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Containment measures implemented by some countries to suppress the spread of COVID-19 have resulted in
a slowdown of the epidemic characterized by time series of daily infections plateauing over extended periods of
time. We prove that such a dynamical pattern is compatible with critical susceptible-infected-removed (SIR)
dynamics. In traditional analyses of the critical SIR model, the critical dynamical regime is started from a
single infected node. The application of containment measures to an ongoing epidemic, however, has the effect
to make the system enter in its critical regime with a number of infected individuals potentially large. We
describe how such nontrivial starting conditions affect the critical behavior of the SIR model. We perform a
theoretical and large-scale numerical investigation of the model. We show that the expected outbreak size is an
increasing function of the initial number of infected individuals, while the expected duration of the outbreak
is a nonmonotonic function of the initial number of infected individuals. Also, we precisely characterize the
magnitude of the fluctuations associated with the size and duration of the outbreak in critical SIR dynamics
with nontrivial initial conditions. Far from herd immunity, fluctuations are much larger than average values, thus
indicating that predictions of plateauing time series may be particularly challenging.
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I. INTRODUCTION

At the onset of the COVID-19 pandemic, worldwide time
series of the number of infected individuals have displayed
an exponential growth. Such a behavior is well predicted by
standard epidemic frameworks [1]. In slightly later stages,
however, time series have exhibited nontrivial dynamical
patterns. Many papers have attempted to model observed be-
haviors and to determine the role of containment measures
[2–17]. The common and reasonable assumption is that con-
tainment measures implemented in the attempt of mitigating
the outbreak have strongly influenced the unfolding of the epi-
demic. Unfortunately, this a setting where modeling attempts
are particularly challenging. The effective implementation of
containment measures imposed by authorities relies on peo-
ple’s personal judgments and adaptive behavior, and while
epidemic spreading is a well-studied branch of mathematical
biology [18], statistical physics [19], and network science
[20–26], the modeling of adaptive behavior is only at its
infancy [27–29].

According to the data, in several countries, the slowdown
of the epidemic spread is characterized by an almost flat time
series of daily number of new infections. Moreover, the time
series of the number of removed individuals display power-
law growth instead of an exponential growth as a function
of time [12,14,16,17]. Here, we propose a theoretical inter-
pretation of those features as the signature of the system
being in (or near) its critical regime. Criticality is a funda-
mental property characterizing the dynamics of biological and

sociotechnical systems [30–32]. Our work consists of an in-
depth investigation of a critical susceptible-infected-removed
(SIR) dynamics starting from a nontrivial initial configuration
characterized by n0 initially infected individuals. We interpret
the emergence of the critical regime as the result of disease
containment strategies, and the nontrivial initial condition as
the configuration of the system when spreading becomes crit-
ical. In the typical setting considered in statistical mechanics
[33–35], a single seed is generally used as the initial condition
for critical SIR dynamics; the mapping of the critical SIR to
the critical standard branching process allows for a full char-
acterization of the spreading dynamics [36,37]. The realistic
assumption of having an initial number of infected individuals
n0 > 1 introduces an additional scale in the system affect-
ing in a nontrivial manner the scaling properties of the SIR
critical dynamics. While in other nonequilibrium systems a
nontrivial initial condition may lead to a change of the critical
exponent values [38–40], in the critical SIR, the introduction
of a nontrivial initial condition does not change the critical
exponents that characterize the distribution of outbreak size
and duration. However, it introduces lower exponential cutoffs
in the distributions. As a result, the expected size and duration
of the outbreak, as well as their standard deviations, have a
nontrivial dependence on the initial condition n0. In this paper,
we evaluate, by means of analytic arguments and large-scale
simulations, the scaling of these quantities as functions of the
population size N .

The paper is structured as follows: In Sec. II, we provide
the theoretical interpretation of the plateau as a critical SIR
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dynamics starting from n0 > 1 initial condition; in Sec. III, we
perform a statistical mechanics investigation of the statistical
properties of the critical SIR dynamics with nontrivial initial
conditions, supported by extensive numerical simulations of
the process; finally, in Sec. IV, we provide concluding re-
marks. The Appendix describes the Gillespie algorithm used
in this work to simulate the critical SIR dynamics.

II. THEORETICAL INTERPRETATION OF THE PLATEAU

We consider the susceptible-infected-removed (SIR) model
on a well-mixed population [19–26]. At any point in time,
individuals can be found in three possible states: susceptible,
infected, and removed. Susceptible individuals do not carry
the disease but they can be infected; infected individuals carry
the disease, and they can spread it to susceptible individuals;
removed individuals are either removed or deceased, and they
do not participate in the spreading dynamics. We indicate with
λ the rate of infection, i.e., the expected number of spreading
events occurring per unit of time. Without loss of generality,
we set the recovery rate equal to one.

We start our discussion by focusing on the deterministic
treatment of the SIR model on a well-mixed population with
infinite size. If we indicate with s, i, and r the fractions of
susceptible, infected, and removed individuals, respectively,
we can write

ds

dt
= −λsi,

di

dt
= λsi − i,

dr

dt
= i. (1)

Please note that s + i + r = 1. The critical dynamical regime
is characterized by

λc = 1. (2)

If we start from an initial condition consisting of a fraction
i(0) of infected individuals and a fraction r(0) = 0 of removed
individuals, at the onset of the epidemic, i.e., t � 1, we ob-
serve a different behavior depending on the value of λ. In the
noncritical regime, i.e., λ �= λc, the deterministic equations for
i and r read as

di

dt
= λsi − i � (λ − 1)i,

dr

dt
= i. (3)

Solutions of the above equations are

i(t ) = i(0)e(λ−1)t ,

r(t ) = i(0)

λ − 1
e(λ−1)t . (4)

In essence, in the subcritical regime, i.e., λ < λc, the num-
ber of infected individuals decays exponentially fast, and
the number of removed individuals remains vanishing. In
the supercritical regime, i.e., λ > λc, the number of infected
and removed individuals displays an exponential increase. At
criticality, i.e., λ = λc, the deterministic equations for i and r

are

di

dt
= (s − 1)i � 1,

dr

dt
= i, (5)

leading to

i(t ) � i(0),

r(t ) � i(0)t . (6)

Therefore, according to the deterministic approach, for small
times we should expect that the number of removed indi-
viduals at criticality increases linearly in time with a slope
that is given by the initial condition i(0), at the onset of the
epidemics.

From the deterministic Eqs. (1), it is evident that

di

ds
= −1 + 1

λs
. (7)

The equation can be integrated to obtain the well-known solu-
tion [19]

s(t ) + i(t ) − 1

λ
ln s(t ) = s(0) + i(0) − 1

λ
ln s(0). (8)

Using Eqs. (1), we can express the logarithmic derivative
of the number of infected individuals as

d ln i

dt
= λs − 1, (9)

where λ s(t ) is the reproduction number. The former equation
implies that the time series of infected individuals i(t ) has a
peak at t = t� determined by

λs(t�) = 1. (10)

The fraction of susceptible individuals at the peak of the
epidemic is given by s� = s(t�) = 1/λ. By making the further
assumption that the epidemic starts from a fraction i(0) =
1 − s(0) of infected individuals and zero removed individuals
r(0) = 0 in Eq. (8), we obtain

i� = i(t�) = 1 − 1

λ
− 1

λ
ln[λs(0)]. (11)

Using Eqs. (10) and (11) in the first of Eqs. (1), we get

ds

dt

∣∣∣∣
t=t�

= −λs�i� = −i�. (12)

It follows that the second derivative of ln i is given by

d2i

dt2

∣∣∣∣
t=t�

= i(t�)
d2 ln i

dt2

∣∣∣∣
t=t�

= −λ(i�)2 = −ρ�, (13)

where ρ� is defined as

ρ� = −1

λ
{λ − 1 − ln[λs(0)]}2. (14)

We note that ρ� is zero, i.e., we reach a plateau, only for
s(0) = 1 and λ = 1. This fact implies that, in the deterministic
approach, a perfect plateau of the time series ln i is never
achieved for λ > 1.
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FIG. 1. (a) Time series of the number of infected individuals
I (t ) = i(t ) N are plotted close to the critical point. I (t ) correspond
to the solution of the deterministic SIR equations. The population
size is N = 107, and spreading is started from n0 = 1 seed. Differ-
ent curves correspond to different values of λ = 1 + 2−q, with q =
2, 3, 4, . . . , 8, 9. (b) Same as in (a), but for λ = 1. Different curves
correspond to different numbers of initially infected nodes n0 = 2q,
with q = 2, 3, 4, . . . , 8, 9. As λ approaches the critical value λc = 1
and n0 decreases toward one, we observe a plateauing of the time
series.

In the vicinity of the critical point, the time series of the
infected individuals is still well described by a plateau. Devel-
oping the right-hand side of Eq. (13) around λ = 1, s(0) = 1,
we get s(0) � 1 and

ρ� � −1

λ

[
ln[s(0)] + 1

2
(λ − 1)2

]2

�
[

1 − s(0) + 1

2
(λ − 1)2

]2

. (15)

The above equation indicates that the conditions to have a
near-plateau dynamics are having an infectivity rate λ close
to one, and having the system as far as possible from herd
immunity, i.e., 1 − s(0) � 1. In summary, the near-critical
state for λ � 1 is a fragile state that can be characterized by
a very slow dynamics if containment measures do not further
decrease the infectivity λ below one (see Fig. 1).

III. SIR CRITICAL DYNAMICS WITH NONTRIVIAL
INITIAL CONDITION

From now on, we assume that the system is in the critical
regime. We further assume that spreading dynamics is started
from n0 > 1 initial seeds. The two assumptions serve to ratio-
nalize two main features of real time series. First, time series
are characterized by long temporal windows of almost flat
behavior. This is a signature of criticality. Second, plateaus are
observed only after initial growths in the number of infected
individuals, meaning that the critical regime is reached only
after that containment strategies have effectively changed the
spreading dynamics of the disease. Whereas critical properties
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FIG. 2. We show three examples of time series for the number
of infected individuals I (t ) [panels (a), (c), and (e)] and the corre-
sponding number of removed individuals R(t ) [panels (b), (d), and
(f)] for a critical SIR dynamics with nontrivial initial condition. The
time series are obtained by simulating the stochastic SIR dynamics
at criticality (with λ = 1) on a well-mixed population with identical
parameters: initial number of infected individuals n0 = 128 and pop-
ulation size N = 107. The dashed lines indicate the corresponding
deterministic predictions.

of the SIR model are well understood for spreading processes
initiated by n0 = 1 individual, we are not aware of existing
studies dealing with nontrivial initial conditions consisting of
n0 > 1 seeds. How do the properties of the critical dynamics
change with n0? What is the behavior of the expected du-
ration of the outbreak? What about the expected size of the
outbreak? What about their fluctuations?

Please note that all the above questions cannot be answered
with a purely deterministic approach. SIR outbreak sizes and
durations obey probability distributions that are well peaked
around their expected value only if the system is off criticality.
However, the very fact that the system is assumed to be in the
critical regime implies that fluctuations have a dominant role
in the determination of the properties of the dynamical system.
In Fig. 2, for example, we display time series representative
for the critical regime of the dynamics. Ground-truth time
series are obtained by simulating the SIR stochastic dynamics
(see Appendix for details). They are compared with the de-
terministic expectation value obtained by integrating Eqs. (1).
We note that some realizations of the process are more persis-
tent and more pervasive in the population than what predicted
by the expected value.

From here on, we abandon the deterministic SIR equations
and we embrace a stochastic approach. Critical SIR dynamics
starting from a single initial seed, i.e., n0 = 1, is known to
be characterized by extremely large fluctuations of the out-
break size and duration. These fluctuations can be quantified
by leveraging the mapping between critical SIR in a well-
mixed population and the mean-field branching process. In the
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FIG. 3. Dynamical properties of the critical SIR process with
nontrivial initial condition. (a) We plot the number of removed
individuals R versus the expected time t̄ (R) required to observe R
removed individuals. The different curves indicate different initial
conditions, from bottom to top, n0 = 2q, with q = 2, 3, 4, . . . , 8, 9.
The population size is N = 107. The dashed lines are guides to the
eye and correspond to linear and quadratic growth of R versus t̄ (R),
respectively. (b) Expected number R̄(t ) of removed individuals as a
function of time t . Data are the same as in (a). The dashed lines are
guides to the eye and correspond to power-law growth of R̄ versus t
with exponents ξ = 1 and 2.5, respectively.

following sections, we first review results valid for n0 = 1.
Then, we focus our attention on the nontrivial case n0 > 1.

A. Critical dynamics with n0 = 1 initial seed

If the initial condition is such that only one node is in the
infected state while all other nodes are in the susceptible state,
the critical SIR model gives rise to outbreaks that follow the
statistics of a critical branching process [36,37] corrected by
some scaling functions FT (N/N�

T ) and FR(N/N�
R ) that imple-

ment the effective cutoff caused by finite-size effects [33,34].
Here, N is the size of the system; N�

T and N�
R are instead

parameters that determine when the cutoff takes place. Specif-
ically, the distribution P(T ) of the duration T of an outbreak
follows the law

P(T ) ∼ T −2FT (N/N�
T ), (16)

while the size of the outbreak R follows the distribution

P(R) ∼ R−3/2FR(N/N�
R ). (17)

The cutoff sizes N�
T and N�

R have been derived in
Refs. [33,34]. They are given by

N�
T = T 3, N�

R = R3/2. (18)

From the expressions for P(T ) and P(R) given by Eqs. (16)
and (17), respectively, and further assuming a sharp cutoff, it
is easy to deduce that the scaling with the system size N of the

average outbreak size 〈R〉, the average duration 〈T 〉, and the
standard deviations σR and σT [33,34] obey

〈R〉 ∼ N1/3, σR ∼ N1/2,

〈T 〉 ∼ ln N, σT ∼ N1/6. (19)

We observe that all the above quantities are subextensive, as
they all grow sublinearly with the system size. The expected
critical outbreak size 〈R〉 grows as the system size to the power
of 1

3 . However, the standard deviation associated to the out-
break size, i.e., σR, grows with increasing system size much
faster than 〈R〉. This fact indicates that it is very challenging
to make predictions if the dynamics is critical. Similarly, the
outbreak duration is characterized by large fluctuations in the
large population limit. We note that the exponents 2 and 3

2
of the distribution P(T ) and P(R) are the critical mean-field
exponents. These exponents are universal and are observed
for many critical spreading processes [41]. They characterize
the critical SIR on network topologies too as long as the
underlying network has a homogeneous degree distribution.
In power-law networks, these exponents can deviate from their
mean-field values as investigated in Refs. [41,42].

We have seen in Sec. II that the deterministic approach
predicts a linear increase of the number of removed individ-
uals with time for small time. However, such a prediction is
not accurate for the ground-truth dynamics; accounting for
stochastic effects correctly predicts a quadratic growth of the
number of removed individuals in time when the epidemic
starts with a single initial seed. To this end, the number of
removed individuals grows in time as a power law

R = t z
, (20)

where z is a dynamical critical exponent, and t is the ex-
pectation value of the time necessary to observe R removed
individuals. The value of the dynamical critical exponent
can be obtained in different ways [37]. Here, we present
the derivation of the value of the dynamical exponent based
on Langevin-type equations for the dynamics. Starting from
an initial fraction of infected individuals i(0) = n0/N and a
fraction r(0) = 0 of removed individuals we write

di

dt
= (λs − 1)i + c

√
iη(t ),

dr

dt
= i, (21)

where η(t ) is an uncorrelated white noise with E(η(t )) = 0
and E(η(t )η(t ′)) = δ(t − t ′) and c is a constant. At criticality,
i.e., λ = λc = 1, thus, assuming t � 1 and i(0) � 1, we have
λs − 1 � −i(0). We can therefore write

di

dt
= c

√
iη(t ),

dr

dt
= i. (22)

We now perform a simple scaling analysis of this stochastic
equations as usually done in nonequilibrium statistical me-
chanics, e.g., Refs. [38,43,44]. If we rescale time as

t → bt (23)
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and define the scaling exponents z, α, for r, i

r → bzt, (24)

i → bαt, (25)

as the exponents that leave the SIR critical dynamics un-
changed. The SIR stochastic equations (22) read as

bα−1 di

dt
= cbα/2−1/2η(t ),

bz−1 dr

dt
= bαi, (26)

from which we can derive the scaling exponents

α = 1, (27)

z = 2. (28)

In summary, in the critical dynamical regime, if the spread-
ing is started from a single initial seed, we expect that the
average number of removed individuals grows quadratically
with time.

B. Critical dynamics with n0 > 1 initial seeds

Critical SIR dynamics started from the nontrivial ini-
tial condition n0 > 1 differs from the critical SIR dynamics
started from n0 = 1 seed. To include an explicit dependence
on the parameter n0 in the scaling of Eq. (20), we correct it
by introducing the scaling function F (x), where x = n0/t (R).
We impose that

R � t (R)zF

(
n0

t (R)

)
(29)

with

F (u) ∼
{

1 if u � 1,

uβ if u � 1.
(30)

According to the deterministic SIR equations for t � 1 and
i(0) � 1, the number of removed individuals grows linearly
in time with a slope i(0) = n0/N . Thus, we deduce that

β = 1. (31)

This value is well supported by extensive numerical results
(see Fig. 3) which confirm that there is a crossover between
linear and quadratic dependence of R on t (R).

In the simulation of the SIR model, it is natural to study the
behavior of R as a function of t (R). However, in real epidemic
time series, the number of infected individuals is measured
over constant time intervals. The two ways of monitoring the
evolution of the process, i.e., R versus t (R) rather than R(t )
versus time t , may lead to the observation of different scaling
exponents. The discrepancy is due to the stochastic nature of
the spreading process. The phenomenon is apparent from the
results of Fig. 3: depending on the type of measurement per-
formed on the system, the power-law increase of the number
of removed individuals as a function of time can be described
by a continuous range of exponents ranging from ξ = 1 to
ξ ∼ 2.5. We can therefore write

R(t ) � n0t ξ h(t, N ), (32)

100 101 102 103 104

10-5

100

100 102 104 106 108

10-5

100

(b)

(a)

FIG. 4. The rescaled distribution of outbreak duration P(T )
(a) and outbreak size P(R) (b) are plotted for a well-mixed population
of N = 108 individuals and initial number of infected individuals n0

equal to 2q, with q = 2, 3, 4, . . . , 10, 11. The distributions display a
lower cutoff that increases as n0 increases, and an upper cutoff whose
value does not strongly depend on n0.

where ξ is a decreasing function of n0, and h(t, N ) is a
modulating function expressing the deviation from the pure
power-law behavior. The ansatz of the above equation is com-
patible with the power-law scaling of the empirical time series
of removed individuals as a function of time observed in coun-
tries where containment measures have been implemented
extensively [12,14,16,17].

C. Distribution of avalanche durations and sizes for the critical
SIR model initiated by n0 > 1 seeds

In this section we investigate the statistical properties of the
distribution of outbreak duration and size for the critical SIR
dynamics in a well-mixed population when the initial condi-
tion is nontrivial, i.e., n0 > 1. Scaling arguments suggest the
following expression for the distribution P(T ) of the critical
outbreak duration T :

P(T ) ∼ n0T −2FT (N/N�
T , n0/T ). (33)

The above scaling function is a natural modification of
Eq. (16) by assuming that n0 scales like time. In particular,
the distribution P(T ) is characterized by a lower cutoff de-
pending on n0. This fact is intuitive as an outbreak with a
larger number of initially infected individuals is not expected
to reach the absorbing state faster than an outbreak started by
a single seed [see Fig. 4(a)]. We note that, in the critical SIR
dynamics, the dependence on n0 does not lead to a change
of the critical exponent values, as for example observed in
other nonequilibrium phase transitions [38–40]. In Fig. 5(a),
we display the function

wT (n0, T ) = − ln
FT (N/N�

T , n0/T )

FT (N/N�
T , 1/T )

(34)

and we demonstrate that the scaling function wT (n0/T ) for
n0 � N�

T can be approximated as

wT (n0, T ) � −n0 − 1

T
. (35)
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FIG. 5. The function wT (n0, T ) and wR(n0, R) defined in
Eq. (34) (a) and Eq. (39) (b) are plotted for a population of
N = 108 individuals and different values of n0 = 2q, with q =
2, 3, 4, . . . , 10, 11. The dashed lines correspond to the scaling ex-
pressed in Eqs. (35) and (40).

The scaling behavior, valid for n0 � N1/3, can be justified
by assuming that each of the n0 seeds generates an indepen-
dent outbreak obeying the statistics of the critical branching
process. A critical avalanche started from a single infected in-
dividual has a duration T following the power-law distribution
π (T ) ∼ T −2 [36,37]. Thus, assuming independence among
the n0 avalanches, we can estimate the probability P(T ) as
the probability that among all n0 outbreaks the last outbreak
to get extinguished is extinguished at time T . Therefore, in the
infinite population limit we obtain

P(T ) � n0[1 − πc(T )]n0−1π (T ), (36)

where πc(T ) is the probability that an outbreak generated by
a single infected individual is not extinguished at time T , with
πc(T )

∫ ∞
T π (x)dx � 1/T . By assuming 1 � n0 � N1/3, we

get

P(T ) � n0 exp

(
−n0 − 1

T

)
. (37)

Finally, we note that while the scaling behavior described in
Eq. (35) has strong numerical confirmation for T � N�

T for
values of T ∼ N�

T the scaling function wT (n0, T ) signals a
dependence of the cutoff on n0 (see Fig. 5).

Scaling arguments suggest that the distribution P(R) of
critical outbreak size R should obey

P(R) ∼ n0R−3/2FR(N/N�
R, n0, R), (38)

where the function FR(N/N�
R, n0, R) implements a lower cutoff

dependent exponentially on n0 [see Fig. 4(b)].
In Fig. 5(b), we show the function

wR(n0, R) = − ln
FR(N/N�

R, n0, R)

FR(N/N�
R, 1, R)

(39)

which, for n0 � N�
R(R, n0), can be approximated as

wR(n0, R) � −n2
0

R
− n5/2

0

R2
. (40)
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FIG. 6. (a) The expected value of the duration of critical outbreak
〈T 〉 and the corresponding standard deviation σT are plotted versus
the number n0 of individuals initially infected. The population size
is N = 108. Results are obtained relying on 104 independent realiza-
tions of the process. (b) The expected size of the critical outbreak
〈R〉 and the corresponding standard deviation σR are plotted versus
the number n0 of individuals initially infected. Data are the same as
of (a).

This scaling function indicates that, for large values of R, R
scales like n2

0. For small values of R, it is possible to observe
some corrections would be required to fully describe the scal-
ing. We notice that, in the first order in n0, the normalization
constant of the distribution P(R) is independent of n0. A way
to interpret the result is by considering the infinite population
limit approximating the distribution P(R) as the convolution
of the n0 sizes of independent outbreak events. In this limit
we have

P(R) =
∫

dω eiωR[F (ω)]n0 , (41)

where F (ω) = ∑
r (r)e−iωr is the generating function of the

distribution (r) of avalanches sizes of SIR critical dynamics
starting from a single seed. Assuming in first approximation
that (r) is a pure power law (r) ∼ r−3/2, it follows that the
logarithm of the generating function behaves, for small ω, as
lnF (ω) ∼ √

ω. The result, together with Eq. (41), indicates
that R should scale as n2

0 for n0 � N2/3. For more details on
the infinite population limit we refer the reader to Ref. [45].

D. Statistical properties of the critical outbreak started by
n0 > 1 seeds

1. General scenario

We performed large-scale simulations of the critical SIR
model to address fundamental questions regarding the distri-
butions of duration T and size R of outbreaks started by a
nontrivial initial condition n0 > 1. In Fig. 6, we display the
average values and the standard deviations of both T and R for
a large system composed of N = 108 individuals. We display
the moments of the distributions as a function of the number
of initial seeds n0. The main outcomes are as follows. The
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FIG. 7. Finite-size scaling analysis for the duration T of the crit-
ical SIR started from n0 initial seeds. (a) Data describing the average
value of the outbreak duration 〈T 〉 for different system sizes N are
collapsed on a unique universal curve using the scaling of Eq. (45).
Data are shown for population sizes N ranging from N = 105 to 108.
Each data point is obtained by simulating the SIR process 104 times.
(b) Same as in (a), but for the standard deviation σT .

expected size 〈R〉 is a growing function of n0. The expected
duration 〈T 〉 is a nonmonotonic function of n0, displaying
a single peak. The standard deviations σT and σR also dis-
play a peak as a function of n0. The coefficients of variation
σT /〈T 〉 and σR/〈R〉 are monotonically decreasing with n0. We
conclude that fluctuations are fundamental to properly charac-
terize the critical dynamical regime. This statement is true for
any value of n0, albeit, in relative terms, the most severe effect
of fluctuations is observed for n0 = 1. We note that as the ini-
tial number of infected individuals n0 increases, the expected
size of the outbreak displays a monotonic increase while the
expected duration of the outbreak displays a maximum. In
the following subsection, we will provide scaling laws for
these major statistical properties of the critical dynamics as
a function of the number of initially infected individuals.

2. Scaling analysis of 〈T〉 and σT

We make the ansatz that the average duration 〈T 〉 can be
described by

〈T 〉 � G(n0|α, β, H, K ), (42)

where the function G(n0|α, β, H, K ) is given by

G(n0|α, β, H, K ) = nα
0 H

1 + nβ

0 K
. (43)

Here, α and β are, in the large population limit, independent of
N . On the contrary, H and K are dependent on the population
size. By introducing the function

g(x|α, β ) = xα

1 + xβ
, (44)

we observe that it is possible to rescale the curves obtained for
different values of N by performing the transformation

H−1Kα/βG(n0|α, β, H, K ) = g(n0K1/β |α, β ). (45)

This expression allows us to perform a data collapse of the
data obtained for 〈T 〉 at different values of n0 and different
population size N [see Fig. 7(a)].

We observe that, if we start from a nontrivial initial condi-
tion n0, the expected duration of the outbreak 〈T 〉 reaches its
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FIG. 8. (a) Scaling parameter H as a function of the system size
N for the average duration 〈T 〉 of critical outbreaks. Data points are
the same as those of Fig. 7. The line displays the best fit of the data
points with Eq. (47). (b) Same as in (a), but for the scaling parameter
K . (c) Same as in (a), but for the standard deviation σT . The orange
line is the best fit of the data points with Eq. (50). (d) Same as in (c),
but for the scaling parameter K .

maximum at

n�
0 =

(
α

K (β − α)

)1/β

. (46)

The scaling parameters H and K obey the scaling relation

K � aK NδK , H � aH log(N ) + bH (47)

with aH = 0.58 ± 0.08, bH = −2.0 ± 0.9, δK = −0.37 ±
0.04, and aK = 0.75 ± 0.06 (see Fig. 8). We note that the
logarithmic scaling of H is expected from the known scaling
of 〈T 〉 for the SIR critical model starting from a single initial
seed. The exponents α and β are given by

α = 0.78 ± 0.03, β = 1.10 ± 0.1. (48)

The standard deviation of the outbreak duration σT can be
described in the same exact way as 〈T 〉. The ansatz

σT � G(n0|α, β, H, K ) (49)

leads to the data collapse shown in Fig. 7(b). The scaling
parameters H and K obey the scaling relations

K � aK NδK , H � aH NδH (50)

with δH = 0.17 ± 0.01, bH = 1.7 ± 0.2, δK = −0.36 ± 0.03,
and aK = 2.3 ± 0.7 (see Fig. 8). We note that δH � 1

6 . There-
fore, for n0 = 1 the scaling reduces to the well-known scaling
for the critical SIR model starting from a single initial seed.
Moreover, the exponent α and β for σT are given by

α = 0.50 ± 0.05, β = 1.0 ± 0.1. (51)

3. Scaling analysis of 〈R〉 and σR

The ansatz for 〈R〉 is slightly different from the one ap-
pearing in Eq. (43), as it includes an additional logarithmic
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FIG. 9. (a) The fitting parameter γ , i.e., Eq. (52), as a function of
the system size N . Data points are the same as those of Fig. 7. The
line displays the best fit of the data points with Eq. (55). (b) Scaling
parameter H as a function of the system size N for the standard
deviation σR of critical outbreaks. The solid line corresponds to the
scaling function of Eq. (60). (c) Same as in (b), but for the scaling
parameter K . The solid line corresponds to the scaling function of
Eq. (60).

correction

〈R〉 � nα
0 H

1 + nβ

0 (ln n0)γ K
. (52)

We take

H = 3

2
N1/3, K = N−1/3 (53)

and

α = 1, β = 0.5 (54)

and we perform a fit of the exponent γ . As Figs. 9(a) and
10(a) demonstrate, the function gives rise to excellent data fits
as long as the exponent γ is

γ = aγ ln N + bγ (55)

with aγ = 0.053 ± 0.003 and bγ = 0.30 ± 0.06.
The function 〈R〉 can be rescaled and the data obtained for

different N collapsed on a universal curve (see Fig. 10(a)).
This task is done by noting that

〈R〉y(n0) = g(x(n0)|α, β ), (56)

where

x(n0) = n0(ln n0)γ /βK1/β,

y(n0) = H−1Kα/β (ln n0)αγ /β, (57)
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FIG. 10. Finite-size scaling analysis for the size R of the critical
SIR started from n0 initial seeds. (a) Data describing the average
value of the outbreak size 〈R〉 for different system sizes N are
collapsed on a unique universal curve using the scaling of Eq. (56).
Data are the same as of Fig. 7. (b) Same as in (a), but for the standard
deviation σR.

and the function g(x|α, β ) is given by Eq. (44). The expected
size of the outbreak 〈R〉 does not display a maximum as a
function of n0, i.e., it is a monotonous increasing function of
n0. The standard deviation σR can be instead fitted using the
same ansatz as σT , i.e.,

σR � G(n0|α, β, H, K ). (58)

The best estimates of the parameters are

α = 0.57 ± 0.03, β = 0.95 ± 0.05 (59)

and

K � aK NδK , H � aH NδH (60)

with δH = 0.48 ± 0.02, bH = 1.8 ± 0.5, δK = −0.25 ± 0.03,
and aK = 0.49 ± 0.3 (see Fig. 9(b)–9(c)). The corresponding
data collapse is shown in Fig. 10(b).

IV. CONCLUSIONS

Motivated by the current COVID-19 pandemic, we have
investigated the critical properties of the susceptible-infected-
removed (SIR) dynamics in well-mixed populations starting
from nontrivial initial conditions consisting of n0 > 1 infected
individuals. Although the modeling framework oversimplifies
the real-world scenario, the setting is realistic in two main re-
spects. First, the plateauing time series observed in empirical
data are compatible with the critical dynamical regime. Sec-
ond, the initial condition n0 > 1 is representative for a critical
regime reached, thanks to effective containment measures,
after that a significant community transmission already took
place. We have shown that a nontrivial initial condition n0 > 1
introduces another typical scale on the dynamics inducing a
lower cutoff in the distributions of the duration and size of
critical outbreaks. The critical dynamics is characterized by
very strong fluctuations, but the presence of a nontrivial initial
condition mitigates the role of the fluctuations. In particular,
while for a single initial seed the standard deviation on the out-
break size and duration is much larger than the corresponding
expectation values, the relative error diminishes as the size n0

of the initial seed set increases. Moreover, numerical results
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indicate that, as the initial number of infected individuals n0

increases, the expected size of the outbreak increases while
the expected duration first increases and then decreases, dis-
playing a maximum. Using scaling arguments and extensive
numerical simulations we have deduced the scaling of the
maximum duration and the corresponding number of initially
infected individuals.
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APPENDIX: STOCHASTIC SIR DYNAMICS ON
WELL-MIXED POPULATIONS

The critical SIR dynamics in a well-mixed population of N
individuals is simulated with the following implementation of
the Gillespie algorithm [46]. We indicate with S(t ), I (t ), and
R(t ), respectively, the number of susceptible, infected, and
removed individuals as a function of time t . We start from the
initial condition of I (0) = n0, S(0) = N − n0, and R(0) = 0.
At each elementary step, the algorithm proceeds as follows:

(i) Time increases by the amount �t

t → t + �t, (A1)

where �t is given by

�t = − log(q)

λS(t )I (t ) + I (t )
(A2)

with q ∼ Unif.(0,1), i.e., a random variate extracted
from the uniform distribution in the domain (0, 1).

(ii) With probability

p = λS(t )I (t )

λS(t )I (t ) + I (t )
(A3)

a susceptible individual becomes infected, i.e.,

S(t + �t ) = S(t ) − 1,

I (t + �t ) = I (t ) + 1. (A4)

(iii) With probability 1 − p an infected individual is re-
moved, i.e.,

I (t + �t ) = I (t ) − 1,

R(t + �t ) = R(t ) + 1. (A5)

The critical dynamics is obtained by setting λ = 1. The
steps of the algorithms are iterated until the number of in-
fected individuals is zero. This happens at time T , i.e., the
duration of the outbreak. The size of the outbreak is given by
R(T ).
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