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Predicting highway freight transportation networks using radiation models
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Highway freight transportation (HFT) plays an important role in the economic activities. Predicting HFT
networks is not only scientifically significant in the understanding of the mechanism governing the formation and
dynamics of these networks, but also of practical significance in highway planning and design for policymakers
and truck allocation and route planning for logistic companies. In this work we apply parameter-free radiation
models to predict the HFT network in mainland China and assess their predictive performance using metrics
based on links and fluxes, which can be done in reference to the real directed and weighted HFT network between
338 Chinese cities constructed from about 15.06 million truck transportation records in five months. It is found
that the radiation models exhibit relatively high accuracy in predicting links but low accuracy in predicting fluxes
on links. Similar to gravity models, radiation models also suffer difficulty in predicting long-distance links and
the fluxes on them. Nevertheless, the radiation models perform well in reproducing several scaling laws of the
HFT network. The adoption of population or gross domestic product in the model has a minor impact on the
results, and replacing the geographic distance by the path length taken by most truck drivers does not improve
the results.
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I. INTRODUCTION

Freight transportation is vital in the daily activities of
an economy, which transfers raw materials, intermediate
products, and final products from origin locations to desti-
nation locations. Freight transportation can be accomplished
through different modes such as airplanes, trains, ships, and
trucks. Unlike long-distance human trips which are usually
through well-scheduled public transportation systems with
prefixed timetables, most freight transportation activities oc-
cur when a transportation demand appears and is matched by
a transporter. Usually, data records for such kinds of freight
transportation are unavailable to researchers. Fortunately, we
obtained a database of the highway freight transportation
(HFT) network between 338 cities in mainland China [1],
which records the transportation dates, origin cities, and desti-
nation cities associated with trucks and is a directed, weighted
network. This database allows us to study the structure, func-
tion and dynamics of the HFT network.

In this work we investigate the problem of reconstructing
the HFT network by predicting the directed links between
cities and the fluxes (or weights) on the links. This problem
is in essence that of trip distribution in the field of human
mobility or immigration, and many spatial interaction models
have been developed [2–6]. The problem can have different
settings by considering multiple user classes [7], different
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trip modes [8,9], and different constraints on the origins or
destinations [5,10].

There are different spatial interaction models [6,11],
mainly based on the intervening opportunities model [12], the
gravity model [13], the fitness model [14], and the radiation
model [15–17]. The gravity model and its variants are among
the most studied and most widely applied [18–22]. Empirical
evidence has accumulated from the studies of human mi-
gration and mobility [15,17,23–27], transportation networks
[1,28–34], intranational and international trades [13,35–48],
and mobile phone communication [49–54], to mention a few.

However, gravity models and many other models have a
few limitations or shortcomings [15,55,56]. Wang et al. have
studied the directed and undirected Chinese HFT networks
using four gravity models [1]. However, these gravity models
are symmetric and are not very suitable to handle the direc-
tions of truck flows. In contrast, the radiation model proposed
by Simini et al. can fix these problems and is parameter free
[15]. One does not need to calibrate the radiation model and
can use only the “masses” (usually population or gross do-
mestic product) of the cities and the distance matrix between
the cities to predict the truck fluxes between pairs of cities.
Ren et al. further proposed the cost-based radiation model by
considering the cost needed to take to transport between two
cities instead of the geographic distance and found that the
new model outperforms the raw radiation model in predict-
ing the highway traffic in the United States [16]. Xia et al.
proposed the gravity-radiation model to estimate population
flows and measure the overall accessibility at multiple scales
in Australia [57].
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There are a number of works in the field of complex trans-
portation networks that focus on the physics of the problem
[58]. Such complex transportation networks are spatially em-
bedded networks that may exhibit phase transitions [59]. It
is found that long-range shortcuts have important impacts on
the navigation in transportation networks [60,61]. Researchers
also proposed design principles for optimal transport net-
works [62,63]. These numerical and theoretical studies not
only deepen our understanding about the behavior of com-
plex transportation networks but also have important practical
implications.

In this work we apply four parameter-free radiation models
(the raw radiation model with population, the raw radiation
model with gross domestic product, the cost-based radiation
model with population, and the cost-based radiation model
with gross domestic product) to predict the HFT network
in mainland China. We assess and compare their predictive
performance using metrics based on links and fluxes, which
can be done in reference to the real directed and weighted HFT
network. We find that the radiation models exhibit relatively
high accuracy in predicting the links but low accuracy in
predicting the fluxes on the links. Similar to gravity models,
these radiation models also perform badly in predicting long-
distance links and the fluxes on them. Interestingly, we find
that the radiation models perform well in reproducing several
scaling laws of the HFT network. Our results also show that
the four models have comparative performance, that is, using
population or gross domestic product in the model has a minor
impact on the results, and using the path length as the distance
cannot improve the results either.

The remainder of this work is organized as follows.
Section II explains briefly the radiation models adopted.
Section III describes the data we investigate and the basic
properties they possess. Section IV presents the main results
of our analysis. Section V summarizes this work.

II. THE RADIATION MODELS

Consider two cities i and j with population Pi and Pj and
gross domestic product Gi and Gj , respectively, at distance
dgeo

i j from each other. We denote Fi j and F̃i j the real truck flux
and the predicted flux from i to j. According to Simini et al.
[15], the radiation model predicts the flux from city i to city j
in the following form:

F̃i j = F out
i

PiPj

(Pi + Si j )(Pi + Pj + Si j )
, (1)

where Si j is the total population in the circle of radius dgeo
i j

centered at i but excluding the source and destination popula-
tion, and

F out
i =

∑
j �=i

Fi j (2)

is the total number of departing trucks from city i. Alterna-
tively, when we use the gross domestic product as the proxy,
we have

F̃i j = F out
i

GiGj

(Gi + Si j )(Gi + Gj + Si j )
, (3)

where Si j is the total GDP in the circle of radius dgeo
i j centered

at i but excluding the source and destination GDP. We can
see that the transportation probability F̃i j/F out

i from i to j
depends only on their population or GDP and the distribution
of population and GDP around i. Note that Si j does not include
the population or GDP outside of mainland China, as in the
U.S. case [15].

Using the commuting data between the cities of England
and Wales at macroscales and between the wards of London
at microscales, Masucci et al. found that the raw radiation
model significantly underestimates the commuting flows for
large cities and generalized the radiation model by introducing
a normalization factor for finite systems [64]:

F̃i j = F out
i

1 − Mi
M

MiMj

(Mi + Si j )(Mi + Mj + Si j )
, (4)

where Mi could be the population Pi or the GDP Gi, and
M = ∑

i Mi is the total population or GDP. However, our
analysis shows that this factor only has a negligible impact
on the predicted fluxes.

Ren et al. proposed the cost-based radiation model, which
improves the prediction of highway traffic in the United States
[16]. We also adopt this model in our analysis. The formulas
are the same as the raw radiation models presented in Eqs. (1)
and (3), except that dgeo

i j is replaced by the length dcost
i j of the

path taken by most truck drivers, the driving distance from
city i to city j.

III. DATA DESCRIPTION

A. Highway transportation flux

The highway truck transportation data we analyze were
provided by a leading truck logistics company in China. The
data contain 15.06 million truck transportation records be-
tween pairs of 338 cities in mainland China during the period
from 1 January 2019 to 31 May 2019 [1]. Each record contains
the origin and destination cities. We construct the flux matrix
F = [Fi j]338×338, where Fi j stands for the number of trucks
with freights driven from city i to city j, and unloaded trucks
are not counted in. Because radiation models do not consider
intracity transportation, we pose

Fii = 0. (5)

Note that Fi j is not necessary to be equal to Fji for i �= j.
In Fig. 1 we illustrate two examples of a flux map with

different transportation fluxes. The arrows of the segments
are omitted. In Fig. 1(a) we show the origin-destination pairs
with Fi j > 2000. In Fig. 1(b) we show the origin-destination
pairs with Fi j = 100 or Fi j = 101. It is rational that the trans-
portation network is denser in the east than in the west. In
addition, there is a network community of cities in the east
that has dense interconnections but not in the west. This is due
to the fact that cities close to the coast have a more diverse and
higher developing economy compared to cities in the west.

B. Distance between different cities

In our analysis, we use the geographic distance dgeo
i j mea-

sured in kilometers in the raw radiation model and the driving
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FIG. 1. Examples of flux map with different transportation
fluxes. The arrows of the segments are omitted. In plot (a) we show
the origin-destination pairs with Fi j > 2000. In plot (b) we show the
origin-destination pairs with Fi j = 100 or Fi j = 101.

distance dcost
i j measured in kilometers in the cost-based ra-

diation model. The geographic distance dgeo
i j is the shortest

surface distance between two cities i and j whose locations
are determined by their longitudes and latitudes, which is the
length of the great circle arc connecting these two cities on
the surface of the earth. Obviously, the geographic distance
matrix is symmetric such that

dgeo
i j = dgeo

ji . (6)

The driving distance dcost
i j between two cities i and j is not

calculated due to the information of longitude and latitude.
Rather, we use the path length between the two cities that is
usually optimal since the path is chosen by truck drivers. As
shown in Fig. 2(a), the driving distance matrix is asymmetric,
that is,

dcost
i j �= dcost

ji , (7)

0 2000 4000 6000 8000
0

2000

4000

6000

8000
(a)

FIG. 2. Important traits of the two distance measures. (a) Asym-
metry of the driving distance matrix between different cities. (b) The
relationship between driving distance and geographic distance.

which shows that due to local roads, the driving distance or
path length dcost

i j from i to j is not necessarily identical to the
driving distance dcost

ji from j to i.
It is obvious that the driving distance dcost

i j is longer than
the geographic distance dgeo

i j :

dgeo
i j < dcost

i j (8)

for all pairs of cities, as illustrated in Fig. 2(b). On average,
the difference between these two distance measures increases
when the two cities are farther away from each other.

C. Population and gross domestic product

The population and gross domestic product data for the 338
Chinese cities in 2017 were retrieved online from the Com-
plete Collection of World Population [65], which is publicly
available except for a few cities. We found the missing data
from Baidu Encyclopedias [66]. We then calculate the four
matrices of Si j corresponding to the four combinations of M
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FIG. 3. Empirical distribution of Si j between two cities. (a) The
population SP,geo

i j (billion people) is determined by geographic dis-
tance dgeo

i j . (b) The population SP,cost
i j (billion people) is determined

by driving distance dcost
i j .

(population P or gross domestic product G) and d (geographic
distance dgeo

i j or driving distance dcost
i j ).

Figure 3 shows the empirical distributions of Si j for M =
P. It is observed that the two distributions related to the geo-
graphic distance dgeo

i j in Fig. 3(a) and the driving distance dcost
i j

in Fig. 3(b) are very similar. It is found that the distribution is
roughly uniform,

f (Si j ) ∼ constant, (9)

except for very small and very large values of Si j . The major-
ity of small Si j values correspond to the city pairs in the west.
The Si j values in the bulk are mainly obtained from those city
pairs in the east. The large Si j values reflect city pairs that
are far away from each other. The two distributions of Si j for
M = G are also very similar to those in Fig. 3, which are thus
not shown in this work.

We investigate the impact of distance definition on the
value of Si j . The results are depicted in Fig. 4(a) for SP

i j and
in Fig. 4(b) for SG

i j . These two plots exhibit similar patterns
as the transportation probabilities, showing that the choice
of M as P or G will give quantitatively similar results [34].

FIG. 4. Comparison of SM,geo
i j and SM,cost

i j to investigate the influ-
ence of driving distance and geographic distance. (a) The radiation
models are based on population with M = P (billion people). (b) The
radiation models are based on GDP with M = G (trillion yuan).

It is observed that most of the data points fluctuate around
SM,cost

i j = SM,geo
i j . There are also many points deviating far

away from the diagonals, showing that SM,cost
i j � SM,geo

i j . It re-
flects the complex geographic roads and rather heterogeneous
distribution of population and GDP in mainland China. It also
implies that the predicted fluxes from the raw radiation model
and the cost-based radiation model will be very different for
many city pairs.

The asymmetric relationship between SM,geo
i j and SM,geo

ji
for M = P is illustrated in Fig. 5. The plots exhibit similar
patterns: The SM,d

i j values span four orders of magnitude, the
points fluctuate around the diagonal, and the highest density is
around (105, 105), as shown in Fig. 3. The figure also shows
that the SM,d

i j matrices are asymmetric, such that

SM,d
i j �= SM,d

ji (10)

for most origin-destination (OD) city pairs. This is not sur-
prising, because SM,geo

i j and SM,geo
ji correspond to two different

circles with different circle centers at i and j.
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FIG. 5. Asymmetric relationship between SP
i j and SP

ji. (a) The

population SP,geo
i j is determined by driving distance dgeo

i j . (b) The
population SP,cost

i j is determined by driving distance dcost
i j .

IV. RESULTS

A. Predicting truck fluxes

We predict the fluxes F̃ P,geo
i j and F̃ P,cost

i j using Eq. (1) and

F̃ G,geo
i j and F̃ G,cost

i j using Eq. (3). To have a qualitative impres-
sion of the prediction performance, we compare the predicted
flux F̃ P,geo

i j from the raw radiation model with the measured
flux Fi j for each pair of cities in Fig. 6(a) and compare the
predicted flux F̃ P,geo

i j from the cost-based radiation model with
the measured flux Fi j for each pair of cities in Fig. 6(b). The
two scatter plots exhibit very similar patterns, and so do the
results for F̃ G,geo

i j and F̃ G,cost
i j .

Overall, the predicted fluxes F̃ P,d
i j fluctuate around the

measured fluxes Fi j . However, for many OD city pairs, the
predicted values could deviate remarkably, as observed in
other systems (see Ref. [15] and related works). For the high-
way freight transportation network, it shows that these models
are more likely to underestimate the flux than to overestimate
it, because Fig. 6 shows that there are more points below the
diagonal F̃ P,d

i j = Fi j than above it.

10-1 100 101 102 103 104 105
10-1
100
101
102
103
104
105
106

(a)

10-1 100 101 102 103 104 105
10-1
100
101
102
103
104
105
106

(b)

FIG. 6. Comparing the predicted flux, F̃ P,d
i j , with the measured

flux, Fi j , for each pair of cities. We compare the real data with two
formulations of the radiation model, di j = dgeo

i j (a) and di j = dcost
i j (b).

Data points are scatter plot for each pair of cities.

In order to quantify the performance of the models in
predicting fluxes, we adopt two classes of indicators. The first
class of indicators considers the link weights or fluxes. We
adopt an analogy of the concept of common part of com-
muters (CPC) [55,56,67,68], which is similar to the Sørensen
similarity index with a slight difference in the denominator
[69]. Following Refs. [55,56], we call it the common part of
fluxes CPF,

CPF(F, F̃ ) =
∑n

i

∑n
j=1 min(Fi j, F̃i j )∑n
i

∑n
j=1 Fi j

, (11)

where the numerator is the number of common trucks in the
real and predicted transportation networks, and the denomi-
nator is the number of total trucks in the real transportation
network. We also adopt two more indicators called the nor-
malized mean absolute error (NMAE),

NMAE(F, F̃ ) =
∑n

i=1

∑n
j=1 |Fi j − F̃i j |∑n

i=1

∑n
j=1 Fi j

, (12)
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TABLE I. Performance of the raw radiation model and the cost-
based radiation model in predicting highway freight transportation
network.

M = P M = P M = G M = G
d = dgeo d = dcost d = dgeo d = dcost

CPF 0.2312 0.2330 0.2281 0.2267
NRMSE 0.0371 0.0374 0.0386 0.0384
NMAE 1.5337 1.5330 1.5392 1.5460

CPL 0.7673 0.7648 0.7038 0.7009
PCPEL 0.6317 0.6276 0.5487 0.5444
PCPML 0.9313 0.9375 0.9510 0.9573

PTIE 0.3683 0.3724 0.4513 0.4556
PTIIE 0.0687 0.0625 0.0490 0.0427

and the normalized root-mean-square error (NRMSE) [68],

NRMSE(F, F̃ ) =
√∑n

i=1

∑n
j=1(Fi j − F̃i j )2

∑n
i=1

∑n
j=1 Fi j

. (13)

The second class of indicators considers how good
the models correctly predict existing links. Reference [68]
introduced the common part of links (CPL),

CPL(F, F̃ ) = 2
∑n

i

∑n
j=1 1Fi j>0 × 1F̃i j>0∑n

i=1

∑n
j=1 1Fi j>0 + ∑n

i=1

∑n
j=1 1F̃i j>0

, (14)

where 1X = 1 if the condition X is fulfilled and 1X = 0 other-
wise. Hence

∑n
i=1

∑n
j=1 1Fi j>0 is the number of edges in the

raw network and
∑n

i=1

∑n
j=1 1F̃i j>0 is the number of edges in

the predicted network. Alternatively, we propose to check the
proportion of correctly predicted existing links (PCPEL),

PCPEL(F, F̃ ) =
∑n

i

∑n
j=1 1Fi j>0 × 1F̃i j>0∑n

i=1

∑n
j=1 1Fi j>0

, (15)

and the proportion of correctly predicted missing links
(PCPML),

PCPML(F, F̃ ) =
∑n

i

∑n
j=1 1Fi j=0 × 1F̃i j=0∑n

i=1

∑n
j=1 1Fi j=0

, (16)

where “missing links” refers to the links that do not exist in the
real transportation network. Hence, the proportion of type-I
error (PTIE) is

PTIE(F, F̃ ) = 1 − PCPEL(F, F̃ ), (17)

which is the proportion of missed prediction for existing links,
and the proportion of type-II error (PTIIE) is

PTIIE(F, F̃ ) = 1 − PCPML(F, F̃ ), (18)

which is the proportion of false alarms for nonexisting links.
The performance of the raw radiation model and the

cost-based radiation model in predicting a highway freight
transportation network is presented in Table I. First of all,
the adoption of driving distance in the cost-based radiation
model does not improve the predictive power. The first class
of indicators about the network weights in Table I also show
that the radiation models with M = P give a larger common
part of fluxes (CPF) and smaller errors (NRMSE and NMAE).

However, the difference is marginal. The second class of in-
dicators about links give mixed results. The radiation models
with M = P result in larger values of CPL and PCPEL and
thus give better prediction of existing links. In contrast, mod-
els with M = G result in larger values of PCPML and thus
give slightly better prediction of nonexisting links. Speaking
differently, the models with M = P have a lower proportion of
type-I errors but a higher proportion of type-II errors. It shows
that the raw radiation model and the cost-based radiation
model have comparative predictive power.

B. Scaling behavior of city’s influx

In our analysis, the flux matrix F̃i j is predicted using the
population or GDP information and the measured outflux data
F out

i . We can obtain the predicted influx of a city:

F̃ in
i =

∑
j �=i

F̃ji. (19)

We test if the predicted influxes are able to reproduce the
scaling behavior of the city’s influx observed in the real
transportation network. Specifically, we investigate node’s
in-strength and out-strength correlation and the power-law
dependence between the node’s in-strength and node’s traits
that are widely observed in directed networks [15]. Note that
the concept of flux in this work is actually the node strength
in the general language of network science.

We illustrate in Fig. 7 the dependence of influx with re-
spect to outflux in log-log scales. This figure shows that
the data points locate around the diagonal in each plot and
the plots share similar patterns. Cities with high influxes
and outfluxes are more concentrated on the diagonal, while
cities with low influxes and outfluxes have higher influxes
than outfluxes. Wang et al. find that a city with higher
transportation diversity usually has larger population, higher
GDP, larger influx, and larger outflux [34]. It is rational that
less developed cities need to buy more freight than to sell
freight.

If we regress log10 (F in
i ) with respect to log10 (F out

i ), we
obtain the power-law dependence

F in
i ∼ (F out

i )γ , (20)

where γ Data = 0.665 in Fig. 7(a) with the adj-R2 being
0.776, γ P,geo = 0.742 in Fig. 7(b) with the adj-R2 being 0.672,
γ P,cost = 0.626 in Fig. 7(c) with the adj-R2 being 0.641,
γ G,geo = 0.795 in Fig. 7(d) with the adj-R2 being 0.687, and
γ G,cost = 0.664 in Fig. 7(e) with the adj-R2 being 0.652. This
finding is consistent with the results that the transportation
diversity scales as a power law with influx and outflux [34].
It indicates that the predicted transportation network using
the radiation models can well capture the correlation behavior
between a city’s influx and outflux.

For the measured transportation network, Fig. 8(a) shows
that the influx F in

i scales as a power law with respect to the
population P,

F in
i ∼ PβP , (21)

where the power-law exponent is βP = 1.08, and Fig. 8(b)
shows that the influx F in

i scales as a power law with respect to
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FIG. 7. Correlation between influx and outflux of a city. (a) Real data. (b) Obtained from the raw radiation model with M = P and
d = dgeo. (c) Obtained with the cost-based radiation model with M = P and d = dcost . (d) Obtained from the raw radiation model with M = G
and d = dgeo. (e) Obtained with the cost-based radiation model with M = G and d = dcost .

the GDP G,

F in
i ∼ GβG , (22)

where the power-law exponent is βG = 0.84. The power-law
scaling is well reproduced in Figs. 8(c) and 8(d) by the raw
radiation model with M = P and in Figs. 8(e) and 8(f) by

the cost-based radiation model with M = P. Moreover, the
raw radiation model with M = G and the cost-based radiation
model with M = G can also reproduce this power-law scaling
dependence behavior. When we consider the predicted trans-
portation networks, the variable F in

i should be changed to F̃ in
i

in Eqs. (21) and (22).
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FIG. 8. Comparison of the power-law dependence of influx with respect to population and GDP in the raw and cost-based radiation models.
(a, b) Real data from the measured transportation network. (c, d) Predicted influxes from the raw radiation model with M = P. (e, f) Predicted
influxes from the cost-based radiation model with M = P.
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TABLE II. Estimated exponents of the power-law dependence.

Real data P, dgeo P, dcost G, dgeo G, dcost

βG 0.84 0.77 0.89 0.85 0.99
βP 1.08 0.94 1.09 0.91 1.08
κβG 0.94 0.86 0.99 0.95 1.11

Table II presents the power-law exponents βP and βG ob-
tained from the measured network and the predicted networks.
It is found that

βP > βG (23)

for all the five networks. Indeed, there is a more accurate
relationship between βP and βG for each network. It is well
documented that there is a power-law dependence between
population and GDP for the Chinese cities [1,70]:

G ∼ Pκ , (24)

where κ = 1.116 [1]. Combining Eq. (24) with Eqs. (21) and
(22), we have

βP = κβG. (25)

We present the values of κβG in the third row of Table II
and compare them with βP. We find that relation (25) is well
validated, especially for the two models with M = G.

C. Out-links and in-links of a representative city

Using a representative city, Chengdu, we compare the pre-
dicted out-links and in-links with the out-links and in-links in
the real transportation network when the corresponding out-
fluxes and influxes exceed certain levels. The findings seem
qualitatively similar for other cities.

Figure 9 illustrates the results for out-links. We show only
the results of the raw radiation model and the cost-based radi-
ation model with M = P, because using M = G gives similar
results. Basically, the models are able to predict out-links with
long path lengths when the outflux thresholds are low, as

FIG. 9. Comparing the predictions of out-links started from Chengdu for the four radiation models with the real data. The first column
shows the out-links with more than one truck from Chengdu (Fi j > 0, F̃i j > 0). The second column shows the out-links with more than
ten trucks from Chengdu (Fi j > 100, F̃i j > 100). The third column shows the out-links with more than one hundred trucks from Chengdu
(Fi j > 1000, F̃i j > 1000). The panels in different rows display in turn the real data (a, b, c), the predicted out-links from the raw radiation
model with M = P (d, e, f), and out-links from the cost-based radiation model with M = P (g, h, i).
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FIG. 10. Comparing the predictions of in-links started from Chengdu for the four radiation models with the real data. The first column
shows the in-links with more than one truck from Chengdu (Fi j > 0, F̃i j > 0). The second column shows the in-links with more than ten
trucks from Chengdu (Fi j > 100, F̃i j > 100). The third column shows the in-links with more than one hundred trucks from Chengdu (Fi j >

1000, F̃i j > 1000). The panels in different rows display in turn the real data (a, b, c), the predicted out-links from the raw radiation model with
M = P (d, e, f), and out-links from the cost-based radiation model with M = P (g, h, i).

shown in the first column of the figure. When we look at the
out-links with large outfluxes, for instance, when we require
that Fi j > 100 and F̃i j > 100, the out-links with long path
lengths cannot be predicted. Both the raw radiation model
and the cost-based radiation model show comparable perfor-
mance. Although radiation models usually perform better in
predicting long-distance links than gravity models [15], their
performance of predicting the fluxes is not satisfying. This
finding is consistent with the result that the radiation models
underpredict the truck fluxes, as shown in Fig. 6.

Figure 10 illustrates the results for in-links. We show only
the results of the raw radiation model and the cost-based
radiation model with M = P, because using M = G gives
similar results. Basically, the models are able to predict in-
links with long path lengths when the influx thresholds are
small, as shown in the first column of the figure. When we
look at the in-links with large influxes, for instance, when
we require that Fi j > 100 and F̃i j > 100, the in-links with
long path lengths cannot be predicted. Both the raw radiation
model and the cost-based radiation model show comparable

performance. Although radiation models usually perform bet-
ter in predicting long-distance links than gravity models [15],
their performance of predicting the fluxes is not satisfying.
This finding is also consistent with the result that the radiation
models underpredict the fluxes, as show in Fig. 6.

Comparing Figs. 9(a) and 10(a), we find that the out-
link pattern and the in-link pattern are indistinguishable by
eye-balling, especially for those long-distance links. This is
rational since the real transportation network is highly inter-
connected with the network density being 0.8225, while the
predicted transportation networks are theoretically complete
graphs. Certainly, the predicted fluxes are rounded, that is,
when the predicted flux is less than 0.5, we treat it as zero.
Therefore the network density is 0.5322 when M = P and
di j = dgeo

i j , 0.4605 when M = G and di j = dgeo
i j , 0.5277 when

M = P and di j = dcost
i j , and 0.4556 when M = G and di j =

dcost
i j . The predicted networks are still able to correctly pre-

dict most of the long-distance links, although their fluxes are
underestimated. However, when we filter out low-flux links,
most of the long-distance links in the predicted HFT networks
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disappear, as shown in Figs. 9(b) and 9(c), and Figs. 10(b)
and 10(c).

V. DISCUSSION AND SUMMARY

In this work we applied the raw radiation model and the
cost-based radiation model to predict the highway freight
transportation network between 338 cities in mainland China.
These models are adopted because they are parameter-free and
require minimal information, which is widely and publicly
available. The predicted network is weighted and directed.
We then assessed the predictive performance of these models
using metrics based on links and fluxes, which can be accom-
plished by comparing the predicted HFT networks to the real
HFT network.

We found that the radiation models have relatively high
accuracy in predicting links but low accuracy in predicting
fluxes on links. In particular, the radiation models do not
perform well in predicting long-distance links and the fluxes
on them, just like the gravity models behave. We note that
each trip (link) is not a combination of multiple trips with
breaks to deliver or collect goods (not for rest) along the
path. Hence the discrepancies between data and predictions
of long-distance fluxes are partially caused by the high hetero-
geneous distribution of different industries and population in
mainland China. Nevertheless, the radiation models perform
well in reproducing several scaling laws of the HFT network,
including the pair between influx and outflux, between the
influx and population, and between the influx and GDP.

In our analysis we adopted four parameter-free radiation
models: the raw radiation model with population, the raw
radiation model with gross domestic product, the cost-based
radiation model with population, and the cost-based radiation
model with gross domestic product. These models perform
similarly in predicting the HFT network. The adoption of pop-
ulation or gross domestic product in the radiation model has
a minor impact on the results, and replacing the geographic
distance by the driving distance does not improve the results
either.

Therefore when we want to predict or reconstruct the high-
way freight transportation network, there is still much room
to improve the performance of the parameter-free radiation
models. First of all, GDP or population are calculated based
on residents, not on the people living there. However, there
are huge population movements between cities, which usually
flow out from less developed cities to more developed cities.
The population mobility causes the Spring Festival travel rush
in China, which also influences the HFT network pattern and
causes fluctuations in the network at smaller timescales [1].

There is an important issue about the impact of missing
nodes outside the investigated region (here it is mainland
China) on the predicted transportation network. In the classi-
cal four-step travel demand model, one usually adds virtual
nodes at all important infrastructure elements (in this case
highways), crossing the boundaries of the investigated region
(mainland China) [55,56]. However, in the present case, the
so-called total number of departing trucks from city i, F out

i ,
is actually the sum of Fi j , where the j’s represent all other
Chinese cities. In other words, F out

i does not include those
trucks for international transportation. In addition, there is
only one border-crossing highway between Kunming (China)
to Bangkok (Thailand). Therefore we do not consider virtual
nodes in our analysis.

There are other extensions of the radiation model [64,71]
and related models [17,69]. However, we do not expect to see
much improvement of the results if we apply these models.
When applied to the highway freight transportation network,
the main missing ingredients in these models are the diver-
sity and heterogeneity of industrial structures. Different cities
have different comparative advantages and no city is autarkic.
Specific models that integrate these factors into the radiation
model would be more suitable and perform better in predicting
the links and fluxes of the highway freight transportation
network.
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