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Network modularity controls the speed of information diffusion
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The rapid diffusion of information and the adoption of social behaviors are of critical importance in situations
as diverse as collective actions, pandemic prevention, or advertising and marketing. Although the dynamics of
large cascades have been extensively studied in various contexts, few have systematically examined the impact
of network topology on the efficiency of information diffusion. Here, by employing the linear threshold model on
networks with communities, we demonstrate that a prominent network feature—the modular structure—strongly
affects the speed of information diffusion in complex contagion. Our simulations show that there always exists an
optimal network modularity for the most efficient spreading process. Beyond this critical value, either a stronger
or a weaker modular structure actually hinders the diffusion speed. These results are confirmed by an analytical
approximation. We further demonstrate that the optimal modularity varies with both the seed size and the target
cascade size and is ultimately dependent on the network under investigation. We underscore the importance
of our findings in applications from marketing to epidemiology, from neuroscience to engineering, where the
understanding of the structural design of complex systems focuses on the efficiency of information propagation.
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I. INTRODUCTION

The spread of information in complex networks controls or
modulates fundamental processes that can have local effects
on individual actors and groups thereof, and macroscopic ef-
fects on the whole system (e.g., global information cascades).
Information diffusion has been studied by drawing analogies
with epidemics. Many social behaviors, for example, act like
infectious diseases: once triggered, they can spread to the
entire population in a very short amount of time, generating a
contagion process similar to an epidemic outbreak. Examples
include collective actions such as voting and participation
in social movements, the adoption of innovations such as
vaccination and emerging technologies, the diffusion of vi-
ral memes in social media, and the spread of norms and
cultural fads. The dynamics of these intriguing and complex
phenomena have attracted research interest from a number of
disciplines [1–3].

There are two major models for the study of informa-
tion diffusion: the independent cascade model and the linear
threshold model. The former assumes that, similar to disease
transmission, each exposure is independent from each other
and a person has only one chance to “infect” their neighbors
[4,5]. The latter postulates that social reinforcement, or ex-
posure to multiple sources, is needed in the contagion process
and each person has a threshold to be met for successful adop-
tion [6,7]. The independent cascade model suits well with the
simple contagion scenario, where the goal is to inform people
rather than to convince them to take actions [1,4]. It thus has
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been adopted in the study of word-of-mouth spreading and
viral marketing [4,8]. However, some studies revealed that the
threshold model is more applicable to the spread of risky or
contentious social behaviors for which each additional expo-
sure increases the likelihood of adoption [7,9–12]. We thus
examine the efficiency of information diffusion in the latter
case, which is sometimes referred to as complex contagion.

Social behaviors spread through social contacts, thus the
structure of the underlying social network plays an important
role in the process of information diffusion [2,7,13,14]. Re-
cent studies have examined the effects of different network
properties on the dynamics of information diffusion [4,7,15].

One prominent network feature is modular structure—
the separation of a network into several subsets of nodes
within which connections are dense, but between which con-
nections are sparser [16,17]. Networks with many “bridges”
connecting nodes in different communities tend to have
low modularity [18,19]. Note that we distinguish modular-
ity from another related concept, clustering, which refers to
the network transitivity and is quantified by the clustering
coefficient [18,20].

The strength of weak ties theory suggests that networks
with weak modular structure will promote both the scale and
the speed of diffusion since enough shortcuts, which tend
to be weak ties, link relatively separated groups and diffuse
information across communities [1,20]. In contrast, the weak-
ness of long ties theory predicts that, in the case of complex
contagion where the adoption requires multiple exposures,
networks with strong modular structure, and thus an abun-
dance of strong ties, can enhance the spread of certain social
behaviors [10,21]. The two competing hypotheses based on
prior theoretical work manifest the interplay between social
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reinforcement and network modularity in most real social
networks. Yet empirical studies seem to reveal inconsistent
results regarding the role played by community structure
in complex contagion [21–23]. Recent findings reveal that
network modularity plays two different roles in information
diffusion: (1) enhancing intracommunity spreading and (2)
hindering intercommunity spreading [24], providing an in-
principle unifying explanation to the competing empirical
evidence.

Overall, prior work on the relationship between network
modularity and large cascades has mainly focused on one
aspect of information diffusion—the size of information cas-
cades, i.e., the total number of “infected” individuals in the
steady state. Another important cascade feature—the effi-
ciency of information diffusion, i.e., the total time it takes to
reach the steady state—has been underexplored [25–27]. A
better understanding of information diffusion speed can have
many practical applications, such as informing the design
of communication and social networks where the efficiency
of information flow needs to be prioritized. For instance, a
get-out-the-vote campaign on election day may need to be op-
timized for adoption speed since the operation will be useless
after the election is over.

The extant literature has also demonstrated how insights
about the interplay between network modularity and in-
formation spread can provide a principled understanding
of various complex system dynamics, from characterizing
neuronal communication in human connectomics [28], to op-
timizing immunization strategies for public health and animal
welfare [29,30].

II. MODELS

A. Diffusion model

Here we systematically examine the effects of network
modularity on the speed of information diffusion in complex
contagion by utilizing the linear threshold model [6,7]. We de-
fine diffusion speed as the average rate of a spreading process,
measured as the eventual growth of the cascade divided by the
time it takes to reach equilibrium. We show that, in complex
networks, there always exists an optimal amount of modular-
ity for the most efficient information diffusion process.

In the linear threshold model, a node can be in two states:
either active or inactive. Each node a is assigned a threshold
θa uniformly at random from the interval [0, 1]. Initially all
nodes are inactive. At time step t = 0, a fraction ρ0 of N nodes
(the seeds) are switched into active state. In the subsequent
time steps, a node can become active if its fraction of active
neighbors exceeds the threshold, and it stays active forever
once being activated. Following these rules, we update a frac-
tion f of all nodes (selected randomly) at each step. In the
synchronous updating scenario, where f = 1, the contagion
process unfolds in a deterministic manner until the network
reaches the steady state [5,7,24]. This model can be adapted
to the case of asynchronous updating by setting f < 1. We
assume that all nodes have the same threshold θ [24,31]. We
measure the time steps ts it takes to reach steady state and
the total fraction ρts of active nodes across the network at ts.
The average speed of diffusion is v̄ = (ρts − ρ0)/ts.

B. Network model

We adopt the stochastic block model (SBM) to generate
networks with community structure [32]. The underlying net-
work consists of N nodes partitioned into d communities
{C1,C2, . . . ,Cd}. Let |Ci| be the size of Ci, and ρ

(i)
t be the

fraction of active nodes in Ci at time t . Each community Ci

has a specified degree distribution p(i)
k and a mean degree

z(i) = ∑
kp(i)

k . The edges in the network are randomly dis-
tributed according to a d × d mixing matrix e, with ei j defined
as the fraction of edges that connect nodes in Ci to nodes
in Cj . Although studies have indicated that tie strength is
an important factor in modeling information diffusion [4,13],
here we consider edges to be unweighted, due to the unclear
relationship between tie strength and network topology—
some studies argue that strong ties mostly reside within tightly
knit clusters and weak ties tend to link together distant com-
munities [1,4,10,13], while other empirical work reveals the
opposite conclusion in social and scientific collaboration net-
works [33–35].

C. Numerical simulation

We use numerical simulations to compare the speed of dif-
fusion across an ensemble of networks with different strength
of network modularity. For simplicity, here we consider the
case of two equally sized communities: let d = 2, |C1| =
|C2| = N/2, and the seed nodes are randomly selected from
C1, thus ρ

(1)
0 = 2ρ0, ρ

(2)
0 = 0. We construct the network such

that p(1)
k and p(2)

k both follow a Poisson distribution, with
z(1) = z(2) = z. The expected total number of edges is M =
zN/2. Let μM edges be randomly distributed between C1

and C2, and the remaining (1 − μ)M edges be randomly
placed between node pairs in the same community, thus e =
1
2 [1 − μ, μ

μ, 1 − μ]. Note that, to generate the network with other
degree distributions, the configuration model should be used
[16]. Here μ controls the strength of network modularity,
which turns out to be Q = 1/2 − μ, based on the current
partition. A larger μ gives a network with weaker network
modularity since there are more edges running between two
communities. For each μ, we run 100 simulations, with each
assuming a different realization of the network and the seeds.

D. Analytical approximation

We also study the dynamics in our system analytically. The
cascade size ρt is equal to the probability that a randomly
chosen node is active at time t . The topology of such a large
network can be approximated by a tree structure with infinite
depth and a single node at the top, a.k.a. a tree-like approxi-
mation [36]. The top node is connected to ka neighbors at the
next lower level, while any other node a at level n is connected
to ka − 1 neighbors at level n − 1, where ka is the degree of
node a. At any level, the probability that a node in Ci is among
the seeds is ρ

(i)
0 . In synchronous updating, the tree level n can

be directly mapped to the time step t used in simulations [37],
which means that ρt can be approximated as the probability
ρn that the top node is active, assuming that it resides at level
n = t , since the top node can be infected only by nodes at
most n levels below. We can calculate its probability of being
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FIG. 1. Simulation results (dots) and analytical predictions
(lines) of Eq. (5) (cf. Materials and Methods). Blue axis: the average
speed of information diffusion, v̄. Red axis: the size of information
cascade, ρts . The x axis represents the strength of network modu-
larity controlled by μ. Green area: the range of μ that can enable
global cascades (ρts � 0.99). The dashed vertical line corresponds
to μ = 0.17 that yields the highest v̄ by prediction. The simulation
results are averaged over 100 realizations of the network for each μ,
with N = 1 × 105, z = 10, ρ0 = 0.1, θ = 0.35, f = 0.01. The error
bars indicate the interquartile ranges.

active from nodes at the bottom level (n = 0) to the top node
(n = t), one level at a time, according to the linear threshold
model. See the derivation of ρn in Materials and Methods.

III. RESULTS

A. Optimal modularity for the speed of global cascades

Figure 1 displays an interval of network modularity that
can trigger global cascades, which concurs with the findings
in Ref. [24]. Intuitively, one would imagine that a stronger
modularity (smaller μ) increases diffusion speed in C1 since
nodes in C1 are exposed to more seeds, while a weaker modu-
larity (larger μ) increases diffusion speed in C2 because more
bridges connect nodes in C2 to the seeds. This observation
raises the following question: is there an ideal network modu-
larity at which the global cascade reaches the highest average
diffusion speed?

Let us first analyze the behavior of our system when only
local diffusion is possible. Figure 1 indicates that, when the
network modularity is too strong (very small μ), information
spreads only among nodes in C1 due to the lack of bridges
between two communities, thus decreasing modularity (in-
creasing μ) decreases the average diffusion speed because it
takes longer for spreading in C1 and the cascade size stays
the same.

When a global cascade is achieved, however, there is a
quadratic relationship between the average diffusion speed
and network modularity: decreasing modularity first increases
the average diffusion speed, but only up to a critical point,
after which a further reduction in modularity slows down the
overall diffusion dynamics. The global cascade thus reaches
its highest average speed at the optimal network modularity
(μ = 0.17). The analytical predictions show excellent agree-
ment with the simulations (Fig. 1).

FIG. 2. Cross sections of three different μ values in Fig. 1 that
enable global cascades. (a, d) μ = 0.13; (b, e) μ = 0.17; (c, f) μ =
0.21. (a–c) The diffusion speed v

(i)
t in C1 and C2 as a function of

time step t . (d–f) Same as (a)–(c), but for the cumulative cascade
size ρ

(i)
t . The theoretical predictions of Eq. (4) (lines) show excellent

agreement with the numerical simulations (dots), averaged over 100
runs. The optimal μ = 0.17 achieves the shortest total diffusion time,
thus the highest average diffusion speed.

Next, we analyze the cascade dynamics in more detail to
understand this phenomenon. Figure 2 shows the diffusion
speed per time step in each community, for three different lev-
els of network modularity. The time lags of spreading in two
communities can help us to explain the influence of network
modularity on the average diffusion speed of global cascades.

At μ = 0.13, we reach the lower bound of the window for
global cascades. However, the time difference between C1 and
C2 is the longest: the spreading in C2 merely gets started after
C1 reaches steady state [Fig. 2(a)]. Thus the relatively long
diffusion time in C2 is the bottleneck for the average diffusion
speed at global scale.

One may, therefore, predict that the highest average dif-
fusion speed can be achieved when the time lag between the
two communities is reduced as much as possible. For instance,
since the time difference to finish spreading at μ = 0.21
[Fig. 2(c)] is shorter than that at μ = 0.17 [Fig. 2(b)], the
average diffusion speed would be predicted to be faster in
the former case [Fig. 2(c)]. However, such an inference is
incorrect, as the diffusion at μ = 0.21 takes longer than the
scenario when μ = 0.17, for which the global cascade finishes
in the shortest amount of time.

Comparing the optimal network modularity [Fig. 2(b)]
to the first scenario [Fig. 2(a)], it takes slightly more time
to finish spreading in C1, due to the decreasing number of
edges in C1. But the increasing connections between the two
communities reduces the diffusion time in C2. The time lag
between C1 and C2 is much shorter, but not close to zero.
Figure 2 indicates that, at this optimal network modularity,
neither C1 nor C2 achieves its highest diffusion speed, but
both are pretty close to it, resulting in the most efficient global
cascade.
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FIG. 3. Phase diagrams of the average diffusion speed v̄ as a
function of seed size ρ0 (a) and threshold θ (b) on SBM networks.
The two red curves mark the region for global cascades. The blue
curve represents the μ value that yields the highest v̄ for a given ρ0

or θ . The results are based on simulations, averaged over 100 runs
for each combination of (ρ0, μ) or (θ, μ). Simulation parameters
are N = 1 × 105, z = 10, f = 0.01, with θ = 0.35 (a) and ρ0 = 0.1
(b). The seeds are randomly selected from a single community. The
dashed line is a slice at ρ0 = 0.1 (θ = 0.35) in Fig. 1.

However, at μ = 0.21, the further reduction of the number
of edges in C1 slows down the speed of local spreading in
C1, and this becomes the bottleneck of the average speed at
global scale. Although, under this condition, C1 and C2 reach
the steady state almost concurrently (with a time lag close to
zero), it cannot counteract the increase in diffusion time for
both communities [Fig. 2(c)].

B. The effects of seed size and threshold

Figure 3 presents two phase diagrams of the average diffu-
sion speed v̄ as a function of the seed size ρ0 and the threshold
θ . It indicates that, in the region of global cascades, there
always exists an optimal modularity for the most efficient
information diffusion, and this critical value of μ depends on
both ρ0 and θ .

Note that a minimal seed size is needed to trigger global
cascades, and once above this threshold, when ρ0 is not
too large (e.g., ρ0 = 0.1), the average speed of global cas-
cades first increases and then decreases as one reduces the
modularity (increasing μ), resulting in an intermediate value
of μ as the optimal modularity [Fig. 3(a)]. However, when
ρ0 is sufficiently large (e.g., ρ0 = 0.2), the average speed
of global cascades always increases as one increases the
number of cross-community links, making the network with
no-community structure (μ = 0.5) the ideal case for the most
efficient spreading process. This is because, when increasing
μ never blocks local spreading in C1 due to the presence of
enough seeds in C1, more external links are always going to
make the diffusion faster in C2. Similar patterns emerge for
the threshold θ when the seed size is fixed [Fig. 3(b)].

We obtain consistent results on SBM networks with dif-
ferent network sizes, variable average degrees, different seed
arrangements between C1 and C2, and arbitrary number of
communities, based on both simulations and analytical pre-
dictions [38].

FIG. 4. Phase diagrams of the average diffusion speed v̄ on the
LFR (a) and Twitter (b) networks. Parameters μ and p on the x axis
control the network modularity. The blue curve indicates the optimal
μ (or p) for v̄ for a given seed size ρ0. The normalized modularity
Qnorm with respect to μ (or p) is shown on the top axis. Network
statistics are N = 25 000, z = 10, γ = 2.5, β = 1.5, kmax = 30 (for
LFR); N = 81 306, z = 16 (for Twitter). Simulations are averaged
over 100 runs, with θ = 0.3, f = 0.01. The seeds are randomly
selected across the whole network.

C. Simulations on non-SBM networks

Although the SBM provides reproducible and well-
controlled modular networks for modeling the speed of infor-
mation diffusion using tractable computational approaches, it
is clearly appealing to test the generalizability of our findings
on networks without the assumptions of equally sized commu-
nities and randomly distributed edges. To this end, we perform
simulations on networks with more complex structure, such as
heterogeneous communities, high clustering, and power-law
degree distribution. We also randomly select the seed nodes
across the network, instead of placing them in a single com-
munity.

We use the LFR benchmark graph [39] to generate syn-
thetic networks with community structure similar to that
observed in real-world networks (see Materials and Methods).
We also simulate information diffusion on a Twitter network
(see Materials and Methods) and six other real-world net-
works [38].

The phase diagrams for both types of networks are shown
in Fig. 4. An optimal modularity for the most efficient global
cascades still emerges as in the case of SBM networks
[Fig. 3(a)]. Figure 4 shows that the minimal seed size required
to trigger global cascades depends on the network under in-
vestigation: a 10% random sample of all nodes is enough to
generate global diffusion on LFR networks for a wide range
of modularity, while the same fraction of seed nodes generates
only small cascades on the Twitter network. For the same
reason, the optimal normalized modularity (see Materials and
Methods) for a given seed size also changes across networks.
Differently from the SBM, when the seed size is large enough,
small changes in modularity result in only small changes in
the average diffusion speed since the diffusion tends to reach
global cascades rapidly due to the fact that seeds are randomly
distributed over the whole network. Thus, for large seed sizes,
the modularity for the fastest global cascades fluctuates on
both LFR and Twitter networks, as opposed to the case of
SBM networks, where the optimal values are always the same
[Fig. 3(a)]. This also explains why the position of the phase
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(a) (b) (c)

FIG. 5. The optimal network modularity for fast information diffusion changes as a function of the target cascade size on three different
types of networks. The modularity is controlled by μ for SBM (a) and LFR (b) networks [or by p for the Twitter network (c)]. The optimal
values of μ and p are selected from those that can achieve the given target size �. All simulation parameters are the same as in Fig. 3(a) and
Fig. 4. Note that a small ρ0 may not be able to reach all target cascade sizes, e.g., a seed size of ρ0 = 0.1 on the Twitter network is able to
infect only up to about � = 65% of all nodes. Line plots for different ρ0 start from different � since � > ρ0.

transition at which global cascades emerge moves to the high-
est modularity for large seed sizes (Fig. 4).

Overall, the optimal modularity is ultimately dependent on
the network under investigation. This is because their overall
network structure is very different from each other, such as the
degree distribution, the clustering coefficient, the community
sizes, etc., and the interactions between modularity and these
network properties can greatly impact diffusion dynamics.
However, the general trend—that the optimal modularity de-
creases as the seed size increases—is preserved for a variety
of complex networks [38].

D. Optimal modularity for different cascade sizes

The objective of certain diffusion scenarios is not always
to reach the global cascades. For instance, in the case where
an organization needs to get at least x signatures among its
members before a certain date in order to get an initiative on
a ballot, the goal is to activate just a fraction of the whole
population. This example prompts us to ask: how does the
optimal modularity for speed change with different target
cascade sizes?

To answer this question, for a fixed � (i.e., the target
cascade size) and ρ0 (i.e., the seed size), we determine the
optimal value of μ (or p) that minimizes the time it takes for
the cascade to reach �. Figure 5 indicates that the optimal
modularity for the average diffusion speed typically decreases
as the target cascade size � increases. For instance, the opti-
mal μ changes from μ = 0 to μ = 0.17 as � increases from
� = 0.15 to � = 0.99 for ρ0 = 0.1 on SBM networks. The
intuition behind this result is that since the originating com-
munities already contain enough nodes to satisfy the small
target cascade size, it is better to have strong modularity to
facilitate local spreading (Fig. 1). However, when the seed
size is large enough (e.g., ρ0 = 0.3), the optimal modularity
tends to be small for both large and small (relative to ρ0) target
cascades. In this case, originating communities can quickly
be saturated, and thus the best strategy is to promote large
cascades through intercommunity edges.

This observation provides a more complete picture of our
findings: the best network to optimize diffusion speed is not
always the same, suggesting that the target cascade size,
together with the seed size, should all be taken into consid-
eration when designing the most efficient network.

Beyond a constraint on the cascade size, there are other sit-
uations where one needs to optimize the diffusion speed with
a time budget (or equivalently to maximize the cascade size in
a given time window). We thus further examine the diffusion
dynamics by considering having a limit on the diffusion time,
which shows that the optimal modularity tends to decrease as
the time budget increases [38].

IV. DISCUSSION

We investigate the effect of community structure, as mea-
sured by network modularity, on the speed of information
diffusion. Through simulations and analytical approxima-
tions, we reveal that there always exists an optimal strength
of modularity—under which information or behavior dif-
fuses at the highest average speed. We demonstrate that such
an efficient spreading behavior is achieved by making the
right compromise between internal connectivity and cross-
community bridges for synchronized diffusion in different
communities. We also find that the optimal modularity varies
with respect to the seed size and the target cascade size.
These findings are consistent on both synthetic and real-world
networks.

Our findings provide insights for many real-world appli-
cations that allow for the optimization of network structure
to enable rapid diffusion or adoption. For instance, it may
help to design better organizational structure for firms with
many different functional departments where the efficiency of
diffusion is important (e.g., the adoption of social norms and
work habits such as working hard). Drawing on the communi-
cation network of employees in a company (e.g., from email
or social media), managers could make office assignments as
an intervention to help change the interaction patterns such
that the network approaches its optimal modularity, and thus
making the process of social contagion more efficient.
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In preventative health, one intervention used by practi-
tioners to address public health challenges like obesity is to
modify the contact network of a community to promote the
spread of healthy behaviors, such as by providing role models
or “health buddies” to mothers, young children, or users in on-
line health communities [21,40,41]. Our finding suggests that
the modularity should be considered in the network modifica-
tion procedure to maximize the speed of behavioral change.

Online networks can be reshaped to influence informa-
tion diffusion dynamics: social media platforms, for example,
can design their friend recommendation algorithms to change
the network modularity to promote (e.g., advertisements) or
suppress (e.g., participation in illicit activities) diffusion pro-
cesses.

Although our study is postulated upon the premise that one
can alter network structures to maximize diffusion speed, our
findings still have implications for real-world networks with a
structure that cannot be modified: one can quantify the degree
of efficiency the network is functioning at and determine the
optimal seed size for a given network and diffusion process.

This study also has implications for online campaigns.
Social media users often receive content relevant to their
interests in trending discussions or ephemeral events. Our
study suggests that advertisers can target networks with a high
level of modular structure to maximize the campaign reach
and inform a large audience in a short period of time. For
instance, a petition to the White House that needs to gather
100 000 signatures in just 30 days can be promoted within
high-modularity social networks to increase the chance of
success.

From a methodological standpoint, by incorporating the
effect of network modularity on the diffusion speed, machine
learning algorithms can utilize modularity to better predict
the efficiency of information cascades. Our framework can
allow the study of many naturally occurring complex systems
in biological networks and enable the understanding of evo-
lutionary dynamics in complex networks exhibiting a certain
level of modularity that facilitates or hinders diffusion speed.
For example, network modularity has already been used to
study spreading dynamics on the human connectome and to
explain global communication on brain networks [28], but the
communication speed in this context is unexplored.

Future work can focus on the empirical validation of the
relationship between network modularity and the efficiency
of information diffusion, and on examining its variations by
considering other diffusion mechanisms (e.g., the independent
cascade model) on networks with even more complex struc-
ture such as the hierarchical organization of communities.

V. MATERIALS AND METHODS

A. The calculation of diffusion speed

The tree-like approximation deals only with probabilities;
it does not represent the actual diffusion process on a particu-
lar network, where the spreading always starts from the seeds,
not from nodes at the bottom level. Here ρn = ∑

i ρ
(i)
n |Ci|/N ,

with i in ρ (i)
n indicating that the top node at level n = t belongs

to Ci and |Ci| is the size of each community. We can itera-
tively calculate the cascade size using the following updating

equations [38,42]:

q̄(i)
n =

∑
j ei jq

( j)
n−1∑

j ei j
= 1

d

∑
j
ei jq

( j)
n−1, (1)

q(i)
n = ρ

(i)
0 + (

1 − ρ
(i)
0

) ∑
k

p̃(i)
k

k−1∑
m=�∗�θk

(
k − 1

m

)

× (
q̄(i)

n

)m(
1 − q̄(i)

n

)k−1−m
, (2)

ρ (i)
n = ρ

(i)
0 + (

1 − ρ
(i)
0

) ∑
k

p(i)
k

k∑
m=�∗�θk

(
k

m

)

× (
q̄(i)

n

)m(
1 − q̄(i)

n

)k−m
. (3)

In synchronous updating ( f = 1), the diffusion speed in Ci at
time t can be approximated as

v
(i)
t = dρ

(i)
t /dt = [

ρ
(i)
t+1 − ρ

(i)
t

]+
, (4)

where the notation [·]+ stands for max(0, ·). The overall dif-
fusion speed vt at time t , the total diffusion time ts, and the
average diffusion speed v̄ are

vt =
∑

i

|Ci|
N

v
(i)
t , ts = t | vt = 0, v̄ = ρts − ρ0

ts
. (5)

Note that this approximation is based on the assumption
that the network is locally tree-like, such that the seeds infect
nodes one step away at each time step. It becomes the exact
solution on large SBM networks (n → ∞) when the average
degree remains small. However, it does not work well on non-
tree-like networks. We thus perform simulations only on LFR
and empirical networks.

B. LFR network

The node degrees and community sizes in LFR networks
both follow a power-law distribution, with exponents γ and
β, respectively. The typical values of the exponents are 2 �
γ � 3, 1 � β � 2. Here we let γ = 2.5, β = 1.5. Similar to
SBM, LFR networks also use a parameter μ to control for
the modularity, which is defined as the fraction of a node’s
edges to others outside its community. Unlike SBM, the node
partition in LFR networks is not fixed for different μ, and 0 �
μ � 1 since the number of communities is typically larger
than 2 [38].

C. Twitter network

The Twitter network data are obtained from Ref. [43]. The
largest connected component (LCC) of its undirected network
consists of 81 000 nodes and 1.3 million edges, for which we
detect 70 communities using Ref. [44].

We rewire edges to change the network modularity. For
each rewire, we do the following: (1) with probability p, we
randomly select a pair of communities and randomly select a
within-community edge from each community, and then swap
the edge ends if it is possible (no parallel edges are allowed);
(2) with probability (1 − p), we randomly select a pair of
communities and randomly select two cross-community edges
running between them, and then swap the edge ends to create
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two within-community edges if it is possible. The above pro-
cess is repeated about 650 000 times so that each edge can
be rewired once on average. Parameter p here is similar to
μ used in SBM and LFR networks: a small p increases the
modularity, while a large p decreases the modularity.

Note that only rewired Twitter networks are used in Fig. 4.
This rewiring process does not change the degree distribution,
but would alter other network structure such as cluster-
ing besides modularity. However, changes in features other
than modularity have relatively small impact on diffusion
dynamics [38].

D. Normalized network modularity

The network modularity Q quantifies the number of intra-
community edges minus the expected number if edges are
placed at random, for a given node partition. It achieves the
maximum value Qmax on a perfectly mixed network where all
edges connect nodes in the same community. However, Qmax

typically varies from network to network. To compare the
strength of modularity across different networks, we therefore
use the normalized value of the modularity: Qnorm = Q/Qmax

[16]. Note that, in Figs. 1–3, Q = 1/2 − μ, Qmax = 1/2, and
Qnorm = 1 − 2μ. For LFR (Twitter) networks, the relation-
ship between Qnorm and μ (or p) is nonlinear, as shown in
Fig. 4.

All seven empirical networks used in this study is available
at Ref. [43]. A public repository with code to reproduce our
results is available at Ref. [45].
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[12] B. Mønsted, P. Sapieżyński, E. Ferrara, and S. Lehmann, Ev-
idence of complex contagion of information in social media:
An experiment using Twitter bots, PLoS ONE 12, e0184148
(2017).

[13] J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer,
K. Kaski, J. Kertész, and A.-L. Barabási, Structure and tie
strengths in mobile communication networks, Proc. Natl. Acad.
Sci. USA 104, 7332 (2007).

[14] M. Smolla and E. Akçay, Cultural selection shapes network
structure, Sci. Adv. 5, eaaw0609 (2019).

[15] A. Galstyan and P. Cohen, Cascading dynamics in modular
networks, Phys. Rev. E 75, 036109 (2007).

[16] M. E. J. Newman, Networks: An Introduction (Oxford Univer-
sity Press, Oxford, 2010).

[17] S. Fortunato, Community detection in graphs, Phys. Rep. 486,
75 (2010).

[18] M. Girvan and M. E. J. Newman, Community structure in social
and biological networks, Proc. Natl. Acad. Sci. USA 99, 7821
(2002).

[19] M. E. J. Newman, Modularity and community structure in net-
works, Proc. Natl. Acad. Sci. USA 103, 8577 (2006).

[20] D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-
world’ networks, Nature (London) 393, 440 (1998).

[21] D. Centola, The spread of behavior in an online social network
experiment, Science 329, 1194 (2010).

[22] L. Weng, F. Menczer, and Y.-Y. Ahn, Virality prediction and
community structure in social networks, Sci. Rep. 3, 2522
(2013).

[23] D. Romero, C. Tan, and J. Ugander, On the interplay between
social and topical structure, in Proceedings of the 7th Inter-
national AAAI Conference on Web and Social Media (AAAI,
California, 2013), pp. 516–525.

[24] A. Nematzadeh, E. Ferrara, A. Flammini, and Y.-Y. Ahn, Op-
timal network modularity for information diffusion, Phys. Rev.
Lett. 113, 088701 (2014).

052316-7

https://doi.org/10.1086/225469
https://doi.org/10.1023/A:1011122126881
https://doi.org/10.1086/226707
https://doi.org/10.1073/pnas.082090499
https://doi.org/10.1145/1232722.1232727
https://doi.org/10.1086/521848
https://doi.org/10.1371/journal.pone.0184148
https://doi.org/10.1073/pnas.0610245104
https://doi.org/10.1126/sciadv.aaw0609
https://doi.org/10.1103/PhysRevE.75.036109
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1038/30918
https://doi.org/10.1126/science.1185231
https://doi.org/10.1038/srep02522
https://doi.org/10.1103/PhysRevLett.113.088701


PENG, NEMATZADEH, ROMERO, AND FERRARA PHYSICAL REVIEW E 102, 052316 (2020)

[25] J. L. Iribarren and E. Moro, Impact of Human Activity Patterns
on the Dynamics of Information Diffusion, Phys. Rev. Lett. 103,
038702 (2009).

[26] M. Karsai, M. Kivelä, R. K. Pan, K. Kaski, J. Kertész, A.-L.
Barabási, and J. Saramäki, Small but slow world: How network
topology and burstiness slow down spreading, Phys. Rev. E 83,
025102(R) (2011).

[27] J.-C. Delvenne, R. Lambiotte, and L. E. C. Rocha, Diffusion
on networked systems is a question of time or structure, Nat.
Commun. 6, 7366 (2015).
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