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Penetration mechanism of cells by vertical nanostructures
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Cell penetration by high aspect-ratio vertical nanostructures such as nanowires and nanopillars provides a
powerful method for accessing the cell interior for delivery and sensing. However, there is a lack of studies on
the understanding of the mechanism of cell membrane penetration and how design nanostructures to optimize the
efficiency of penetration remains unclear. Here, we propose an analytical model to elucidate the mechanism of
cells penetration by analyzing the free-energy change of cells adhered to the nanostructures surface. Furthermore,
we provide a simple method to evaluate the crossover radius or density for cell membrane penetration. By
introducing a dimensionless parameter, i.e., adhesion area factor, we investigated the effects of the radius and
distribution densities of nanostructures on cell membrane penetration which is determined by the competition
between adhesion energy and deformation energy. Besides, a diagram of the distribution of cell penetration
and no penetration is obtained. From the cell penetration diagram, one can determine easily and intuitively the
relations of cell penetration state with the radius and distribution densities of nanostructures. Our theoretical
results seem to show broad agreement with experimental observations, which implies that these studies would
provide useful guidance to the design of nanopatterned surfaces for biomedical applications.

DOI: 10.1103/PhysRevE.102.052401

I. INTRODUCTION

Arrays of nanostructures have become one of the branches
of advantageous tools that promote the interaction of cells
with substrate, and have been used for specific cell capture
[1–4], intracellular delivery (detection) [5–8], cellular activity
regulation [9–11]. In recent years, the researchers found that
vertical nanostructures such as nanowires and nanopillars with
small radius or low density can penetrate into the cell. The
penetration of the cell by nanostructures provides a method to
gene transfection and drug delivery [12–17]. The gene trans-
fection and delivery of drugs by cell penetration have some
distinct advantages over other methods including endocyto-
sis and electroporation. Cell penetration not only has a high
efficiency of transfection and delivery, but also does almost
no harm to cells because the pores induced by penetration
have the size of only several tens of nanometers [18–22]. The
experimental results show that cells can only be penetrated
by the nanostructures with particular size; in other words, the
geometry of nanostructures strongly influences cell penetra-
tion [18,19,23–25]. In experiments, cells can be penetrated by
the nanocones or nanopillars with small radius or low density,
while the nanocones or nanopillars with large radius or high
density cannot penetrate cells. Despite the growing interest
and considerable recent progress in the cell penetration by
nanostructures, so far the mechanisms of cell penetration it
is still not well understood, and how design nanostructures
optimize the efficiency of penetration remains unclear. There
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is much to be learned about the specific mechanisms. For ex-
ample, what geometry of nanostructures can penetrate cells?
Which factors are related to cell penetration and how to in-
fluence cell penetration? In order to attempt to design and
fabricate new and preferable artificial nanostructures surfaces
to penetrate cell, quantitative theories have been requested to
study the mechanisms of cell penetration.

In this work, we propose an analytical thermodynamic
model to study the mechanism of cell membrane penetration
by analyzing the free-energy change of cells adhered to the
nanostructures surface. Our theoretical results reveal that the
cell penetration is determined by the competition between
deformation energy of membrane and the formation energy
of pore caused by penetration. We provide a simple method
to calculate the crossover radius or density of cell membrane
penetration and no penetration. Furthermore, we construct a
phase diagram to clarify the inter-related effects of the radius
and surface distribution density on the cell penetration.

II. THEORETICAL MODEL

An array of nanostructure is adopted in our calculated
model, as shown in Fig. 1. According to the experimental ob-
servations, the cell membrane can extend into the gap among
the nanostructures and tightly adheres to the side walls of
the nanostructures when the cell adheres to the nanostructure
array. During the adhesion process, the cell membrane suffers
from a large amount of deformation. When the deformation
of membrane exceeds a certain degree, the cell membrane
would split and be penetrated by the nanostructures, as the
experimental results display [20–22,26,27]. Therefore, it is
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FIG. 1. (a) Schematic illustration of the cell adhered to truncated
nanocone array. (b) The enlarged views of the membrane adhered to
the truncated nanocone array in (a).

important for penetrating the cell membrane to study the
deformation of membrane during adhesion process. The de-
formation of the cell membrane is mainly determined by the
following two aspects, one is bending deformation caused by
the changes of the surface curvature of membrane [28], and
the other is stretching deformation caused by the increase of
cell membrane area. Considering the effects of the bending
energy and stretching energy, the total deformation energy can
be written as

Edef =
∫

Sb

[κ

2
(c1 + c2 − c0)2

]
dS + 1

2
λ

�S2

S0
, (1)

where κ is the bending modulus of the membrane, c1(c2) and
c0 denote the principal curvatures of the bending membrane
surface, and the spontaneous curvature, respectively, Sb is the
intracellular bending area. λ denotes the stretching modulus of
the membrane, �S and S0 denote the intracellular area change
by stretching and the cell area before stretching, respectively.
The first term is bending energy, and the second term repre-
sents stretching energy.

A. Truncated nanocone array

As a typical nanostructure, truncated nanocone arrays were
usually used to penetrate cells for gene transfection and drug
delivery [18,25,29]. In our model, we assume that the trun-
cated nanocones are located at the sites of an ideal square
lattice with a surface distribution density of ρ (the number
of nanocones per unit area), the angle between the side of the
truncated nanocones and the vertical direction is θ , and the
radius of the top is r, as shown in Fig. 1(b). When the cell
initially adheres to the truncated nanocones, the cell mem-
brane does not exhibit bending and stretching changes, so the
deformation of the cell membrane is initially equal to zero.
During the following adhesion process, the membrane extends
into the space of nanostructures and adheres to the side wall of
the nanostructures, accompanying bending deformation and
stretching deformation. The surface principal curvature of the
truncated nanocones is c1 = 0, and c2 = cos θ/(r + x tan θ ),
where x is the distance from the top surface to the local point
[establish the coordinate system as shown in Fig. 1(b)]. If we
select a period square domain as a study object, when the
adhesion depth is l , the bending-energy change of the cell
membrane can be written as

EBend =
∫ l

0

κ

2

(
cos θ

r + x tan θ

)2

2π (r + x tan θ )d
( x

cos θ

)
. (2)

When θ > 0,

EBend = πκ
cos2θ

sin θ
ln

r + l tan θ

r
. (3)

The cell membrane area in our selected period square
domain before stretching, S0, is equal to 1/ρ. When cell
adhesion occurs, the cell membrane can stretch and adhere
to its side walls. In this case, the area of the cell membrane
becomes S = S0 + Sad + πr2 − π (r + l tan θ )2, where Sad

denotes the adhesion area that Sad = π l (2r + l tan θ )/ cos θ .
So the change of membrane area is �S = S − S0. The stretch-
ing energy of the cell membrane can be calculated by

Estr = λ

2

[π (2r + l tan θ ) l
cos θ

− π (r + l tan θ )2 + πr2]
2

1/ρ
.

(4)

Considering the contribution of adhesion energy, the total
free energy is that

E = −γ Sad + EBend + Estr, (5)

where γ is the adhesion energy per unit area between the
cell membrane and the surface; three energies are considered:
bending energy, stretching energy, and adhesion energy in this
paper [30]. According to the principle of minimum energy,
the cell membrane is in the lowest-energy state (steady state)
and further adhesion is unfavorable when the adhesion depth
reaches a critical value. From ∂E/∂l = 0, one can derive the
critical adhesive depth at the steady state, l∗, as (detailed
calculations can be found in Appendix A):

l∗ = [
√

(
√

b2 − 4ac − b)/2a − r]/ tan θ, (6)

where a = 2π2λρ tan θ (1/ sin θ − 1)2, b = −(ar2 + 2γπ/

cos θ ), c = πκ cos θ .
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When the cell is penetrated by the nanostructures, the trun-
cated nanocones should move apart the lipids of membrane
and create a pore with at least radius of r. Therefore, the
formation of the pore must overcome an energy barrier, i.e.,
pore formation energy. The pore formation energy is due to
breaking the contacts between phospholipids lying on mem-
brane close to the edge of the pore, which is proportional to
the perimeter of the pore. If we set the line density of pore
formation energy as e, the energy barrier required for the cell
membrane to be penetrated is 2πre. During the process of
cell adhesion, the cell membrane suffers comparatively large
deformation. The deformation can result in the breakdown of
bonding between phospholipids lying on membrane if the de-
formation exceeds a critical degree. In other words, when the
deformation energy of the membrane is larger than the pore
formation energy, the cell membrane can be penetrated by the
nanostructures. Therefore, we can determine cell membrane
penetration by comparing the deformation energy and the pore
formation energy. Because the deformation energy increases
with the increase of the adhesion depth, we can compare the
critical deformation energy E∗

def at the steady state (l = l∗) and
the pore formation energy to judge whether the cell membrane
is penetrated. This discriminant formula can be written as

�E∗ = πκ
cos2θ

sin θ
ln

r + l∗ tan θ

r
+ λρ

2

×
[

π l∗

cos θ
(2r + l∗ tan θ ) + πr2 − π (r + l∗ tan θ )2

]2

− 2πre. (7)

If �E∗ > 0, it means that the deformation energy is greater
than pore formation energy, and the cell membrane will be
penetrated before achieving steady state. In this case, the
formation of cell membrane pore can effectively reduce
the deformation energy stored in the membrane by reducing
the membrane area and bending at the position of mem-
brane pore. In detail, when the pore forms, the membrane
area decreases, and the corresponding stretching energy is
released. In addition, because the top of the nanopillars has the
maximum surface curvature (that is, the maximum bending
energy), the bending energy can be reduced by the most when
the pore forms at the position. By contrast, the cell membrane
will not be penetrated if �E∗ < 0.

B. Vertical nanopillars array

As special truncated nanocones (θ = 0◦), vertical nanopil-
lars array can also be used to penetrate the cell membrane
[30]. In this case, Sad = 2πrl , and �S = Sad = 2πrl . There-
fore, the total energy can be calculated by a simple expression
that E = −2γπrl + κπ l/r + 2λρ(πrl )2. Using ∂E/∂l = 0,
we can derive the critical adhesive depth l∗ as

l∗ = 2γ r2 − κ

4λρπr3
(8)

Similarly, the formula for determining whether the cell
membrane can be penetrated by vertical nanopillars becomes

�E∗ = κπ l∗

r
+ 2λρ(πrl∗)2−2πre. (9)

FIG. 2. The calculated free energy and deformation energy as
functions of adhesion depth of cell membrane adhered to truncated
nanocone array surface with different tilted angle (a) θ = 0◦, (b) θ =
10◦, (c) θ = 20◦, (d) θ = 30◦ when ρ = 0.3 μm−2, r = 300 nm, (e)
θ = 0◦, (f) θ = 10◦, (g) θ = 20◦, (h) θ = 30◦ when ρ = 0.3 μm−2,
r = 100 nm. The pore formation energy is indicated by a green
dotted line.

III. RESULTS AND DISCUSSION

Based on the established model above, we can study the
mechanism of cell penetration through analyzing total free
energy, deformation energy, and pore formation energy. Fig-
ure 2 depicts the calculated energies as the function of the
adhesion depth under different θ and r, when ρ = 0. 3 μm−2

(30 per 100 μm2). In our calculations, the related parame-
ters are γ = 0.25 kBT/nm2 [6,31,32], κ = 20 kB T [31], σ =
0.3 kBT/nm2, and λ = 5 kBT/nm2 [33]. We can find that the
total free energy firstly decreases and then increases with
increasing adhesion depth, which means that there is a steady
state which corresponds to the minimum of total energy when
l = l∗, as shown by the black solid line in Fig. 2. However,
the deformation energy of cell membrane increases with in-
creasing adhesion depth and achieves maximum when l = l∗
(the green solid line in Fig. 2). The pore formation energy is
relative to the size of the pore. So, the pore formation energy
is a constant when the radius of nanostructures is fixed, as
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FIG. 3. The cell penetration diagram in the space of the r − ρ plane under infinite long truncated nanocones with different tilted angle (a)
θ = 0◦, (b) θ = 10◦, (c) θ = 20◦, and (d) θ = 30◦, respectively. The color bar indicates the calculated values of the difference between the
deformation energy and the pore formation energy, �E∗, based on Eq. (7). The white line divide cell state into two modes, “penetration” and
“no-penetration” mode, according to whether the value of �E∗ is greater than zero. The red dotted line is calculated according to Eq. (10)
or (11). In (a), the various solid points correspond to experimental data for the cell membrane penetration, and the various hollow points in
correspond to experimental data for no penetration.

shown by the horizontal green dashed line in Fig. 2, in which
the linear energy density of pore formation takes the value of
e = 20 kBT [34]. If the deformation energy at steady state is
smaller than pore formation energy (�E∗ < 0), the cell mem-
brane will not be penetrated, as shown by Figs. 2(a) and 2(b)
in which θ = 0 and θ = 10◦ (r = 300 nm). However, when
the truncated nanocones have a large tilted angle [Figs. 2(c)
and 2(d)], the deformation energy becomes greater than the
pore formation energy, i.e., �E∗ > 0, which indicates the
cell membrane corresponds to the penetration state. Similar
results can also be found in Figs. 2(d)–2(h) when the radius of
nanostructures is equal to 100 nm.

From Figs. 2(a)–2(d), we find that a larger tilted angle
corresponding to the easier cell is to be penetrated when the
radius is fixed. In the case r = 300 nm, the deformation en-
ergy of the membrane is determined mainly by the stretching
energy and the bending energy can be ignored (see Appendix
B). During the adhesion process, adhesion energy promotes
cell adhesion, but stretching energy resists it. Adhesion en-
ergy is directly proportional to adhesion area, Sad . Stretching
energy is directly proportional to the square of change of cell
area, �S2. Both Sad and �S increase with cell adhesion. So,
we can define a dimensionless parameter, i.e., adhesion area
factor as � = Sad/�S, to account for the competition between
adhesion energy and stretching energy. The adhesion area

factor has the relation with tilted angle as � = 1/(1 − sin θ ),
meaning that a larger θ corresponds to a larger adhesion
area factor. The larger adhesion area factor represents larger
adhesion energy which can resist larger stretching energy. So,
the cell membrane adhered to nanostructures with a large �

has an intensive deformation (large deformation energy) at
steady state. In other words, the cell membrane is much more
easily penetrated by the nanostructures with a larger θ (the
detailed calculation method and discussions can be found in
Appendix C).

From Figs. 2(e) and 2(f) we can get that the cell membrane
can be penetrated when r becomes small to 100 nm. The main
reason is the pore formation energy decreases with decreasing
radius of nanostructures. However, the deformation energy at
steady state is slightly affected by radius of nanostructures
(see Appendix C). So, the cell membrane is much more easily
penetrated by the nanostructures with a smaller r.

Based on the analysis above and using Eq. (7), we can
calculate �E∗ as a function of the radius and surface dis-
tribution density of the truncated nanocones, which allows
us to construct a phase diagram to clarify the inter-related
effects of the radius and surface distribution density on the
cell penetration, as shown in Fig. 3. Obviously, we can divide
the regions into two zones according to the value of �E∗,
penetration region (�E∗ > 0) and no-penetration region
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(�E∗ < 0), which is demarcated by the white line represent-
ing �E∗ = 0.

Importantly, the dividing line, i.e., the relation of r and ρ

when �E∗ = 0, can be obtained by simplifying our model.
The bending energy of the cell membrane can be neglected
when the radius of the nanostructure, r is large enough, as the
discussion above (see Appendix B). So, the total free energy
can be simplified to E = −γ Sad + Estr . From ∂E/∂l = 0, one
can derive the critical adhesive depth at the stable state l∗.
Substituting l∗ into the simplified �E∗ = E∗

str−2πre = 0, we
can obtain the crossover radius or crossover density that

rc = γ 2/[4πeλρ(1 − sin θ )2], (10)

or

ρc = γ 2/[4πeλr(1 − sin θ )2]. (11)

Equations (10) and (11) show the relation of crossover
radius and crossover density, as shown by the red dotted line
in Fig. 3. We can find that the red dotted line agrees well with
the white line, which proves that it is reasonable to neglect the
effects of bending energy in this case. Equations (10) and (11)
are the key results of our model, which reveals the relationship
of the penetration of the cell membrane with geometrical
factors (radius, density, and tilted angle) of nanostructure and
properties of the cell membrane (adhesion energy between
membrane and the surface, stretching modulus, and linear
energy density of pore formation). We can intuitively predict
whether the cell membrane can be penetrated by various geo-
metric of nanostructures according to Eqs. (10) and (11). We
can find that it is more favorable for the cell membrane to
be penetrated by the nanostructures with small radius or low
density. The reason why the cell membrane is easily pene-
trated by small-radius nanostructures is that the penetration
only needs formation of a pore with a small size, i.e., a small
pore formation energy, as we discussed earlier. The adhesion
depth is closely related to the density of the nanostructures,
and the change of the area strongly depends on the adhesion
depth. Therefore, the nanostructures density not only affects
the original area (S0), but also affects the depth of cell adhe-
sion, i.e., the area change (�S). By combining Eq. (8) with
Eq. (9), it can be concluded that the deformation energy of the
cell membrane in a steady state is inversely proportional to
the density, so the membrane has a high deformation energy at
low density, which results in that it is easier to form pores. In
short, the cell membrane has a larger deformation area under a
low density than that under a high density. So, the deformation
energy stored in the cell membrane is greater (see Appendix
C for detailed discussion).

Besides, we can find from Fig. 3(a) that �E∗ is also greater
than zero when the radius is very small (about smaller than
6 nm). This is because the cell will be in the top state in
this case due to the extremely large surface curvature of the
nanostructure. The critical radius is equal to r = √

κ/(2γ ),
which has been discussed in detail in our previous work [30].

Besides the effects of the radius and surface distribution
density, the height of nanostructures also influences the cell
penetration. Taking vertical nanopillars (θ = 0) as an exam-
ple, if the height of nanopillars is smaller than the critical

adhesion depth, the cell membrane can completely wrap the
nanopillars and adhere to the bottom of the substrate. In this
case, the deformation energy will be smaller than that of
the case of infinite nanopillars. Figures 4(a)–4(d) show the
values of �E∗ when the height is 5, 1, 0.5, and 0.15 μm,
respectively. We find that the crossover white lines (�E∗ = 0)
in Figs. 4(a)–4(c) are the same, which is because the height
of nanopillars is much larger than the critical adhesion depth.
However, when the height of nanopillars becomes very small,
critical adhesion depth becomes larger than the height of
nanopillars and the cell membrane can completely wrap the
nanopillars. In this case, the deformation of the cell membrane
cannot achieve the requirement for forming pore. So, there is
no penetration when the height of nanopillars is very small,
as shown in Fig. 4(d) in which h = 0.15 μm. A similar phe-
nomenon is also found in Fig. 4(c), in which a no-penetration
region appears when the radius and density are small. It is
also because the cell has a larger critical adhesion depth than
height of nanopillars and membrane completely wraps the
nanopillars in this case.

In order to test our model, we did our best to collect exper-
imental data that reported cell penetration by nanostructures
in literature. Table I shows the comparison of experimental
results and theoretical predictions for vertical nanopillars (θ =
0), in which the first part (“Experimental data”) summarizes
the experimental details of each case (cell type, nanopillars
material, nanopillars size, and density) and whether the cell
membrane is found to be penetrated. The last part (“Theoreti-
cal results”) lists the predicted crossover radius and predicted
cell penetration states by the model using experimental pa-
rameters. If the radius in experiments is below the predicted
crossover radius, the cell membrane should be found as pen-
etration. On the contrary, the cell membrane should be found
as no penetration if the radius in experiments is larger than
the predicted crossover radius. The theoretical results success-
fully predict the penetration of the cell membrane of cases 1–3
and 6–8 in which nanopillars have a relatively small radius
or low density. It also correctly predicts the no penetration
in cases 4, 5, and 10, in which nanopillars have a relatively
large radius or high density. These experimental data are also
marked in Fig. 3(a). However, it can be found that the exper-
imental data of cases 9 and 11 do not match our theoretical
predictions. In spite of the disagreement, the experimental
results just validate our model by combining the cases 8–11
which are all taken from the same literature. The study by
VanDersarl et al. [19] is particularly interesting, because it
is the only study where the effects of nanopillars radius and
density on cell penetration were systematically investigated.
They found that the cell corresponds to the penetration state
when the nanopillar density or radius is small (r = 50 nm,
ρ = 0.1 μm−2 or r = 50 nm, ρ = 1 μm−2), while there is no
cell penetrations for large radius or high density (r = 50 nm,
ρ = 10 μm−2 or r = 375 nm, ρ = 0.1 μm−2). The trends of
effects of radius and density in this experiment are consistent
with our conclusions which show that the nanostructures with
small radius or low density correspond to cell penetration.
Although our predicted crossover radius in cases 9 and 11
is inconsistent with the experimental data, the gap between
them is small, which may be caused by the parameters used in
our calculations (adhesion energy between membrane and the
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FIG. 4. The cell penetration diagram in the space of the r − ρ plane for the vertical nanopillars (θ = 0◦) with finite height of (a) h = 5 μm,
(b) h = 1 μm, (c) h = 0.5 μm, and (d) h = 0.15 μm.

surface, stretching modulus, and linear energy density of pore
formation).

Table II lists the effects of truncated nanocones on cell
penetration. The model successfully predicts the penetration
state of the cell membrane of cases 2–5 in which truncated
nanocones have a relatively small radius or density. Con-
versely, the truncated nanocone with a relatively large radius
or density represents no penetration of the cell membrane of
cases 1 and 6. The experimental results show that the cell can
be penetrated by the nanocones with small radius or small
density, while the cell membrane cannot be penetrated when

radius or density is large. These experimental observations
are consistent with our theoretical conclusions. Importantly,
crossover radii predicted by our theory are in good agreement
with the experiments.

Interestingly, when bacteria adhered on cicada-winglike
nanopatterned surfaces, the bacterial membranes can be
mechanically ruptured by nanostructures [35]. The related
theoretical models have been found to study bactericidal
mechanism of nanopatterned surfaces and suggest that the
bacterial membrane can be mechanically ruptured when
stretching degree of membrane exceeds the limit of bacterial

TABLE I. Summary of case studies from the literature where the observed mode of cell penetration can be compared with the predictions
of the model for vertical nanopillar arrays. Case numbers correspond to references: 1 = Ref. [27], 2 = Ref. [20], 3 = Ref. [22], 4, 5 = Ref.
[42], 6 = Ref. [21], 7 = Ref. [26], 8, 9, 10, 11 = Ref. [19].

Experimental data Theoretical results

Density Crossover Predicted
Case Cell type Material r(nm) h(μm) (/100 μm2) Penetration radius (nm) penetration

1 CHO Polyornithine-coated nanostraw 50 1 26-36 YES 191-138 YES
2 CHO poly-D-lysine/fibronectin nanowire 50 1.5 30 YES 165 YES
3 CHO Polycarbonate nanostraw 50 1 30 YES 165 YES
4 Cardiomyocytes SiO2 nanopillar 100 1 100 NO 49.7 NO
5 Cardiomyocytes SiO2 nanopillar 250 1 100 NO 49.7 NO
6 mES Cells Silicon nanowires 45 6 20-30 YES 248-166 YES
7 C3H10T1/2 Silicon nanopillars 200 5 6.25 YES 796 YES
8 Hela/CHO Al2O3 nanostraws 50 1-2 10 YES 497 YES
9 Hela/CHO Al2O3 nanostraws 50 1-2 100 YES 49.7 NO
10 Hela/CHO Al2O3 nanostraws 50 1-2 1000 NO 4.97 NO
11 Hela/CHO Al2O3 nanostraws 375 1-2 10 NO 497 YES
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TABLE II. Summary of case studies from the literature where the observed mode of cell penetration can be compared with the predictions
of the model for truncated nanocone arrays where r represents tilted nanopillars’ top radius, θ represents truncated nanocones’ tilted angle,
and h is tilted nanopillars’ height. Case numbers correspond to references: 1, 2, 3 = Ref. [18], 4 = Ref. [29], 5, 6 = Ref. [25].

Experimental data Theoretical results

Density Crossover Predicted
Case Cell type Material r(nm) θ (o) h(μm) (/100 μm2) Penetration radius (nm) penetration

1 NIH-3T3 SU-8 nanopillar 45 1.15 1 177 NO 29.2 NO
2 NIH-3T3 SU-8 nanopillar 45 1.15 1 100 YES 51.7 YES
3 NIH-3T3 SU-8 nanopillar 45 1.15 1 25 YES 207 YES
4 CHO Carbon nanofiber 10-25 4-3.88 7 4 YES 1436-1255 YES
5 FAO/Huh7 Silicon nanoneedle 50-150 3.68-2.86 7 4 YES 1418-1376 YES
6 FAO/Huh7 Silicon nanoneedle 150 2.86 7 40 NO 137 NO

Note: The angles θ in the list are calculated based on the bottom radius rb of the truncated nanocone, the bottom radius is 65 nm in cases 1–3,
500 nm in cases 4–6. The calculation formula is θ = arctan[(rb − r)/h].

membrane [36–40]. However, the penetration mechanism of
cell membrane introduced in this paper is different from
the bactericidal mechanism of nanopatterned surfaces. The
formation of a pore caused by cell membrane deformation re-
quires an energy, i.e., pore formation energy. The deformation
energy stored in the membrane exceeds the pore formation
energy; the deformation energy can drive cell membrane
pores formation, i.e., cell membrane to be penetrated. Specif-
ically, the formation of cell membrane pore can effectively
reduce the deformation energy stored in the membrane by re-
ducing the membrane area and the bending deformation at the
position of membrane pore. Because the top of the nanopillars
has the maximum surface curvature (that is, the maximum
bending energy), the deformation energy at the local region
is larger than other regions. So, the pore forms easily at the
position because the deformation energy can be reduced by
the most. Therefore, we can judge cell membrane penetration
by comparing the deformation energy and the pore formation
energy.

Note that we assume that the cell membrane would wrap
around the nanostructures intimately, following the contour
of the nanostructures precisely. In particular, the nonadhesion
cell membrane between nanostructures should be deformed.
The energy change induced by the deformation of the non-
adhesion cell membrane between nanostructures has been
investigated and it is found that it is much smaller than the
bending energy in other parts of cell membrane [39]. So,
the bending energy of the cell membrane between the nanos-
tructures contributes little to the total energy of the system.
Therefore, in order to simplify our model and highlight the
main influencing factors, we ignore the influence of the defor-
mation of membrane between the nanostructures. The similar
simplifications have also been widely used in the study of cell
adhesion on patterned surface [28,30,36,37,41]. It should be
noted that we also assume that the cell membrane is a thin
elastic layer and neglect the thickness composition of the layer
because the size of the nanostructures is much larger than the
thickness of the cell membrane.

IV. CONCLUSIONS

In conclusion, through analyzing the free-energy change of
cell adhered to the nanostructures surface, we have proposed

a cell penetration model which can predict whether the cell
membrane can be penetrated by nanostructures. By compar-
ing the deformation energy with the pore formation energy,
we propose that the cell membrane can be penetrated by
nanostructures if the deformation energy is greater than the
pore formation energy. Otherwise, the cell membrane can-
not be penetrated. Taking vertical nanopillars and truncated
nanocones as examples, by calculating the difference between
deformation energy and pore formation energy, we obtained a
diagram of the cell penetration under the effects of the radius
and distribution densities of nanostructures, which indicates
that the cell can be penetrated by the nanocones or nanopillars
with small radius or low density, while the cell membrane
cannot be penetrated when radius or density is large. Further-
more, we provide a simple method to evaluate the crossover
radius or density for the cell penetration. The results of the
theory and the experiments have reached broad agreement,
which implies that these studies would provide useful guid-
ance to the design of nanopatterned surfaces for biomedical
applications.
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APPENDIX A: DERIVATION OF THE CRITICAL
ADHESIVE DEPTH

Considering the effects of the adhesion energy, bending
energy, and stretching energy, the total free energy can be
written as

E = −
∫

Sad

γ dA+
∫

Sb

[κ

2
(c1 + c2 − c0)2

]
dS + 1

2
λ

�S2

S0
,

(A1)

where γ is the adhesion energy per unit area between
the cell membrane and the surface; Sad is the adhesion
area between the cell and the surface. κ is the bending
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modulus of the membrane, c1(c2), c0 denote the princi-
pal curvatures of the bending membrane surface and the
spontaneous curvature, respectively, Sb is the intracellu-
lar bending area. λ denotes the stretching modulus of the
membrane, �S and S0 denote the intracellular area change
by stretching and the cell area before stretching, respec-
tively. The first term is adhesion energy, the second term

represents stretching energy, and the third term is bending
energy.

The surface principal curvature of the truncated nanocones
is c1 = 0, and c2 = cos θ/(r + x tan θ ), the cell membrane
area in our selected period square domain before stretch-
ing, S0, is equal to 1/ρ, and �S = π l (2r + l tan θ )/ cos θ +
πr2 − π (r + l tan θ )2. Calculate the total energy as

E = −
∫ l

0
γ 2π (r + x tan θ )d

( x

cos θ

)
+

∫ l

0

κ

2

(
cos θ

r + x tan θ

)2

2π (r + x tan θ )d
( x

cos θ

)

+ λ

2

[
π (2r + l tan θ ) l

cos θ
+ πr2 − π (r + l tan θ )2

]2

1/ρ
, (A2)

i.e.,

E = − γπ

cos θ
l (2r + l tan θ ) + πκ

cos2θ

sin θ
ln

r + l tan θ

r

λ

2

[
π (2r + l tan θ ) l

cos θ
+ πr2 − π (r + l tan θ )2

]2

1/ρ
. (A3)

Therefore, the equilibrium state of the system has a lowest
free energy and we can obtain the minimum of free energy
change through

∂E

∂l
= 0, (A4)

i.e.,

− 2γπ

cos θ
(r + l tan θ ) + πκ cos θ

r + l tan θ
+ 2π2λρ

× tan θ (1/ sin θ − 1)2(r + l tan θ )[(r + l tan θ )2 − r2] = 0.

(A5)

Solving Eq. (A5), we can obtain critical adhesive depth as

l∗ = [
√

(
√

b2 − 4ac − b)/2a − r]/ tan θ, (A6)

where a = 2π2λρ tan θ (1/ sin θ − 1)2, b = −(ar2 + 2γπ/

cos θ ), c = πκ cos θ .

APPENDIX B: THE CONTRIBUTION OF BENDING
ENERGY TO DEFORMATION

Figure 5 shows the calculated values of bending energy,
stretching energy, and deformation energy in the space of
the r − ρ plane under infinite long nanopillars. The bending
energy is determined by the bending energy density and bend-
ing area. When r is large, the curvature of cell membrane is
very small, so the density of bending energy is very small.
Moreover, the adhesion depth is also small in the case of large
radius, which means that the adhesion area becomes small,
which finally leads to the negligible bending energy, as shown
in Fig. 5.

When radius r is small, the curvature of cell membrane
increases and the bending energy per unit area increases. If
the density of the nanostructure increases, the cell is at the tip
of the nanostructure array, and the adhesion depth becomes
very small, so the area decreases. So when radius r is small,
and ρ is large, the bending energy is also very small, which

finally leads to the negligible bending energy. On the contrary,
when the density of the nanostructure array is small in the
case of small radius, the adhesion depth and the adhesion area
increase, so the bending energy increases, and the contribution
of the bending energy to the deformation energy becomes
larger, which cannot be ignored. How the specific adhesion
depth varies with the radius and density of the nanostructured
array has been mentioned in our previous work [30]. In con-
clusion, the values of bending energy are much smaller than
the stretching energy in the case of the nanopillars with large
radius or high density, the bending energy cannot be ignored.

APPENDIX C: DERIVATION AND DISCUSSION
OF ADHESION AREA FACTOR

As discussed in Appendix B, the deformation energy of
membrane is determined mainly by the stretching energy, and
the bending energy can be ignored when the nanostructure has
not very small radius or low density. In this case, the total
free energy can be written as E = −γ Sad + λ

2
�S2

S0
. During the

adhesion process, adhesion energy promotes cell adhesion,
but stretching energy resists it. Adhesion energy is directly
proportional to adhesion area, Sad . Stretching energy is di-
rectly proportional to the square of change of cell area, �S2.
Both Sad and �S increase accompanying with cell adhesion.
So, we can define a dimensionless parameter, i.e., adhesion
area factor that � = Sad/�S. For truncated nanocones,

� = π l (2r + l tan θ )/cos θ

π l (2r + l tan θ )/cos θ + πr2 − π (r + l tan θ )2 , (C1)

i.e.,

� = 1

1 − sin θ
. (C2)

According to Eq. (C2), adhesion area factor � is deter-
mined by tilted angle θ and a larger tilted angle θ corresponds
to a larger adhesion area factor. Besides, according to the
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FIG. 5. The magnitudes of the energetic contributions associated with (a) bending energy, (b) stretching energy of the membrane, and (c)
deformation energy have been plotted against truncated nanocones (θ = 0◦) radius and distribution density.

definition of adhesion area factor, the total free energy also
can be written as

E = −γ��S + λ

2

�S2

S0
. (C3)

From ∂E/∂�S = 0, one can derive the critical change area
of cell membrane at the stable state, which can be written as

�S∗ = γ�

λρ
(C4)

And, the critical adhesion area of cell membrane at the
stable state can be written as

S∗
ad = ��S∗, (C5)

i.e.,

S∗
ad = γ�2

λρ
. (C6)

Adhesion energy and stretching energy are written as

E∗
ad = −γ 2�2

λρ
, (C7)

E∗
str = γ 2�2

2λρ
. (C8)

In Fig. 6(a), we calculate the adhesion energy, bending
energy, stretching energy, and pore formation energy as a

FIG. 6. (a) The calculated adhesion energy, bending energy, stretching energy, and pore formation energy as a function of tilted angle θ

when surface distribution densities is ρ = 0.3 μm−2, and the radius r = 300 nm, respectively. (b) The calculated adhesion energy, bending
energy, stretching energy, and pore formation energy as a function of radius r when surface distribution densities is ρ = 0.3 μm−2, and tilted
angle θ = 10◦, respectively.
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function of tilted angle θ . We find that a larger tilted angle
θ corresponds to larger stretching energy and adhesion energy
at steady state. So, cell membrane adhered to nanostructures
with a large θ has an intensive deformation (large deformation
energy) at steady state, and is easily penetrated by the nanos-
tructures. This conclusion can also be obtained according to
Eqs. (C4)–(C8). The larger adhesion area factor � represents
larger adhesion area and the change area of cell membrane
which have larger adhesion energy and deformation energy,
respectively.

We calculate the adhesion energy, bending energy, stretch-
ing energy, and pore formation energy as a function of
radius r in Fig. 6(b). We can get that cell membrane can be

penetrated when r is small. The main reason is the pore
formation energy decrease with decreasing radius of nanos-
tructures. However, the deformation energy is slightly affected
by radius of nanostructures at steady state. So, cell membrane
is much more easily penetrated by the nanostructures with a
smaller r.

According to Eqs. (C4) and (C6), we can know that
both Sad and �S are inversely proportional to nanostructures
density, and the deformation energy stored in the cell mem-
brane in the case of low density is greater than that in the
case of high density. Therefore, it is more favorable for cell
membrane to be penetrated by the nanostructures with low
density.
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