �=k

{∑
lm

il (κak )Q
k∗
lm

[∑
�1,m1

i�1 (κa j )Q̆
j+
�1m1

∑
�2,m2

(−1)l+�2 H �1m1
lm�2m2

k�2 (κLk→ j )Y
m2
�2

(L̂k→ j )

]}
. (59)

VII. RESULTS AND DISCUSSION

Our main Eqs. (58) and (59) here are similar to Eqs. (21)
and (23) of [12] where ions are not considered or have to
be included explicitly. The boundary condition equation (49)
here corresponds to Eq. (20) of [12]. In the ion-free case
[8,9,11,12], the convergence of the potential multipole expan-
sion and the energy expression is controlled as follows. For a
localized charge distribution inside a sphere of radius a cen-
tered around the origin, the multipole potential is equivalent
to an effective Coulomb term Qlm/r multiplied by al/rl when
observed at a distance r > a away. In the interaction energy
expression, the effective charge strength Qlm corresponding

to multipole qlm is always combined with a factor of al

Ll where
a is the sphere radius and L is the distance between two
spherical centers.

In the implicit ion method, the convergence property is less
transparent. We will first discuss this point by examining the
exact potential expansion outside a sphere (18):

�out (r > a) =
∑
l,m

√
4π

2l + 1

kl (κr)

kl (κa)

Q̆lm

a
Y m

l (r̂).

First, the factor 1/(2l + 1) there simply reflects that there are
2l + 1 values of m for a particular l . This factor somewhat
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averages out the contributions from the 2l + 1 values of m.
Next, for a given l , we notice that the radial function is given
by

kl (κr)

[akl (κa)]
.

We know that for large κr, all kl (κr) have similar values,
while at a fixed finite x the function kl (x) increase with l .
This means that kl (κr)

[akl (κa)] decrease with l when r > a, indi-
cating a decrease of importance of higher multipoles. When
κa 
 1, kl (κa) ≈ (2l − 1)!!/(κa)l+1 and the scaling factor
1/[akl (κa)] ∝ al/ξ l+1 where ξ = 1/κ is the effective decay
length. That is, instead of al/rl+1 for the radial function, one
has an exponential decay function ≈e−κr/(κr) multiplied by
al/ξ l+1. This shows the convergence of the sum is given by
powers of a/ξ , not powers of a/r, illustrating the difference
between the ion-free case and the Debye-Hückel level theo-
retical result. As for electrostatic interaction energy, we find
the effective charge strengths Q̆lm or Qlm are accompanied by
the factor

1

(κa)kl (κa)
κa
1∝

(
a

ξ

)l

.

These analyses show that when mobile ions are considered,
the convergence is controlled primarily by the ratio a/ξ = κa.
This tells us that in the case of small κa, the total (interaction)
energy calculated by the series expressions (58) and (59) will
converge faster than the large-κa case at small intersphere
separations. That is, the theory becomes more powerful for
small κa. Interestingly, one may remember that having a small
κ is one starting criterion for a valid Debye-Hückel theory.

The readers must be curious about the relationship between
this implicit ion approach (rigorous at the Debye-Hückel
level) and our rigorous ion-free result [12]. The answer is
simply that by taking the κ2 → 0 limit, one mathematically
removes the Debye-Hückel ion charge density, and the electri-
cal potential is governed once again by the Poisson equation,
not the modified inhomogeneous Helmholtz equation. It turns
out that one may show this explicitly, although the procedure
is a bit tedious. To convince the readers but not bore them with
the lengthy algebra, we shall illustrate but one nontrivial point
in detail. If we compare the interaction energy expression (59)
here with the corresponding Eq. (23) of [12], we find that

the effective charge strengths Q
k∗
lm and Q̆ j

�1m1
on two distinct

spheres k and j seem to interact differently. In the current
formalism, we have

κ il (κak ) Q
k∗
lm i�1 (κa j )Q̆

j+
�1m1

[∑
�2,m2

(−1)l+�2 H �1m1
lm�2m2

k�2 (κLk→ j )Y
m2
�2

(L̂k→ j )

]

= κ
il (κak ) Q

k∗
lmQ̆ j

�1m1

(κa j ) (2�1 + 1) k�1 (κa j )

[∑
�2,m2

(−1)l+�2 H �1m1
lm�2m2

k�2 (κLk→ j )Y
m2
�2

(L̂k→ j )

]
. (60)

This is to be compared with the corresponding part in Eq. (23) of [12],

qk∗
lm

4π (−1)�1+mQ̆ j
�1 m1

(2l + 1)(2�1 + 1)

a�1
j

Ll+�1+1
k→ j

�l,�1,−m,m1 Y −m+m1
l+�1

(L̂k→ j )

= Q
k∗
lm

2l + 1

Q̆ j
�1m1

2�1 + 1

al
ka�1

j

Ll+�1+1
k→ j

√
4π (−1)�1+m�l,�1,−m,m1 Y −m+m1

l+�1
(L̂k→ j ). (61)

We see that the previous result contains no summation over �2. So how does the summation over �2 disappear? To see this, let us
remember again as κ → 0, κa → 0 and kl (κa) → (2l − 1)!!/(κa)l+1 and il (κa) → (κa)l/(2l + 1)!!. Expression (60) becomes

Q
k∗
lmQ̆ j

�1m1
κ

(κak )l

(2l + 1)!!

(κa j )�1

(2�1 + 1)!!

[∑
�2,m2

(−1)l+�2 H �1m1
lm�2m2

(2�2 − 1)!!

(κLk→ j )�2+1
Y m2

�2
(L̂k→ j )

]
. (62)

Because H �1m1
lm�2m2

contains the Clebsch-Gordan coefficient C�1m1
lm�2m2

, the range of �2 is between |l − �1| and l + �1. For any �2 <

l + �1, there will be a positive power of κ in the expression above, rendering zero value upon taking the κ → 0 limit. Hence, the
κ → 0 limit forces �2 = l + �1 and the sum over �2 disappears. As a bonus, we also see how the factor

al
ka�1

j

Ll+�1+1
k→ j

of (61) arises from (62). When �2 = l + �1,

κ
(κak )l (κa j )�1

(κLk→ j )�2+1
→ al

ka�1
j

Ll+�1+1
k→ j

.

Another property of the Wigner 3 j symbol

C00
lml−m = (−1)l−l+0

√
2 × 0 + 1

(
l l 0
m −m 0

)
= (−1)l−m

√
2l + 1

,
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leading to the following useful expression,

H00
lml−m = C0 0

l 0 l 0C
0 0
l m l −m

√
4π

2 × 0 + 1

√
(2l + 1)(2l + 1) =

√
4π (−1)m,

which helps in proving the equivalence between [12] and the
current formalism as κ → 0.

The main purpose of this paper is to describe an implicit
ion formalism rigorous at the Debye-Hückel level. The system
under consideration consists of an arbitrary number of dielec-
tric spheres of finite radii immersed in a dielectric solvent that
contains mobile ions. To the best of our knowledge, except
for the formalism described here, no other formalism empha-
sizes reciprocity and offers a rigorous, closed form for the
electrostatic energy. Comparison with other methods remains
important, but since this paper is already lengthy we prefer
to do so in a separate publication [23]. Here, we content
ourselves by showing the correct results for the frequently
studied case of two dielectric spheres [16–20].

Prior to computing the energy of the two-sphere system,
let us first elucidate the reciprocity property further. The full
exposition of reciprocity for an arbitrary number of spheres is
provided in Appendix E. Here we only summarize the results
for two spheres. With the general definitions given in Eq. (48)
let us denote by D1 (D2) the diagonal matrix with elements
D1(�1) [D2(�2)]. We also abbreviate by V1 (V2) the diagonal
matrix with elements V1(�1) = εoD1(�1) + i�1 (κa1) k�1 (κa1)
[V2(�2) = εoD2(�2) + i�2 (κa2) k�2 (κa2)].

The boundary conditions can now be written as a matrix
equation of the following form:

(
V1 M

M† V2

)(
Q̆+

1

Q̆+
2

)
=
(

D1Q1

D2Q2

)
,

where Q̆+
i (Qi) denotes the vector with components Q̆i+

lm (Q
i
lm)

for all l up to lmax (the maximum l value considered) and
elements of M are given by Eq. (E3). For the two-sphere
system, the first form and the second form of the reci-
procity interaction energies, proven identical for any lmax in
Appendix E, may be expressed as

U r(1)
int = κ Q

∗T
1 [(V1 − εoD1)Q̆+

1 + MQ̆+
2 ], (63)

U r(2)
int = κQ

∗T
2 [(V2 − εoD2)Q̆+

2 + M†Q̆+
1 ]. (64)

In Fig. 1, we provide readers with concrete numerical verifica-
tion of reciprocity: equivalence between the two expressions
(63) and (64) above, corresponding to (E7) and (E11) in
Appendix E, for whatever choice of lmax.

A particularly simple case is when lmax = 0. As shown in
Appendix E, with lmax = 0, we have for a two-sphere system
the reciprocity interaction energy

U r
int (lmax = 0) = q1 q2

εoL

e−κ (L−a1−a2 )

(1 + κa1)(1 + κa2)

×
[

1 − G12

(
e−κ (L−a1−a2 )

κL

)2
]−1

with

G12 = G21

= (κa1)(κa2)[T0(a1) − (1 + κa1)][T0(a2) − (1 + κa2)]

T0(a1)(1 + κa1)T0(a2)(1 + κa2)
.

Note that when L is large so that e−κ (L−a1−a2 )

κL 
 1, we have

U r
int (lmax = 0) ≈ q1 q2

εoL

e−κ (L−a1−a2 )

(1 + κa1)(1 + κa2)
, (65)

which is the celebrated long-range interaction term of Verwey
and Overbeek [24].

Even though the Verwey-Overbeek term appears as the
dominant term in the reciprocity interaction energy, we must
emphasize that it is incorrect to use (E14) for computation of
the force. That is, the derivative with respect to L of (E14), led
by the Verwey-Overbeek term, does not yield the correct force
between the two dielectric spheres. The actual force comes
from the derivative of the total energy with respect to L. The
computed interaction energy in either (E9) or (E11) does not

(a
rb

. u
ni

ts
)

FIG. 1. The reciprocity interaction energy of a system of two
spheres versus their separation. Each sphere contains a unit charge
at its center; sphere 1 has radius a1 = a while sphere 2 has radius
a2 = 2a. The other parameters are chosen to mimic two spherical
proteins immersed in a rather strong ionic solution with water as sol-
vent: ε1 = ε2 = 4, εo = 80, and κ = 0.5. There are two forms, (E7)
and (E11), of the reciprocity interaction energy, each containing two
components. The κ Q

∗T
1 (V1 − εoD1)Q̆+

1 component of (E7) is plotted

using a thick red dashed line while the κ Q
∗T
1 MQ̆+

2 component of

(E7) is plotted using thin red dashed line. The κ Q
∗T
2 (V2 − εoD2)Q̆+

2

component of (E11) is plotted using a thick blue dot-dashed line
while the κ Q

∗T
2 M†Q̆+

1 component of (E11) is plotted using thin blue
dot-dashed line. Although the components all have different values,
as shown in the plot, the sums of the two components belonging to
either (E7) or (E11) yield identical values shown using a solid black
line. As proved in Appendix E, reciprocity holds for an arbitrary lmax

cutoff. The numerical values in this plot are produced using lmax = 10
throughout.
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FIG. 2. The relative errors of the computed interaction energy, (59), between two spheres versus lmax. The system consists of two spheres,
the first one with radius a1 = a while the other with radius a2 = 2a; each sphere has a point charge q at its center. In panel (a), the relative
error curves—when the two sphere centers are separated by L = 3.1a, 3.5a, 4.0a, 5.0a, and 7.0a, and for κ = 0.1—are each labeled by the
corresponding L and shown in different colors: red (L = 3.1a), orange (L = 3.5a), green (L = 4.0a), magenta (L = 5.0a), and blue (L = 7.0a).
In panel (b), we display the relative error versus lmax for various κ when L = 3.5a. We find that as κ increases, the relative error, for the same
lmax value, also increases.

include the force due to self-interaction. For example, one
may consider a point charge near a conducting plane. There
is apparently a real force on the point charge produced by its
image charge. However, such a force is not accounted for by
computing the derivative of the reciprocity interaction energy
with respect to L.

While calculating the interaction energy Uint using (59),
one may control the accuracy of the energy obtained by vary-
ing lmax. For practical purposes, it is desirable to know what
lmax to use for a desired accuracy requirement. In Fig. 2, we
display the relative error versus lmax when the two spheres,
the first one with radius a1 = a and the second a2 = 2a,
have their centers separated by 3.1a, 3.5a, 4.0a, 5.0a, and
7.0a for κ = 0.1. For L = 3.5a, we also display the relative
error versus lmax for various κ . We note that as κ increases,
the relative error, for the same lmax value, also increases.
This means that when one applies the rigorous formalism
for ionic screening at the Debye-Hückel level to the large-κ
regime, the convergence gets worse (needing more terms)
as κ increases. One also observes, from Fig. 2, that for a
given κ and separation distance L, the relative error in the
computed interaction energy decreases exponentially with
lmax. For most applications up to κ � 1, we find lmax = 10
sufficient.

With lmax fixed at 10, we show in Fig. 3 the computed
interaction energy, (59), as a function of separation distance
between two sphere centers for various values of κ . Two
expected trends are observed. First, the interaction energy
magnitude decreases with κ for the same separation distance.
Second, the decay rate with respect to the separation distance
increases with κ .

Some readers might be interested in knowing whether the
same level of rigor can be kept if one wishes to treat the
ion radius δ as finite. The answer is affirmative. In this case,
for every sphere, say sphere k, there are two spherical in-
terfaces, rk = ak and rk = ak + δ = bk , hence two boundary
conditions and two sets of induced surface charge strengths:
Qk<

lm for rk = ak and Qk>
lm for rk = bk . Having already

proved the equivalence between methods I-in and II-on in
Appendix C for finite δ, we shall use only method II-on to
describe the modifications required. For convenience, we shall
define

Qk
lm ≡ Qk<

lm +
(ak

bk

)l+1
Qk>

lm

and Q̆k
lm = Qk

lm + Q
k
lm. Because it is our plan to investigate

the effect of finite ion radii in a separate publication [25],
we outline only the modifications required to perform the
boundary condition matching without displaying all the final
expressions of solvation energy and interaction energy. This
is because the energy expressions are readily attainable once
the variables in the boundary equations are solved for and be-
cause the energy expressions might become so unnecessarily
cumbersome that the essence of the proposed method in this
paper is masked.

To match the boundary conditions on the two interfaces of
sphere k, we will need [see Eq. (43)]

�b(Rk + rk ) =
∑
j �=k

� j→k (Rk + rk ) + �k→k (Rk + rk ).

The electrostatic potential contribution from sphere k to its
nearby location is now given by

�k→k (Rk + rk ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
l,m Dk

lm kl (κrk )Y m
l (r̂k ), [rk > bk],∑

lm

√
4π

2l+1Y m
l (r̂k )

[ al
k

rl+1
k

Q̆k
lm + (

rl
k − a2l+1

k

rl+1
k

)Qk>
lm

bl+1
k

]
, [ak < rk < bk],∑

l,m

√
4π

2l+1
rl

k

al+1
k

Q̆k
lmY m

l (r̂k ), [rk < ak],
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FIG. 3. Interaction energy (59) for a system of two spheres versus their separation distance. The first sphere has radius a1 = a, while the
second one has radius a2 = 2a. Each sphere has a point charge q at its center. Displayed in panel (a) is the interaction energy versus separation
distance for various κ values. It is obvious that the magnitude of the interaction energy at a fixed separation decreases as κ increases. In panel
(b), the interaction energies are scaled by their values at contact distance. This allows us to see clearly the trend that the interaction energy
decreases with the separation distance more rapidly for larger κ values.

where, similarly to (C14),

Dk
lm = 1

kl (κbk )

√
4π

2l + 1

[
al

k

bl+1
k

Q̆k
lm + 1

bk

(
1 − a2l+1

k

b2l+1
k

)
Qk>

lm

]
.

And the potential contribution from sphere j at the region near sphere k is

� j→k (Rk + rk, rk > bk ) =
∑
�1,m1

D j
�1m1

k�1 (κ|rk + Rk − R j |)Y m1
�1

(
rk + Rk − R j

|rk + Rk − R j |
)

=
∑
�1,m1

D j
�1m1

k�1 (κ|rk − �Lk→ j |)Y m1
�1

(
rk − �Lk→ j

|rk − �Lk→ j |

)

=
∑
�1,m1

D j
�1m1

∑
l,�2,m,m2

(−1)l+�2 H �1m1
lm�2m2

il (κrk )Y m
l (r̂k ) k�2 (κLk→ j )Y

m2
�2

(L̂k→ j )

=
∑
lm

il (κrk )Y m
l (r̂k )

[∑
�1,m1

D j
�1m1

∑
�2,m2

(−1)l+�2 H �1m1
lm�2m2

k�2 (κLk→ j )Y
m2
�2

(L̂k→ j )

]
, (66)

� j→k (Rk + rk, ak < rk < bk ) =
∑
lm

B̃ j→k
lm

[
(ε′ − εk )l

εk l + ε′(l + 1)

(ak

bk

)l+1 al
k

rl+1
k

+ rl
k

bl+1
k

]
Y m

l (r̂k ), (67)

� j→k (Rk + rk, rk < ak ) =
∑
lm

B̃ j→k
lm

[
(ε′ − εk )l

εk l + ε′(l + 1)

(ak

bk

)l+1 rl
k

al+1
k

+ rl
k

bl+1
k

]
Y m

l (r̂k ), (68)

and B̃ j→k
lm are determined via matching the potential

� j→k (Rk + rk ) at rk = bk . The two boundary conditions for
sphere k are taken with Rk = 0:

εo
∂�b(rk )

∂rk

∣∣∣∣
b+

k

= ε′ ∂�b(rk )

∂rk

∣∣∣∣
b−

k

,

ε′ ∂�b(rk )

∂rk

∣∣∣∣
a+

k

= εk
∂�b(rk )

∂rk

∣∣∣∣
a−

k

− 4πσ k
f .

Before ending this paper, we would like to touch on a ques-
tion that probably will have occurred to an avid reader: how
can we proceed when the biomolecular shapes are nonspheri-
cal? The answer is quite simple. Without spherical symmetry,

although the analytical expressions are lost, we can still tackle
this problem numerically. With Eq. (B20) given, one may
discretize Eq. (B19) and obtain the charge densities numer-
ically. The molecular shapes now can be arbitrary. The space
occupied by a biomolecule now is signified by zero mobile
ion density. However, the computational cost inevitably in-
creases with the number of representative spatial points in
discretization.
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APPENDIX A: DERIVATION OF EQUATION (2)

Let OA be an arbitrary point and Ol be a local origin. The
vector from Ol to an observation point P is denoted by �r1.
The vector from Ol to OA is denoted by �r2. For our applica-
tions, r1 < r2. Let �R = �r1 − �r2 be the vector from OA to P.
The derivation below utilizes an argument that was originally
in [26] (page 578), although the original argument requires
correction, which we provide here.

Consider the analytic continuation of h(1)
0 (shown on page

577 of [26]) by taking |�k| = k = iκ:

k0(κR) = e−κR

κR
=
∫ ∞

1
e−κRηdη

= 1

2π

∫ 2π

0

∫ ∞

1
e−κR cos γ d (cos γ )dψ. (A1)

This expression is like laying �R = Rẑ, γ → θk , and ψ → φk .
Evidently, d cos γ dψ is a surface element (on the unit sphere)
which coincides with d cos θk dφk due to choosing �R = Rẑ.
If one were to get a general �R by rotating Rẑ to yield �R =
R(sin θ cos φ, sin θ sin φ, cos θ ) = RR̂, then cos γ = k̂ · R̂ =
cos θ cos θk + sin θ sin θk cos(φ − φk ). This fixed rotation will
also change the course of the θk integral. That is, if one were
rotate the integration paths using the fixed rotation, one will
not be using the same limits as before but requiring a new
integration limit or domain. That is, one may still write

e−κR

κR
= 1

2π

∫
Dk

e−κR cos γ d (cos θk )dφk (A2)

with ∫
Dk

d
k �=
∫ 2π

0
dφk

∫ ∞

1
d cos θk. (A3)

The exact form of
∫

Dk
does not matter. All one needs to

know is that once the fixed rotation that brings Rẑ to �R =
R(sin θ cos φ, sin θ sin φ, cos θ ) is found, Dk is fixed and its
details matter little.

With �R = �r1 − �r2, we have �k · �R = �k · �r1 − �k · �r2. The
plane wave expansion states

ei�k·�r = ei k r k̂·r̂ = 4π
∑
�,m

i� j�(kr)Y m
� (r̂)Y m

�
∗(k̂).

With kr → iκr and using i�(x) = i−� j�(ix), we have

e−κ r k̂·r̂ = 4π
∑
�,m

(−1)�i�(κr)Y m
� (r̂)Y m

�
∗(k̂). (A4)

We also note the Green’s function expansion

e−κ|�r>−�r<|

κ|�r> − �r<| = 4π
∑
�,m

i�(κr<)k�(κr>)Y m
� (r̂<)Y m

�
∗(r̂>). (A5)

We have already considered r1 < r2. Now there are two
cases: R2 > r2

2 or R2 < r2
2 . In this proof, we focus on R > r2

for now. We shall investigate the validity of the formula when
R < r2 at least numerically.

The main idea is to first express k0(κr1) in two different
ways and then link the identity. From (A5), we have

k0(κr1) = e−κ|�r2+ �R|

κ|�r2 + �R|
= 4π

∑
L,M

(−1)LiL(κr2)kL(κR)Y M
L (r̂2)Y M

L
∗
(R̂). (A6)

Here, the factor (−1)L comes from Y M
L (R̂) = (−1)LY M

L (−R̂).
Applying (A2) to k0(κr1), we have

e−κ|�r2+ �R|

κ|�r2 + �R| = 1

2π

∫
Dk

e−κr1 k̂·r̂1 d (cos θk )dφk

= 1

2π

∫
Dk

e−κr2 k̂·r̂2 e−κR k̂·R̂ d (cos θk )dφk. (A7)

Replacing the integrand e−κr2 k̂·r̂2 by (A4), one has

k0(κr1) = e−κ|�r2+ �R|

κ|�r2 + �R|

= 4π

2π

∫
Dk

[∑
L,M

(−1)LiL(κr2)Y M
L (r̂2)Y M

L
∗
(k̂)

]

× e−κR k̂·R̂ d
k . (A8)

Equating the coefficient function of (−1)LiL(κr2)Y M
L (r̂)

between expressions (A6) and (A8), one arrives at an integral
expression for kL(κR)Y M

L
∗(R̂):

kL(κR)Y M
L

∗
(R̂) = 1

2π

∫
Dk

Y M
L

∗
(k̂) e−κR k̂·R̂ d
k . (A9)

Note that κR k̂ · R̂ = κr1 k̂ · r̂1 − κr2 k̂ · r̂2 = κr1 k̂ · r̂1 +
κr2 k̂ · (−r̂2).

Rewriting e−κR k̂·R̂ as above,

kL(κR)Y M
L

∗
(R̂) = 1

2π

∫
Dk

Y M
L

∗
(k̂) e−κr1 k̂·r̂1−κr2 k̂·(−r̂2 ) d
k

= 4π

2π

∫
Dk

Y M
L

∗
(k̂)

∑
�1,m1

(−1)�1 i�1 (κr1)Y m1
�1

(r̂1)

×Y m1
�1

∗(k̂) e−κr2 k̂·(−r̂2 ) d
k

= 4π

2π

∑
�1,m1

(−1)�1 i�1 (κr1)Y m1
�1

(r̂1)
∫

Dk

Y M
L

∗
(k̂)

×Y m1
�1

∗(k̂) e−κr2 k̂·(−r̂2 ) d
k .

Using Eq. (3.7.72) on page 216 of [27], one has

Y M
L

∗
(k̂)Y m1

�1

∗(k̂) =
∑
�2,m2

√
4π

2�2 + 1

√
(2L + 1)(2�1 + 1)

4π

×C�2 m2
LM�1m1

C�2 0
L0 �10Y

m2
�2

∗(k̂)

≡
∑
�2,m2

H �2 m2
LM�1m1

4π
Y m2

�2

∗(k̂). (A10)
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Therefore,

kL(κR)Y M
L

∗
(R̂) = 4π

2π

∑
�1,m1

(−1)�1 i�1 (κr1)Y m1
�1

(r̂1)
∫

Dk

Y M
L

∗
(k̂)Y m1

�1

∗(k̂) e−κr2 k̂·(−r̂2 ) d
k

= (4π )
∑

�1,m1,�2,m2

H �2 m2
LM�1m1

4π
(−1)�1 i�1 (κr1)Y m1

�1
(r̂1) k�2 (κr2)Y m2

�2

∗(−r̂2)

=
∑

�1,m1,�2,m2

H �2 m2
LM�1m1

(−1)�1+�2 i�1 (κr1)Y m1
�1

(r̂1) k�2 (κr2)Y m2
�2

∗(r̂2). (A11)

Note the relation between Wigner 3 j symbols and the Clebsch-Gordan coefficient (see Eq. (3.7.44) on page 210 of [27]):

C jm
j1m1 j2m2

= (−1) j1− j2+m
√

2 j + 1

(
j1 j2 j

m1 m2 −m

)
. (A12)

Here m = m1 + m2 and the 3 j symbol has the beautiful cyclic invariance. Utilizing this, one may make �L the sum of ��1 and ��2.
Let us rework the coefficients [here m2 = (m1 + M )]:

H �2 m2
LM�1m1

=
√

4π

2�2 + 1

√
(2L + 1)(2�1 + 1)C�2 m2

LM�1m1
C�2 0

L0 �10

=
√

4π

2�2 + 1

√
(2L + 1)(2�1 + 1)(−1)m2 (2�2 + 1)

(
L �1 �2

M m1 −m2

)(
L �1 �2

0 0 0

)

=
√

(4π )(2�2 + 1)
√

(2L + 1)(2�1 + 1)(−1)m2

(
�1 �2 L

m1 −m2 M

)(
�1 �2 L

0 0 0

)

=
√

4π

2L + 1

√
(2�1 + 1)(2�2 + 1)(−1)m2 (−1)(M=m2−m1 )CL0

�10 �20 CL −M
�1m1�2 −m2

=
√

4π

2L + 1

√
(2�1 + 1)(2�2 + 1)(−1)m1CL0

�10 �20 CL −M
�1m1�2 −m2

.

Note that (−1)m1Y m1
�1

(r̂1) = Y −m1
�1

∗
(r̂1). Furthermore,

(
�1 �2 �3

−m1 −m2 −m3

)
= (−1)�1+�2+�3

(
�1 �2 �3

m1 m2 m3

)
. (A13)

Because the 3 j symbol (
�1 �2 L
0 0 0

)

arises from integral of
∫ 1
−1 dxP�1 (x)P�2 (x)PL(x) and given that P�(x) = (−1)�P�(−x), it will vanish if �1 + �2 + L is odd.

That is, we may rewrite the expression as

kL(κR)Y M
L

∗
(R̂) =

∑
�1,m1,�2,m2

√
4π

2�2 + 1

√
(2L + 1)(2�1 + 1)C�2 m2

LM�1m1
C�2 0

L0 �10(−1)�1+�2 i�1 (κr1)Y m1
�1

(r̂1) k�2 (κr2)Y m2
�2

∗(r̂2)

=
∑

�1,m1,�2,m2

√
4π

2L + 1

√
(2�1 + 1)(2�2 + 1)(−1)m1CL0

�10�20 CL −M
�1m1�2 −m2

(−1)�1+�2 i�1 (κr1)Y m1
�1

(r̂1) k�2 (κr2)Y m2
�2

∗(r̂2)

=
∑

�1,m1,�2,m2

√
4π

2L + 1

√
(2�1 + 1)(2�2 + 1)CL0

�10�20 CL −M
�1m1�2 −m2

(−1)�1+�2 i�1 (κr1)Y −m1
�1

∗
(r̂1) k�2 (κr2)Y m2

�2

∗(r̂2).

(A14)
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Renaming m1 by −m′
1 and later renaming m′

1 → m1, we thus have

kL(κR)Y M
L

∗
(R̂) =

∑
�1,m′

1,�2,m2

√
4π

2L + 1

√
(2�1 + 1)(2�2 + 1)CL0

�10�20 CL −M
�1 −m′

1�2 −m2
(−1)�1+�2 i�1 (κr1)Y m′

1
�1

∗
(r̂1) k�2 (κr2)Y m2

�2

∗(r̂2)

=
∑

�1,m′
1,�2,m2

√
4π

2L + 1

√
(2�1 + 1)(2�2 + 1)CL0

�10�20 (−1)�1+�2+LCL M
�1 m′

1�2 m2

× (−1)�1+�2 i�1 (κr1)Y m′
1

�1

∗
(r̂1) k�2 (κr2)Y m2

�2

∗(r̂2). (A15)

Because the factor (−1)�1+�2+L = 1, by naming m′
1 back to m1, we have

kL(κR)Y M
L

∗
(R̂) =

∑
�1,m1,�2,m2

HL M
�1 m1�2 m2

(−1)�1+�2 i�1 (κr1)Y m1
�1

∗(r̂1) k�2 (κr2)Y m2
�2

∗(r̂2). (A16)

Or by taking the complex conjugate on both sides, one has

kL(κR)Y M
L (R̂) =

∑
�1,m1,�2,m2

HL M
�1 m1�2 m2

(−1)�1+�2 i�1 (κr1)Y m1
�1

(r̂1) k�2 (κr2)Y m2
�2

(r̂2). (A17)

In our applications, it is possible that the expression (A11) can be more useful. Equation (A17) has been extensively verified
numerically for all positive R values, including R < r1.

APPENDIX B: ENERGY MINIMIZATION FORMULATION

Previously [9] we considered the problem of charges in a
polarizable medium. We express the energy U as a functional
of the polarization vector P,

U [P] = UC[P] + W [P], (B1)

where UC[P] is the electrostatic energy of interaction of all
charges present in the system, and W [P] is the energy required
to create the given polarization vector field P(r).

It is well known that ρind(r) = −∇ · P(r) is the induced
charge density. Therefore, the total charge density ρt (r) in the
medium is the sum of the free charge density ρ f (r) and ρind(r):

ρt (r) = ρ f (r) + ρind(r). (B2)

We then have

UC[P] = 1

2

∫
[ρ f (r) − ∇ · P(r)]

1

|r − r′|
× [ρ f (r′) − ∇ · P(r′)]drdr′ (B3)

and employ the simple quadratic work functional

W [P] = 1

2

∫
P · P
χ (r)

dr. (B4)

That is,

U [P] = UC[P] + 1

2

∫
P(r) · P(r)

χ (r)
dr. (B5)

Performing a functional variation with respect to P, we arrive
at

P(r)

χ (r)
+ ∇r

∫
ρ f (r′) − ∇ · P(r′)

|r − r′| dr′ = 0, (B6)

which implies

P(r) = χ (r)
∫

[ρ f (r′) − ∇ · P(r′)]
r − r′

|r − r′|3 dr′ = χ (r)E(r).

(B7)

Thus the constitutive relation for a linear dielectric is obtained
as a result of functional minimization, with the expansion
coefficient χ (r) turning out to be the dielectric susceptibility.
Inserting the equilibrium polarization (B7) in (B5) results
in the well-known expression for the total energy of the
system:

U = 1

2

∫
ρ f (r)

1

|r − r′| [ρ f (r′) − ∇ · P(r′)]drdr′. (B8)

When we add mobile ions at the Debye-Hückel level, we
also have a linear relation ρion = −κ2�/4π . This prompts us
to use the following simple energy functional:

U [P, ρion] = UC[P, ρion] + W [P] + W ′[ρion], (B9)

with

UC[P, ρion] = 1

2

∫
[ρ f (r) − ∇ · P(r) + ρion(r)]

1

|r − r′|
× [ρ f (r′) − ∇ · P(r′) + ρion(r′)]drdr′ (B10)

and

W ′[ρion] = 4π

2

∫
ρion(r) · ρion(r)

κ2(r)
dr. (B11)

Performing functional variations with respect to ρion and P,
we arrive at

ρion(r) = −κ2(r)

4π

∫
1

|r − r′| [ρ f (r′) − ∇ · P(r′) + ρion(r′)]dr′

= −κ2(r)

4π
�(r) (B12)

and

P(r)

χ (r)
+ ∇r

∫
ρ f (r′) − ∇ · P(r′) + ρion(r′)

|r − r′| dr′ = 0, (B13)
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implying

P(r) = χ (r)
∫

[ρ f (r′) − ∇ · P(r′) + ρion(r′)]
r − r′

|r − r′|3 dr′

= χ (r)E(r). (B14)

Equations (B12) and (B14) form two coupled integro-
differential equations with ρ f (r) as the source. Thus the
constitutive relation for a linear dielectric medium inside a
linear electrolytic solution is obtained as a result of functional
minimization, with the expansion coefficients χ (r) and κ (r)

turning out to be respectively the dielectric susceptibility and
the inverse Debye length. Inserting the equilibrium ion charge
density (B12) and polarization (B14) in (B9) result in the
well-known expression for the total energy of the system:

U = 1

2

∫
ρ f (r)

1

|r − r′| [ρ f (r′) − ∇ · P(r′) + ρion(r′)]dr′dr

= 1

2

∫
ρ f (r) �(r) dr. (B15)

To provide a flavor of how equations (B12) and (B14) are
used simultaneously, let us first rewrite (B14) into

ρind(r) = −∇ · P(r) = −∇χ (r) ·
∫

[ρ f (r′) − ∇ · P(r′) + ρion(r′)]
r − r′

|r − r′|3 dr′

−χ (r)
∫

[ρ f (r′) − ∇ · P(r′) + ρion(r′)]∇r ·
(

r − r′

|r − r′|3
)

dr′

= −∇χ (r) · E(r) − χ (r)
∫

[ρ f (r′) − ∇ · P(r′) + ρion(r′)][4πδ(r − r′)]dr′

= −∇χ (r) · E(r) − 4πχ (r)[ρ f (r) + ρind(r) + ρion(r)], (B16)

leading to [with ε(r) = 1 + 4πχ (r) and defining ρn(r) = ρt (r) + ρion(r)]

ε(r)[ρt (r) + ρion(r)] = ρ f (r) + ρion(r) − ∇χ (r) ·
∫

r − r′

|r − r′|3 [ρt (r′) + ρion(r′)]dr′, (B17)

and we rewrite Eq. (B12) as

ρion(r) = −κ2(r)

4π

∫
1

|r − r′| [ρt (r′) + ρion(r′)]dr′. (B18)

Plugging Eq. (B18) into Eq. (B17), one obtains

ρn(r) = ρ f (r)

ε(r)
−
∫

C(r, r′)dr′ρn(r′), (B19)

C(r, r′) = κ2(r)

4πε(r)|r − r′| + ∇χ (r)

ε(r)
· r − r′

|r − r′|3 . (B20)

Equations (B18), (B19), and (B20) form the foundation for
approximate solutions via iteration. This aspect is beyond the
scope of the current paper and will be discussed in detail in a
separate publication.

APPENDIX C: BOUNDARY CONDITIONS
WITH MOBILE IONS PRESENT

In method I-in, the multipoles qlm ≡ Q lmal/
√

4π are in-
side the sphere and Eq. (13) yields the potential in the region
close to (but inside) the spherical surface:

�I−in
ρ (r < a) =

∑
l,m

√
4π

2l + 1

al

rl+1
Y m

l (r̂)
Q lm

ε
. (C1)

In method II-on, we have Qlm on the surface of the sphere
(r = a) and the resulting potential at r < a is∫

σ f (ŝ)

|aŝ − r| dS =
∑
l,m

4πa2

2l + 1

rl

al+1
Y m

l (r̂)
∫

σ f (ŝ)Y m
l

∗(ŝ) d


=
∑
l,m

√
4π

2l + 1

rl

al+1
Y m

l (r̂) Qlm,

where

σ f (ŝ) =
∞∑

l=0

l∑
m=−l

√
4π σ f lmY m

l (ŝ) and Qlm = 4πa2σ f lm.

(C2)
Hence

�II−on
ρ (r < a) =

∑
l,m

√
4π

2l + 1

rl

al+1
Y m

l (r̂)Q lm. (C3)

Similarly, for a < r < b, we have

�I−in
ρ (a < r < b) =

∑
l,m

√
4π

2l + 1

al

rl+1
Y m

l (r̂)
Q lm

ε
. (C4)

In method II-on, we have Qlm on the surface of the sphere
(r = a) and hence

�II−on
ρ (a < r < b) =

∑
l,m

√
4π

2l + 1

al

rl+1
Y m

l (r̂)Q lm. (C5)

To continue the proof that methods I-in and II-on remain
equivalent in the presence of mobile ions, we note that another
source of the potential comes from the induced surface charge
density σ<(θ, φ) [σ>(θ, φ)] on the dielectric interface r = a
(r = b). As in [8], we write

σ<(>)(θ, φ) =
∞∑

l=0

l∑
m=−l

√
4π σ

<(>)
lm Y m

l (θ, φ)

and define the induced surface charge strengths

Q<
lm = 4πa2σ<

lm, Q>
lm = 4πb2σ>

lm.
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This surface charge distribution produces a different potential when r < a and when r > a:

�s(r) =
∫

σ<(ŝ)

|r − aŝ|dS< +
∫

σ>(ŝ)

|r − bŝ|dS> =
∑
l,m

√
4π

2l + 1
Y m

l (r̂)

{
al

rl+1 Q<
lm + rl

bl+1 Q>
lm, a < r < b,

rl

al+1 Q<
lm + rl

bl+1 Q>
lm, r < a.

(C6)

We introduce for later convenience the effective induced surface charge strengths

Qlm = Q<
lm + Q>

lm

(a

b

)l+1
. (C7)

Let us emphasize that the net surface charge strengths Q̆lm equal Qlm + Qlm
ε

for method I-in and equal Qlm + Qlm for method
II-on.

Note that the net potential arises from �s + �ρ . That is, for method I-in (II-on), we will write �I−in(II−on)(r) = �s(r) +
�I−in(II−on)

ρ (r). Therefore, using Eq. (C6), we have

�I−in(r < a) =
∑
lm

√
4π

2l + 1
Y m

l (r̂)

[(
Q<

lm + Q>
lm

(a

b

)l+1) rl

al+1
+ Qlm

ε

al

rl+1

]

=
∑
lm

√
4π

2l + 1
Y m

l (r̂)

[
Qlm

rl

al+1
+ Qlm

ε

al

rl+1

]
, (C8)

�II−on(r < a) =
∑
lm

√
4π

2l + 1
Y m

l (r̂)
[
Q<

lm + Q>
lm

(a

b

)l+1
+ Qlm

] rl

al+1

=
∑
lm

√
4π

2l + 1
Y m

l (r̂)[Qlm + Qlm]
rl

al+1
=
∑
lm

√
4π

2l + 1
Y m

l (r̂) Q̆lm
rl

al+1
, (C9)

�I−in(a < r < b) =
∑
lm

√
4π

2l + 1
Y m

l (r̂)

[
al

rl+1

(
Q<

lm + Qlm

ε

)
+ rl

bl+1
Q>

lm

]

=
∑
lm

√
4π

2l + 1
Y m

l (r̂)

[
al

rl+1

(
Qlm + Qlm

ε

)
+
(

rl − a2l+1

rl+1

)
Q>

lm

bl+1

]

=
∑
lm

√
4π

2l + 1
Y m

l (r̂)

[
al

rl+1
Q̆lm +

(
rl − a2l+1

rl+1

)
Q>

lm

bl+1

]
, (C10)

�II−on(a < r < b) =
∑
lm

√
4π

2l + 1
Y m

l (r̂)

[
al

rl+1
(Q<

lm + Qlm) + rl

bl+1
Q>

lm

]

=
∑
lm

√
4π

2l + 1
Y m

l (r̂)

[
al

rl+1
(Qlm + Qlm) +

(
rl − a2l+1

rl+1

)
Q>

lm

bl+1

]

=
∑
lm

√
4π

2l + 1
Y m

l (r̂)

[
al

rl+1
Q̆lm +

(
rl − a2l+1

rl+1

)
Q>

lm

bl+1

]
. (C11)

Evidently, for both methods, the potential is continuous across r = a, with

�(r = a) =
∑
lm

√
4π

2l + 1
Y m

l (r̂)
Q̆lm

a
.

We next note the second boundary condition for method I-in and II-on at r = a:

ε′ ∂�I−in

∂r

∣∣∣∣
r=a+

= ε
∂�I−in

∂r

∣∣∣∣
r=a−

, ε′ ∂�II−on

∂r

∣∣∣∣
r=a+

= ε
∂�II−on

∂r

∣∣∣∣
r=a−

− 4πσ<
f = ε

∂�II−on

∂r

∣∣∣∣
r=a−

−
√

4π

a2

∑
lm

Qlm Y m
l (r̂).
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Note that the expressions for �I−in(r > a) and �II−on(r > a) are identical provided that the Q̆lm are the same in both expressions.
Therefore, if we hold Q̆lm the same in both methods, and if one can show

ε
∂�I−in

∂r

∣∣∣∣
r=a−

= ε
∂�II−on

∂r

∣∣∣∣
r=a−

−
√

4π

a2

∑
lm

Qlm Y m
l (r̂) = ε

∑
lm

√
4π l

2l + 1
Y m

l (r̂)
Q̆lm

a2
−

√
4π
∑
lm

Qlm

a2
Y m

l (r̂),

then we have shown the equivalence of the two methods. We work on the left-hand side of this equation using (C8) and by

adding and subtracting the same term, ε
∑

lm

√
4π

2l+1
Qlm
ε

l
a2 Y m

l (r̂) = ∑
lm

√
4π

2l+1 Qlm
l

a2 Y m
l (r̂):

ε
∂�I−in

∂r

∣∣∣∣
r=a−

= ε
∑
lm

√
4π

2l + 1
Qlm

l

a2
Y m

l (r̂) −
∑
lm

√
4π

2l + 1
Qlm

l + 1

a2
Y m

l (r̂)

= ε
∑
lm

√
4π

2l + 1
Qlm

l

a2
Y m

l (r̂) −
∑
lm

√
4π

2l + 1
Qlm

l + 1

a2
Y m

l (r̂)

+ ε
∑
lm

√
4π

2l + 1

Qlm

ε

l

a2
Y m

l (r̂) −
∑
lm

√
4π

2l + 1
Qlm

l

a2
Y m

l (r̂)

= ε
∑
lm

√
4π

2l + 1

[
Qlm + Qlm

ε

]
l

a2
Y m

l (r̂) −
∑
lm

√
4π

2l + 1
Qlm

2l + 1

a2
Y m

l (r̂)

= ε
∑
lm

√
4π l

2l + 1
Y m

l (r̂)
Q̆lm

a2
−

√
4π
∑
lm

Qlm

a2
Y m

l (r̂). (C12)

In the region (r > a + δ = b) where mobile ions are present, the potential satisfies the modified Helmholtz equation and is
supposed to decay as r → ∞. Hence the general solution should be

�out (r > b) =
∑
l,m

Dlm kl (κr)Y m
l (r̂). (C13)

On the boundary r = b, continuity of the potential demands that

Dlm kl (κb) =
√

4π

2l + 1

[
al

bl+1
Q̆lm + 1

b

(
1 − a2l+1

b2l+1

)
Q>

lm

]
or

Dlm = 1

kl (κb)

√
4π

2l + 1

[
al

bl+1
Q̆lm + 1

b

(
1 − a2l+1

b2l+1

)
Q>

lm

]
. (C14)

Because we do not have any free charge density on the surface r = b, the second boundary condition takes the form

εo
∂�out

∂r

∣∣∣∣
r=b+

= ε′ ∂�I−in(II−on)

∂r

∣∣∣∣
r=b−

.

We next calculate

∂�I−in(II−on)

∂r

∣∣∣∣
r=b−

− ∂�I−in(II−on)

∂r

∣∣∣∣
r=a+

=
∑
lm

√
4π

2l + 1
Y m

l (r̂)

{
(l + 1)

(
1

a2
− al

bl+2

)
Q̆lm +

[
l (bl−1 − al−1) + (l + 1)

(
a2l+1

bl+2
− al−1

)]
Q>

lm

bl+1

}

and find it approaching zero upon taking the limit δ → 0 (or b → a). Thus, under this limit we have

εo
∂�out

∂r

∣∣∣∣
r=b+

= ε′ ∂�I−in(II−on)

∂r

∣∣∣∣
r=b−

→
{

ε′ ∂�I−in

∂r

∣∣
r=a+ = ε ∂�I−in

∂r

∣∣
r=a− ,

ε′ ∂�II−on

∂r

∣∣
r=a+ = ε ∂�II−on

∂r

∣∣
r=a− − 4πσ f .

That is, if we view the qlm as inside the sphere, method I-in, we have the (δ → 0 limit) boundary condition

εo
∂�out

∂r

∣∣∣∣
r=a+

= ε
∂�I−in

∂r

∣∣∣∣
r=a−

, (C15)
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while if we place Qlm on the sphere surface, method II-on, we have the (δ → 0 limit) boundary condition

εo
∂�out

∂r

∣∣∣∣
r=a+

= ε
∂�II−on

∂r

∣∣∣∣
r=a−

− 4πσ f . (C16)

Under this δ → 0 limit, the induced surface charge strengths Q<
lm and Q>

lm coalesce into Qlm = Q<
lm + Q>

lm. That is, one may
forget about the middle layer a < r < b dielectric altogether.

APPENDIX D: SUBSTITUTION RULE AND RECIPROCITY

To examine whether the substitution rule (27) is all we need, we check reciprocity in electrostatics: Interaction energy V (1)
int

is the work done to bring to r0 charge multipoles q′
l ′m′ when multipoles qlm were already placed either inside or exactly on the

surface of the sphere; interaction energy V (2)
int is the work done to bring the multipoles qlm to the inside or the surface of the

sphere when q′
l ′m′ were already placed at r0. Reciprocity demands that V (1)

int = V (2)
int .

We have solved the former case exactly by beginning with the free multipoles inside the sphere and matching the boundary
conditions. We found via Eqs. (18) and (21)

�out (r) =
∑
l,m

√
4π

2l + 1

kl (κr)

kl (κa)

Q̆lm

a
Y m

l (r̂) =
∑
l,m

√
4π

2l + 1

kl (κr)

kl (κa)

(2l + 1)
√

4π

εl − εo (κa) k′
l (κa)

kl (κa)

qlm

al+1
Y m

l (r̂)

=
∑
l,m

kl (κr)

kl (κa)

4πY m
l (r̂) qlm/al+1

εl − εo (κa) k′
l (κa)

kl (κa)

=
∑
l,m

kl (κr)

kl (κa)

4π kl (κa)

εl kl (κa) − εo (κa)k′
l (κa)

Y m
l (r̂)

qlm

al+1

≡
∑
l,m

Alm qlm kl (κr)Y m
l (r̂),

meaning

Alm = 4π/al+1

εl kl (κa) − εo (κa)k′
l (κa)

.

Given that the point multipoles q′
l ′m′ are at r0, one may imagine these multipoles resulted from a charge distribution within an

infinitesimal radius s around r0. This suggests that, with s < η and η → 0, the first form of the interaction energy between the
two charge distributions should be computed by

V (1)
int =

∑
lm

Alm qlm

∫
ds ρ ′(r0 + s) kl (κ|r0 + s|)Y m

l

(
r0 + s
|r0 + s|

)
.

By using (2) [with s → r1 and r0 → −r2 in mind],

kl (κ|r0 + s|)Y m
l

(
r0 + s
|r0 + s|

)
=

∑
�1,�2,m1,m2

(−1)�2 Hl m
�1m1�2m2

(−1)�1+�2 i�1 (κs)Y m1
�1

(ŝ) k�2 (κr0)Y m2
�2

(r̂0)

≡
∑

�1,�2,m1,m2

(−1)�1 Hl m
�1m1�2m2

i�1 (κs)Y m1
�1

(ŝ) k�2 (κr0)Y m2
�2

(r̂0), (D1)

and since as s < η → 0, i�1 (κs) → (κs)�1/(2�1 + 1)!!, one obtains the correct interaction energy

V (1)
int =

∑
l,m,�1,m1

∑
�2,m2

Almqlm(−1)�1 Hl m
�1m1�2m2

κ�1 q′∗
�1,m1

(2�1 + 1)!!
k�2 (κr)Y m2

�2
(r̂)

≡
∑

l,l ′,m,m′
qlmq′∗

l ′m′Gl,l ′,m,m′ =
∑

l,l ′,m,m′
q∗

lmq′
l ′m′G∗

l,l ′,m,m′ , (D2)

meaning

Gl,l ′,m,m′ = Alm
(−1)l ′κ l ′

(2l ′ + 1)!!

∑
�2m2

Hlm
l ′m′�2m2

k�2 (κr)Y m2
�2

(r̂) = 4π (−1)l ′κ l ′/[al+1(2l ′ + 1)!!]

εl kl (κa) − εo (κa)k′
l (κa)

∑
�2m2

Hlm
l ′m′�2m2

k�2 (κr)Y m2
�2

(r̂)

and

G∗
l,l ′,m,m′ = 4π (−1)l ′κ l ′/[al+1(2l ′ + 1)!!]

εl kl (κa) − εo (κa)k′
l (κa)

∑
�2m2

Hlm
l ′m′�2m2

k�2 (κr)Y m2
�2

∗(r̂).
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To obtain the second form of the interaction energy, let us place a tight charge distribution yielding multipoles q′
l ′m′ at r0 outside

the sphere and calculate the potential everywhere in the region r < r0, including r < a. One writes the potential contribution
from multipoles around r0 near the spherical surface but with r � a as

�ρ ′ (r, r � a) =
∫

ds ρ ′(r0 + s)
e−κ|r0+s−r|

εo |r0 + s − r|

= 4πκ

εo

∑
l ′m′

(−1)l ′kl ′ (κ|r0 − r|)Y m′
l ′

(
r0 − r
|r0 − r|

)∫
ds ρ ′(r0 + s)Y m′

l ′
∗
(ŝ)il ′ (κs)

= 4πκ

εo

∑
l ′m′

(−1)l ′kl ′ (κ|r0 − r|)Y m′
l ′

(
r0 − r
|r0 − r|

)
κ l ′q′

l ′m′

(2l ′ + 1)!!

=
∑
�1,m1

i�1 (κr)Y m1
�1

(r̂)
4πκ

εo

∑
l ′m′

(−1)l ′ κ l ′q′
l ′m′

(2l ′ + 1)!!

∑
�2,m2

Hl ′m′
�1m1�2m2

k�2 (κr0)Y m2
�2

(r̂0),

where in the last line we have used the identity (2) (with r1 → −r and r2 → −r0),

kl ′ (κ|r0 − r|)Y m′
l ′

(
r0 − r
|r0 − r|

)
=

∑
�1,�2,m1,m2

(−1)�1+�2 Hl ′m′
�1m1�2m2

i�1 (κr)Y m1
�1

(−r̂) k�2 (κr0)Y m2
�2

(−r̂0)

=
∑

�1,�2,m1,m2

Hl ′m′
�1m1�2m2

i�1 (κr)Y m1
�1

(r̂) k�2 (κr0)Y m2
�2

(r̂0).

The potential �ρ ′ (r) must remain continuous across r = a into r < a. Inside the sphere, because the potential produced by
q′

l ′m′ must satisfy the Laplace equation rather than the modified Helmholtz equation, its general solution is of the form

�ρ ′ (r, r � a) =
∑
lm

Blm
rl

al+1
Y m

l (r̂).

Hence by demanding continuity of the potential produced by q′
lm at r = a, we have

Blm

a
= 4πκ

εo
il (κa)

∑
l ′m′�2m2

(−1)l ′ κ l ′q′
l ′m′

(2l ′ + 1)!!
Hl ′m′

lm�2m2
k�2 (κr0)Y m2

�2
(r̂0) (D3)

and

�ρ ′ (r, r < a) =
∑
lm

4π (κa)

εo
il (κa)

rl

al+1
Y m

l (r̂)

[ ∑
l ′m′�2m2

(−1)l ′ κ l ′q′
l ′m′

(2l ′ + 1)!!
Hl ′m′

lm�2m2
k�2 (κr0)Y m2

�2
(r̂0)

]
.

Now let us denote by Qlm the induced surface charge strengths on the sphere due to charge distribution around r0. This
induced surface charge will produce a potential of different forms for outside and inside the sphere:

�ind(r � a) =
∑
lm

√
4π

2l + 1

kl (κr)

kl (κa)

Qlm

a
Y m

l (r̂), �ind(r � a) =
∑
lm

√
4π

2l + 1

rl

al+1
QlmY m

l (r̂). (D4)

One may then solve for Qlm by imposing the following boundary condition (since there is no free charge on the sphere
surface):

εo
∂

∂r
[�ρ ′ (r > a) + �ind(r > a)]|r→a = ε

∂

∂r
[�ρ ′ (r < a) + �ind(r < a)]|r→a

leading to

4πκ2i′l (κa)

[ ∑
l ′m′�2m2

(−1)l ′ κ l ′q′
l ′m′

(2l ′ + 1)!!
Hl ′m′

lm�2m2
k�2 (κr0)Y m2

�2
(r̂0)

]
+ εo

√
4π (κa)

2l + 1

k′
l (κa)

kl (κa)

Qlm

a2

= ε

{
4π (κa)

εo
il (κa)

l

a2

[ ∑
l ′m′�2m2

(−1)l ′ κ l ′q′
l ′m′

(2l ′ + 1)!!
Hl ′m′

lm�2m2
k�2 (κr0)Y m2

�2
(r̂0)

]
+

√
4π

2l + 1

l

a2
Qlm

}
(D5)

or
√

4π Qlm

(2l + 1)

[
ε l − εo

k′
l (κa)

kl (κa)
(κa)

]
= 4π (κa)

[
(κa)i′l (κa) − l

ε

εo
il (κa)

][ ∑
l ′m′�2m2

(−1)l ′ κ l ′q′
l ′m′

(2l ′ + 1)!!
Hl ′m′

lm�2m2
k�2 (κr0)Y m2

�2
(r̂0)

]
(D6)
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or
√

4π Qlm

(2l + 1)
= 4π (κa)

εo

εoi′l (κa) (κa) − ε l il (κa)

ε l − εo
k′

l (κa)
kl (κa) (κa)

[ ∑
l ′m′�2m2

(−1)l ′ κ l ′q′
l ′m′

(2l ′ + 1)!!
Hl ′m′

lm�2m2
k�2 (κr0)Y m2

�2
(r̂0)

]
. (D7)

The net potential with r � a, �ind(r, r � a) + �ρ ′ (r, r � a), is thus

∑
lm

rl

al+1
Y m

l (r̂)

{√
4πQlm

2l + 1
+ 4π (κa)

εo
il (κa)

[ ∑
l ′m′�2m2

(−1)l ′ κ l ′q′
l ′m′

(2l ′ + 1)!!
Hl ′m′

lm�2m2
k�2 (κr0)Y m2

�2
(r̂0)

]}

= 4π (κa)

εo

∑
lm

rl

al+1
Y m

l (r̂)

(
εoi′l (κa) (κa) − ε l il (κa)

ε l − εo
k′

l (κa)
kl (κa) (κa)

+ il (κa)

)[ ∑
l ′m′�2m2

(−1)l ′ κ l ′q′
l ′m′

(2l ′ + 1)!!
Hl ′m′

lm�2m2
k�2 (κr0)Y m2

�2
(r̂0)

]
. (D8)

If we integrate over the charge distribution ρ f (r) [whether confined to the inside the sphere or ∝ δ(r − a), meaning only on the
spherical surface], we obtain the second form of the interaction energy:

V (2)
int = 4π (κa)

εo

∑
lm

q∗
lm

al+1

(
εoi′l (κa) (κa) − ε l il (κa)

ε l − εo
k′

l (κa)
kl (κa) (κa)

+ il (κa)

)[ ∑
l ′m′�2m2

(−1)l ′ κ l ′q′
l ′m′

(2l ′ + 1)!!
Hl ′m′

lm�2m2
k�2 (κr0)Y m2

�2
(r̂0)

]
. (D9)

We next show that ∑
m2

Hl ′m′
lm�2m2

k�2 (κr0)Y m2
�2

(r̂0) =
∑
m2

Hlm
l ′m′�2m2

k�2 (κr0)Y m2
�2

∗(r̂0). (D10)

To prove this identity, first recall that

Hl ′m′
lm�2m2

= Cl ′ 0
l 0 �2 0C

l ′ m′
l m �2 m2

√
4π

2l ′ + 1

√
(2l + 1)(2�2 + 1)

and that the Clebsch-Gordan coefficient can be expressed by Wigner’s 3 j symbol as follows (with m = m1 + m2):

Cl m
�1 m1 �2 m2

= (−1)�1−�2+m
√

2l + 1

(
�1 �2 l

m1 m2 −m

)
.

Some symmetry property of the Wigner’s 3 j will be useful:(
�1 �2 �3

m1 m2 m3

)
= (−1)�1+�2+�3

(
�3 �2 �1

m3 m2 m1

)
= (−1)�1+�2+�3

(
�1 �2 �3

−m1 −m2 −m3

)
. (D11)

Also, the Legendre polynomial Pl (x) = (−1)lPl (−x) and the Clebsch-Gordan coefficient

Cl ′ 0
l 0 �2 0 ∝

∫ 1

−1
Pl ′ (x)Pl (x)P�2 (x)

is nonzero only when (l + l ′ + �2) is an even integer. We thus write

∑
m2

Hl ′m′
lm�2m2

k�2 (κr)Y m2
�2

(r̂) =
∑
�2m2

Cl ′ 0
l 0 �2 0C

l ′ m′
l m �2 m2

√
4π

2l ′ + 1

√
(2l + 1)(2�2 + 1) k�2 (κr)Y m2

�2
(r̂)

=
∑
m2

(−1)m′
(

l �2 l ′
0 0 0

)(
l �2 l ′

m m2 −m′

)√
4π (2l ′ + 1)(2l + 1)(2�2 + 1) k�2 (κr)Y m2

�2
(r̂)

=
∑
m2

(−1)m′
(

l ′ �2 l
0 0 0

)(
l ′ �2 l

−m′ m2 m

)√
4π (2l ′ + 1)(2l + 1)(2�2 + 1) k�2 (κr)Y m2

�2
(r̂)

=
∑
m2

(−1)m′
(

l ′ �2 l
0 0 0

)(
l ′ �2 l

m′ −m2 −m

)√
4π (2l ′ + 1)(2l + 1)(2�2 + 1) k�2 (κr)Y m2

�2
(r̂)

=
∑
m2

(−1)m′−mCl 0
l ′ 0 �2 0C

l m
l ′ m′ �2 −m2

√
4π

2l + 1

√
(2l ′ + 1)(2�2 + 1) k�2 (κr)Y m2

�2
(r̂)

=
∑
m′

2

(−1)m′
2Cl 0

l ′ 0 �2 0C
l m
l ′ m′ �2 m′

2

√
4π

2l + 1

√
(2l ′ + 1)(2�2 + 1) k�2 (κr)Y −m′

2
�2

(r̂)
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=
∑
m′

2

Cl 0
l ′ 0 �2 0C

l m
l ′ m′ �2 m′

2

√
4π

2l + 1

√
(2l ′ + 1)(2�2 + 1) k�2 (κr)Y m′

2
�2

∗
(r̂)

=
∑
m2

Cl 0
l ′ 0 �2 0C

l m
l ′ m′ �2 m2

√
4π

2l + 1

√
(2l ′ + 1)(2�2 + 1) k�2 (κr)Y m2

�2

∗(r̂)

=
∑
m2

Hlm
l ′m′�2m2

k�2 (κr)Y m2
�2

∗(r̂),

which exactly proves (D10).
Hence, by comparing (D9) with (D2), despite their rather complicated expressions, we find that, for them to exactly match,

all one needs is the following correspondence:

(κa)2

εo
εo

i′l (κa) − il (κa) k′
l (κa)

kl (κa)

ε l − εo
k′

l (κa)
kl (κa) (κa)

⇒ 1

ε l kl (κa) − εo k′
l (κa) (κa)

. (D12)

In the main text near the end of Sec. V, we show that the correspondence relation above in fact is an identity.

APPENDIX E: RECIPROCITY FOR ANY NUMBER OF DIELECTRIC SPHERES

To lighten the notation for the two-sphere case, we shall choose the origin at the midpoint between the two spherical centers.
Hence, R1 = �L/2 while R2 = −�L/2. We therefore have �L1→2 = R2 − R1 = −�L and �L2→1 = R1 − R2 = �L. We may begin with
the boundary condition equation (54) and the definition (48):

D1(�1)Q
1
�1m1

= V1(�1)Q̆1+
�1m1

+
∑
�2m2

[∑
lm

i�1 (κa1) i�2 (κa2) (−1)�1+l H �2m2
�1m1lm kl (κL)Y m

l (L̂1→2)

]
Q̆2+

�2m2
, (E1)

D2(�2)Q
2
�2m2

= V2(�2)Q̆2+
�2m2

+
∑
�1m1

[∑
lm

i�1 (κa1) i�2 (κa2) (−1)�2+l H �1m1
�2m2lm kl (κL)Y m

l (L̂2→1)

]
Q̆1+

�1m1
. (E2)

One uses the boundary condition equations above to express Q̆1+
lm and Q̆2+

lm in terms of Q
1
lm and Q

2
lm. Note that H �1m1

�2m2lm

requires �1 + �2 + l to be an even integer. Thus, (−1)l+�2 = (−1)�1 . Further note that from Eq. (D10) of Appendix D,∑
m H �1m1

�2m2lm Y m
l (L̂) = ∑

m H �2m2
�1m1lm Y m

l
∗(L̂). If we define the matrix elements

M�1m1,�2m2 ≡
∑
lm

i�1 (κa1) i�2 (κa2) (−1)�1+l H �2m2
�1m1lm kl (κL)Y m

l (L̂1→2) (E3)

and

M�2m2,�1m1 ≡
∑
lm

i�1 (κa1) i�2 (κa2) (−1)�2+l H �1m1
�2m2lm kl (κL)Y m

l (L̂2→1), (E4)

we see that

M�2m2,�1m1 = M∗
�1m1,�2m2

. (E5)

Note that M�1m1,�2m2 left multiplies to Q̆2+ while M�2m2,�1m1 left
multiplies to Q̆1+.

With the general definitions given in Eq. (48) let us
denote by D1 (D2) the diagonal matrix with elements
D1(�1) [D2(�2)]. We also abbreviate by V1 (V2) the diagonal
matrix with elements V1(�1) = εoD1(�1) + i�1 (κa1) k�1 (κa1)
[V2(�2) = εoD2(�2) + i�2 (κa2) k�2 (κa2)].

The boundary conditions can now be written as a matrix
equation of the following form:(

V1 M
M† V2

)(
Q̆+

1
Q̆+

2

)
=
(

D1Q1

D2Q2

)
, (E6)

where Q̆+
i (Qi) denotes the vector with components Q̆i+

lm (Q
i
lm)

for all l up to the maximum l value considered. Hence the di-

mension of Q̆+
i is

∑lmax
l=0(2l + 1) = (lmax + 1)2. For example,

when lmax = 3, the dimension of Q̆+ is 1 + 3 + 5 + 7 = 16 =
(lmax + 1)2.

To explicitly show reciprocity, we need to show equiva-
lence of two forms of computing the energy. First, we set
Q

1
lm = 0 and compute the corresponding Q̆+

1 and Q̆+
2 . Then

the first form of the interaction energy is given by

U r(1)
int = κ Q

∗T
1 [(V1 − εoD1)Q̆+

1 + MQ̆+
2 ]. (E7)

When Q1 is set to zero, we have

V1Q̆+
1 + MQ̆+

2 = 0 ⇒ Q̆+
1 = −(V1)−1MQ̆+

2 ,

M†Q̆+
1 + V2Q̆+

2 = D2Q2 ⇒ [V2 − M†(V1)−1M]Q̆+
2 = D2Q2.
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To compute the first form of the interaction energy, we first
simplify the quantity

(V1 − εoD1)Q̆+
1 + MQ̆+

2

= −εoD1Q̆+
1 = εoD1V

−1
1 MQ̆+

2

= εoD1V
−1

1 M
[
V2 − M†V −1

1 M
]−1

D2Q2. (E8)

Hence, the first form of the interaction energy is simply given
by

U r(1)
int = κQ

∗T
1 [(V1 − εoD1)Q̆+

1 + MQ̆+
2 ]

= κεoQ1
∗T

D1V
−1

1 M
[
V2 − M†V −1

1 M
]−1

D2Q2

= κεoQ1
∗T

D1V
−1

1 M
[
I − V −1

2 M†V −1
1 M

]−1
V −1

2 D2Q2.

(E9)

The second form of the interaction energy is obtained by
first setting Q2 = 0 to obtain Q̆+

2 and Q̆+
1 . We obtain

Q̆+
2 = −V −1

2 M†Q̆+
1 ,

Q̆+
1 = [

I − V −1
1 MV −1

2 M†
]−1

V −1
1 D1Q1, (E10)

and the interaction energy is given by

U r(2)
int = κQ

∗T
2 [(V2 − εoD2)Q̆+

2 + M†Q̆+
1 ] = −κεoQ

∗T
2 D2Q̆+

2

= κεoQ
∗T
2 D2V

−1
2 M†[I − V −1

1 MV −1
2 M†]−1V −1

1 D1Q1.

(E11)

Let us take the complex conjugate of the interaction energy
above; due to realness of the energy, we should get the same
energy:

U r(2)
int

∗ = {
κεoQ

∗T
2 D2V

−1
2 M†

[
I − V −1

1 MV −1
2 M†

]−1
V −1

1 D1Q1

}∗ = κεoQ
∗T
1 D1V

−1
1

[
I − MV −1

2 M†V −1
1

]−1
MV −1

2 D2Q2

= κεoQ1
∗T

D1V
−1

1 M
[
I − V −1

2 M†V −1
1 M

]−1
V −1

2 D2Q2 = U r(1)
int , (E12)

which agrees exactly with (E9). We have thus formally proved that the reciprocity theorem holds for any arbitrary lmax cutoff for
a system of two dielectric spheres. The general proof of reciprocity for an arbitrary number of spheres is given in the latter part
of this Appendix.

A case that is particularly simple for a two-sphere system is when lmax = 0. We have

M† = M = i0(κa1)i0(κa2)k0(κL) = T0(a1)−1T0(a2)−1

(κa1)(κa2)

k0(κL)

k0(κa1)k0(κa2)
= e−κ (L−a1−a2 )

(κL)T0(a1)T0(a2)
,

D1 = − i0(κa1)

εo

1

(κa1)2i′0(κa1)
= − i0(κa1)

εo

k0(κa1)

1 + (κa1 )
T0(a1 )

k′
0(κa1 )

k0(κa1 )

= − 1

εo

k0(κa1)/(κa1)

T0(a1)k0(κa1) + (κa1)k′
0(κa1)

,

D2 = − i0(κa2)

εo

1

(κa2)2i′0(κa2)
= − i0(κa2)

εo

k0(κa2)

1 + (κa2 )
T0(a2 )

k′
0(κa2 )

k0(κa2 )

= − 1

εo

k0(κa2)/(κa2)

T0(a2)k0(κa2) + (κa2)k′
0(κa2)

,

V1 = i0(κa1)k0(κa1) + εoD1 = 1

T0(a1)(κa1)

[
1 − 1

1 + (κa1 )
T0(a1 )

k′
0(κa1 )

k0(κa1 )

]

= 1

T0(a1)(κa1)

(κa1) k′
0(κa1)

T0(a1)k0(κa1) + (κa1) k′
0(κa1)

= 1

T0(a1)

k′
0(κa1)

T0(a1)k0(κa1) + (κa1) k′
0(κa1)

,

V2 = i0(κa2)k0(κa2) + εoD2 = 1

T0(a2)(κa2)

[
1 − 1

1 + (κa2 )
T0(a2 )

k′
0(κa2 )

k0(κa2 )

]

= 1

T0(a2)(κa2)

(κa2) k′
0(κa2)

T0(a2)k0(κa2) + (κa2) k′
0(κa2)

= 1

T0(a2)

k′
0(κa2)

T0(a2)k0(κa2) + (κa2) k′
0(κa2)

,

D1

V1
= −T0(a1)

εo

k0(κa1)

(κa1) k′
0(κa1)

= T0(a1)

εo

1

1 + κa1
,

D2

V2
= −T0(a2)

εo

k0(κa2)

(κa2) k′
0(κa2)

= T0(a2)

εo

1

1 + κa2
,

MM†

V2V1
= (κa1)(κa2)[T0(a1) − (1 + κa1)][T0(a2) − (1 + κa2)]

T0(a1)(1 + κa1)T0(a2)(1 + κa2)

(
e−κ (L−a1−a2 )

κL

)2

≡ G12

(
e−κ (L−a1−a2 )

κL

)2

= G21

(
e−κ (L−a1−a2 )

κL

)2

. (E13)
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Hence, with lmax = 0, we have the reciprocity interaction energy [using (E7), (E9), (E11), or (E12)]:

U r
int (lmax = 0) = q1 q2

εoL

e−κ (L−a1−a2 )

(1 + κa1)(1 + κa2)

[
1 − G12

(
e−κ (L−a1−a2 )

κL

)2
]−1

= q1 q2

εoL

e−κ (L−a1−a2 )

(1 + κa1)(1 + κa2)

{
1 + G12

(
e−κ (L−a1−a2 )

κL

)2

+
[

G12

(
e−κ (L−a1−a2 )

κL

)2
]2

+ . . .

}
. (E14)

And one sees the exact symmetry between indices 1 and 2 as expected.
For the general N-sphere case, one may place arbitrarily n = 1, 2, . . . , nA spheres into group A and the rest of the spheres,

labeled by m = 1, 2, . . . , mB = N − nA, into group B. The goal of this Appendix is to show that the two forms of computing the
interaction energy between the free charge distribution associated with group A and the free charge distribution associated with
group B are equivalent.

The boundary conditions can now be written as a matrix equation of the following form:(
MAA MAB

M†
AB MBB

)(
Q̆+

A

Q̆+
B

)
=
(

DAQA

DBQB

)
. (E15)

We explain the notation below. First,

Q̆+
A =

⎛
⎜⎜⎜⎜⎝

Q̆+
1

Q̆+
2

...

Q̆+
nA

⎞
⎟⎟⎟⎟⎠, Q̆+

B =

⎛
⎜⎜⎜⎜⎝

Q̆+
nA+1

Q̆+
nA+2
...

Q̆+
nA+mB

⎞
⎟⎟⎟⎟⎠, QA =

⎛
⎜⎜⎜⎜⎝

Q1

Q2
...

QnA

⎞
⎟⎟⎟⎟⎠, QB =

⎛
⎜⎜⎜⎜⎝

QnA+1

QnA+2
...

QnA+mB

⎞
⎟⎟⎟⎟⎠,

where Q̆+
i (Qi) denotes the vector with components Q̆i+

lm (Q
i
lm) for all l, m up to the maximum l value considered. Namely, Q̆+

i is
a
∑lmax

l=0 2l + 1 = (lmax + 1)2 dimensional column vector. If lmax = 2, then

Q̆+
i = (

Q̆i+
0,0, Q̆i+

1,−1, Q̆i+
1,0, Q̆i+

1,1, Q̆i+
2,−2, Q̆i+

2,−1, Q̆i+
2,0, Q̆i+

2,1, Q̆i+
2,2

)T
. (E16)

The diagonal matrices DA and DB are represented by

DA = diag(D1, D2, . . . , DnA ), DB = diag(DnA+1, DnA+2, . . . , DnA+mB ),

where the diagonal matrix Dj has again linear dimensions (lmax + 1)2 and is expressed as

Dj = diag
(
D j

0, D j
1, . . . , D j

lmax

)
,

and D j
� is a (2� + 1) × (2� + 1) identity matrix multiplied by

Dj (�) ≡ 1

(κa j )

1

� ε j − (κa j )i′�(κa j )
i�(κa j )

εo

.

For later convenience, let us also introduce another diagonal matrix Vj that also has linear dimensions (lmax + 1)2 and is expressed
as

Vj = diag
(
V j

0 ,V j
1 , . . . ,V j

lmax

)
with V j

� being a (2� + 1) × (2� + 1) identity matrix multiplied by

Vj (�) ≡ εoDj (�) + i�(κa j )k�(κa j ).

Hence, if lmax = 2,

Vj = diag(Vj (0),Vj (1),Vj (1),Vj (1),Vj (2),Vj (2),Vj (2),Vj (2),Vj (2)). (E17)

If we define the matrix elements in the submatrix M (i, j) (i and j are sphere indices)

M�imi,� j m j ≡
∑
lm

i�i (κai )i� j (κa j )(−1)�i+l H
� j m j

�imilm
kl (κLi j )Y

m
l (L̂i→ j ) (E18)
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and elements in submatrix M ( j,i)

M� j m j ,�imi ≡
∑
lm

i�i (κai )i� j (κa j )(−1)� j+l H �imi
� j m j lm

kl (κLi j )Y
m

l (L̂ j→i ), (E19)

we see that [because (−1)lY m
l (L̂i→ j ) = Y m

l (L̂ j→i ), �i + � j + l must be even due to H
� j m j

�imilm
, and

∑
m H

� j m j

�imilm
Y m

l (L̂ j→i ) =∑
m H �imi

� j m j lm
Y m

l
∗(L̂ j→i )]

M� j m j ,�imi = M∗
�imi,� j m j

, (E20)

implying M ( j,i) = M (i, j)†. Note that in the boundary condition equation the submatrix M (i, j) (with elements M�imi,� j m j ) left
multiplies to Q̆ j while the submatrix M ( j,i) (with elements M� j m j ,�imi ) left multiplies to Q̆i.

We now come to the other symbols in the boundary condition equation (E15), with the M matrix in the main text now
represented by M12,

MAA =

⎛
⎜⎜⎜⎝

V1 M (1,2) . . . M (1,nA )

M (1,2)†
V2 . . . M (2,nA )

...
...

. . .
...

M (1,nA )†
M (2,nA )†

. . . VnA

⎞
⎟⎟⎟⎠ = M†

AA,

MBB =

⎛
⎜⎜⎜⎝

VnA+1 M (nA+1,nA+2) . . . M (nA+1,nA+mB )

M (nA+1,nA+2)†
VnA+2 . . . M (nA+2,nA+mB )

...
...

. . .
...

M (nA+1,nA+mB )†
M (nA+2,nA+mB )†

. . . VnA+mB

⎞
⎟⎟⎟⎠ = M†

BB,

MAB =

⎛
⎜⎜⎝

M (1,nA+1) M (1,nA+2) . . . M (1,nA+mB )

M (2,nA+1) M (2,nA+2) . . . M (2,nA+mB )

...
...

. . .
...

M (nA,nA+1) M (nA,nA+2) . . . M (nA,nA+mB )

⎞
⎟⎟⎠ = M†

BA.

To explicitly show reciprocity, we need to show equivalence of two forms of computing the energy. In the first form, we set
all components of QA to 0 and compute the corresponding Q̆+

A and Q̆+
B . Then the first form of the interaction energy, see (58), is

given by

Uint = κQ
∗T
A [MAA Q̆+

A − εoDAQ̆+
A + MAB Q̆+

B ]. (E21)

When QA is set to zero, we have

MAAQ̆+
A + MABQ̆+

B = 0 ⇒ Q̆+
A = −M−1

AA MABQ̆+
B ,

M†
ABQ̆+

A + MBBQ̆+
B = DBQB ⇒ Q̆+

B = [
MBB − M†

ABM−1
AA MAB

]−1
DBQB.

One therefore has

Uint = −εo κ Q
∗T
A DAQ̆+

A = εo κ Q
∗T
A DAM−1

AA MAB
[
MBB − M†

ABM−1
AA MAB

]−1
DBQB

= εo κ Q
∗T
A DAM−1

AA MAB
[
I − M−1

BB M†
ABM−1

AA MAB
]−1

M−1
BB DBQB. (E22)

The second form of the interaction energy is obtained by first setting QB = 0 to obtain Q̆A and Q̆B and has the form

Uint = κQ
∗T
B [M†

AB Q̆+
A − εoDBQ̆+

B + MBB Q̆+
B ]. (E23)

When QB is set to zero, we have

M†
ABQ̆+

A + MBBQ̆+
B = 0 ⇒ Q̆+

B = −M−1
BB M†

ABQ̆+
A ,

MAAQ̆+
A + MABQ̆+

B = DAQA ⇒ Q̆+
A = [

MAA − MABM−1
BB M†

AB

]−1
DAQA.

One therefore has

Uint = −εo κ Q
∗T
B DBQ̆+

B = εo κ Q
∗T
B DBM−1

BB M†
AB

[
MAA − MABM−1

BB M†
AB

]−1
DAQA

= εo κ Q
∗T
B DBM−1

BB M†
AB

[
I − M−1

AA MABM−1
BB M†

AB

]−1
M−1

AA DAQA

= εo κ Q
∗T
B DB

∞∑
n=0

M−1
BB M†

AB

[
M−1

AA MABM−1
BB M†

AB

]n
M−1

AA DAQA
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= εo κ Q
∗T
B DB

∞∑
n=0

M−1
BB

[
M†

ABM−1
AA MABM−1

BB

]n
M†

ABM−1
AA DAQA

= εo κ Q
∗T
B DBM−1

BB

[
I − M†

ABM−1
AA MABM−1

BB

]−1
M†

ABM−1
AA DAQA. (E24)

The realness of the interaction energy allows us to take its complex conjugate without changing its value. Taking the complex
conjugate of the above, we obtain{

εo κ Q
∗T
B DBM−1

BB

[
I − M†

ABM−1
AA MABM−1

BB

]−1
M†

ABM−1
AA DAQA

}∗
= εo κQ

∗T
A DAM−1

AA MAB
[
I − M−1

BB M†
ABM−1

AA MAB
]−1

M−1
BB DBQB. (E25)

This is exactly the same as (E22). We have thus proved the reciprocity of the interaction energy.
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