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Infection spreading and recovery in a square lattice
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We investigate spreading and recovery of disease in a square lattice, and, in particular, emphasize the role
of the initial distribution of infected patches in the network on the progression of an endemic and initiation of
a recovery process, if any, due to migration of both the susceptible and infected hosts. The disease starts in
the lattice with three possible initial distribution patterns of infected and infection-free sites, viz., infected core
patches (ICP), infected peripheral patches (IPP), and randomly distributed infected patches (RDIP). Our results
show that infection spreads monotonically in the lattice with increasing migration without showing any sign of
recovery in the ICP case. In the IPP case, it follows a similar monotonic progression with increasing migration;
however, a self-organized healing process starts for higher migration, leading the lattice to full recovery at a
critical rate of migration. Encouragingly, for the initial RDIP arrangement, chances of recovery are much higher
with a lower rate of critical migration. An eigenvalue-based semianalytical study is made to determine the critical
migration rate for realizing a stable infection-free lattice. The initial fraction of infected patches and the force of
infection play significant roles in the self-organized recovery. They follow an exponential law, for the RDIP case,
that governs the recovery process. For the frustrating case of ICP arrangement, we propose a random rewiring
of links in the lattice allowing long-distance migratory paths that effectively initiate a recovery process. Global
prevalence of infection thereby declines and progressively improves with the rewiring probability that follows a
power law with the critical migration and leads to the birth of emergent infection-free networks.

DOI: 10.1103/PhysRevE.102.052307

I. INTRODUCTION

Spatial spreading of infections has been studied using the
concept of information flow in complex networks [1–11]. It
is a serious issue of concern for life and society, and it is
important to trace the disease-spreading processes in human
population naturally occurring through the air-traffic network
[12,13], animal population network [14,15], insect population
network [16,17], and ecological network [18,19]. Usually, the
network considered in disease modeling is very complex [20].
Investigations of epidemics in a stochastic lattice model have
been found in the literature with their elegant mathematical
arguments and techniques which are used to understand the
critical threshold for the onset of epidemics [21–24]. Asyn-
chronous stochastic models have also been studied where all
the sites are separated into susceptible and infected nodes
and a Monte Carlo simulation has been performed by picking
an infected site randomly, transforming it into a susceptible
one if it is below an infection threshold, otherwise assuming
as infecting the randomly chosen nearest neighbors [25,26].
These studies have led to an understanding of the spreading
processes of disease in a large population over a long time.
However, these models did not incorporate the deterministic
variation of the susceptible-infected-recovered (SIR) or the
susceptible-infected-susceptible (SIS) description of individ-
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ual patches and were unable to provide detailed information
on the impact of migration of population and, especially, on
the initial distribution pattern of infected sites in a network.

Alternatively, we consider here a deterministic dynamical
disease model over the top of a square lattice, a simpler
network where each node is interacting only with its nearest
neighbors. We consider an initial outbreak of infection in a
fraction of sites in the lattice with a particular pattern and
study the epidemic progression in the entire lattice through
migration of population. Each site of the lattice is considered
as a patch and a disease spreads within a single patch follow-
ing the SIS-type deterministic model. The migration between
the connected patches is described by a diffusive dispersal
process controlled by the rate of migration. Earlier studies
[27,28] considered complex networks of patches to investi-
gate disease spreading from a locally perturbed source, where
infection starts from a single patch. However, the possibility
of infection in multiple patches, at one time, in the lattice and
the role of migration were not focused. In our proposed lattice
model, nodes or patches are as usual connected with their im-
mediate neighbors, and both the susceptible and infected hosts
are allowed to move between the adjacent patches as con-
trolled by their respective rates of migration. A disease-free
patch or node, therefore, may be invaded by some parasites
through migration of infected hosts between the immediate
neighboring patches.

Transmission of disease from one infected node to an
infection-free node and the severity as well as the global
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(a) infection-free (b) ICP (c) IPP (d) RDIP

FIG. 1. Square lattice of patches. Examples of (a) infection-free, (b) infected core patches (ICP), (c) infected periphery patches (IPP),
and (d) randomly distributed infected patches (RDIP). White and red circles exhibit sites in stable infection-free and infected steady states,
respectively. Each site or patch at the periphery has three neighbors except the four corner patches, having two neighbors each, and the rest of
the patches have four neighbors.

disease persistence largely depend upon population migration.
The increased migration has been shown to be beneficial for
an infected metapopulation with an initiation of a recovery
process [29,30]. Experimental results [31] in a metapopula-
tion structure with the flour beetle and its ectoparasitic mite
show that both the local and global prevalence of parasites de-
pends on host migration rate and its local density. On the other
hand, increased migration has also been shown to increase
the host’s extinction risk in a host-pathogen metapopulation
model [32]. However, it has not been explored whether the ini-
tial number of infected patches and their distribution pattern,
in particular, can play any role in the spreading and recov-
ery of infection in a network. How do the rate of migration
and the forces of infection jointly affect the local and global
persistence of an infection in a square lattice with a different
initial distribution of infected patches? Does there exist any
correlation between the forces of infection or migration rate
and the number of initial infected patches in the eradication
process? These questions are vital and need to be addressed
appropriately for understanding disease progression as well
as the implementation of any preventive measure. Our en-
deavor here is to address such pertinent questions where the
disease spreads in a square lattice with one of the three pre-
sumed sets of initially arranged distribution of infected sites:
(1) infected sites at the center called infected core patches
(ICP), (2) infected sites at the periphery called infected-
periphery patches (IPP), and (3) infected sites randomly
distributed in the lattice or randomly distributed infected
patches (RDIP). Exemplary initial distribution patterns of in-
fected patches in the lattice are shown in Fig. 1.

Our study shows nontrivial results of disease spreading
and recovery that predominantly depends on the initial ar-
rangement of infected patches. For the start of disease from
centrally located sites (ICP case), the infection spreads mono-
tonically in the lattice without any sign of recovery with
increasing migration. For an initial infection in the peripheral
sites (IPP case), disease spreading also increases monotoni-
cally; however, a healing process starts with a higher rate of
migration and a full recovery is possible at a larger critical rate
of migration. When the infection starts in random locations
(RDIP case), spreading is faster and infection covers most
of the sites at a lower rate of migration; however, the lattice
recovers at a lower critical rate of migration. Furthermore, we
have checked the role of the force of infection or transmission
efficiency, for all three initial distributions, since it is one
of the most important parameters in epidemic models [33].

This epidemiological trait describes how rapidly the infection
spreads within a patch and thereby increases the burden of dis-
ease. We explore the combined effect of the rate of migration
and the force of infection for all three arranged sets of initially
infected patches separately.

Persistence and nonpersistence of infection in the lattice
also depend on the number of initially infected patches,
which we have given attention to our study. For the RDIP
distribution of initial infection, in particular, the number of
initially infected patches of the lattice for which it becomes
infection-free and the relative infectivity of disease follows an
exponential law.

Thus RDIP distribution of initial infections shows the high-
est recovery efficiency, and the ICP has a worse record. The
initial infection in centrally located sites (ICP case) is simply
unable to remove infection by a natural or a self-organized
process except for very low transmission efficiency or force of
infection. To circumvent this situation, we suggest a random
process of rewiring the links [34] in the lattice, and it shows
a promising result for the case of initial ICP arrangement of
infected sites; it is eventually able to remove the infection
with an emergent network at a critical migration rate, which
follows a power law with the rewiring probability. It is to be
cautioned that for a significantly high force of infection, none
of the initial arrangements of infected patches can deter the
progress of the disease or help start a recovery process.

We elaborate the lattice model in Sec. II. The main results
for the impact of three initial distributions of infected sites are
presented in Sec. III A, the combined role of migration and
force of infection in Sec. III B, and a discussion of the role of
the initial fraction of infected sites in Sec. III C. The rewiring
probability and the infection-free emergent network have been
elaborated in Sec. III D. Concluding statements are made in
Sec. IV. An Appendix is added at the end to discuss the impact
of a threshold of initial density of infected population, time
evolution of all the hosts over a long time in all three cases,
and the eigenvalue analysis to determine the critical migration
rate for realizing a stable infection-free state.

II. SUSCEPTIBLE-INFECTED-SUSCEPTIBLE MODEL IN
A SQUARE LATTICE

We consider N × N patches or sites in a square lattice,
where both the susceptible and infected hosts are allowed to
move from one patch to its neighboring patches of the lattice.
The dynamics of susceptible host, xi, and infected host, yi,
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in the ith patch (i = 1, . . . , N × N ) and their dispersal in the
lattice are described by

dxi

dt
= b(xi + yi )

(
1 − xi + yi

c

)
− dxi + γ yi − βxiyi

+ ε1

N×N∑
j=1

Ai j (x j − xi ),

dyi

dt
= βxiyi − (d + γ + α)yi + ε2

N×N∑
j=1

Ai j (y j − yi ), (1)

where Ai j is the adjacency matrix that defines the network
structure, and ε1 and ε2 are the diffusion or migration rates
of susceptible and infected hosts, respectively. The local dy-
namics of each isolated patch (when ε1 = 0 = ε2) is governed
by the SIS type epidemic model, where the hosts follow
density-dependent regulation with b as the growth rate and
c as the environmental carrying capacity. A microparasitic
infection, having disease transmissibility β and recovery by
a natural process (host defense mechanisms) at a rate γ ,
spreads through contacts between infected and susceptible
hosts with no vertical transmission. The parameters d and
α are the natural death rate of host and virulence of the
disease, respectively. It is to be mentioned that individuals
that leave one patch immediately enter the other patch, thereby
avoiding population death during dispersal. The dispersal and
vital dynamics have the same timescale so that dispersal can
rescue populations on individual patches from infection, and
at the same time dispersal can also make an infection-free
patch infected. An open boundary condition is considered for
the lattice. All parameters are non-negative. The single-patch
model was earlier analyzed from the evolutionary point of
view [35] and later extended to a two-patch model using a
variable aggregation method (slow-fast dynamics) [36].

The study is initiated by dividing the entire lattice into
two subgroups, viz., infection-free and infected patches by
choices of the force of infection, β. Such choices of β can be
made from the dynamics of the single-patch model, which has
three equilibrium points. In an isolated patch, an equilibrium
E0(0, 0) always exists and is unstable for all feasible parame-
ters. The birth rate shall always exceed the death rate of hosts
(i.e., b > d) for the existence of any positive equilibrium; an
infection-free equilibrium Es(xs, 0) exists, where xs = c(b−d )

b .
The parasites are unsuccessful to invade the host population
(i.e., Es is stable) if R0 < 1, where R0 = βc(b−d )

b(d+γ+α) is the
basic reproduction number, measuring the average number
of secondary infections produced by a single infected host
during its infectious period when introduced into a group of
a susceptible population [37]. The equivalent condition in
terms of force of infection can be expressed by β < βc, where
βc = b(d+γ+α)

c(b−d ) . The equilibrium host densities of an endemic

equilibrium point E∗(x∗, y∗) are x∗ = d+γ+α

β
and x∗ + y∗ =

c
b [(b − d ) − bαy∗

x∗+y∗ ] < xs. The last inequality implies that the
total equilibrium host population is suppressed in the presence
of infection compared to the infection-free state equilibrium
value, xs. Thus the dynamics of a single-patch SIS model is
entirely determined by the basic reproduction number, R0. In
particular, if R0 > 1 (or equivalently, β > βc) then infection

persists and the endemic equilibrium becomes stable whereas
disease cannot persist in the opposite case [see Fig. 2(a)].
Therefore, the force of infection is considered as β = β0m <

βc for the subgroup of infection-free patches of the lattice,
and for the subgroup of infected patches, it is considered as
β = βin fn > βc (m, n are pseudo-indices for parameter β of
infection-free and infected patches, respectively). The condi-
tion β0m < βc < βin fn differentiates patches into two states,
viz., an infection-free state [Fig. 2(b)] and an infected state
[Fig. 2(c)] under no migration (ε1 = 0 = ε2). Thus, patches
are characterized by the disease transmissibility parameter β

and not by the initial value of the infected population. An
infection-free patch is, therefore, a patch with β < βc and an
infected patch is a patch where β > βc.

III. INFECTION SPREADING AND RECOVERY:
NUMERICAL RESULTS

A global scenario of infection spreading in a square lattice
of 20 × 20 patches is presented for three proposed initial spa-
tial arrangements of infections. For simplicity, the migration
rates of both the susceptible and infected hosts are considered
as identical, ε1 = ε2 = ε. Our primary focus is on how ini-
tially arranged pattern of infected patches affects the disease
spreading and recovery processes in the lattice under a migra-
tion of both hosts. The rate of migration, the force of infection,
and their combined effects are given primary importance, in
this context, besides counting the influence of the initial num-
ber of infected patches. We considered only the asymptotic
dynamics of the system (in our case, it is either an infection-
free steady state or an infected steady state) by discarding the
transient state. A patch is colored red (see Fig. 3) and said to
be infected if the final infected host density (yi) remains above
a threshold, yh = 0.01, as determined by the asymptotic fixed
point value of the patch. Otherwise, a patch is identified as
infection-free, colored white, where the final value of infected
hosts remains below the threshold, i.e., yi < yh = 0.01. The
choice of the threshold (yh = 0.01) is made arbitrarily for
numerical benefits. This restriction, however, can be relaxed
and does not affect the main results as shown in Fig. 8 for a
different threshold, yh = 0.001 (see the Appendix). We must
note that a few terms are exchangeably used here with the
same meaning, such as patches as sites or nodes, force of
infection or transmission efficiency or transmissibility.

A. Infection spreading under different initial arrangements of
infected sites

Our numerical results reveal the spreading of infection in
the lattice with varying migration ε for our three choices
of initial arrangements of infected patches. Each numerical
simulation (Fig. 3) is initiated with 19% infected patches (red
circles) and the rest of the patches are infection-free (white
circles), which are defined by setting the parametric con-
ditions, βinf n > βc and β0m < βc, respectively. Upper panels
(A1)–(A5) of Fig. 3 demonstrate how the infection spreads
from the core of the lattice with a gradual increase of migra-
tion. The number of infected patches grows monotonically as
the migration rate increases, and almost 75% of the patches
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FIG. 2. (a) Bifurcation of a single patch model in the c-β plane. Stability regions of two steady states Es and E∗ are separated by the
transcritical bifurcation line R0 = 1. (b, c) Temporal evolution of two subgroups of patches when ε1 = 0 = ε2. (b) One subgroup stabilizes to
infection-free equilibrium Es(xs, 0) for β0m = 0.002 < βc, where βc = 0.0119; (c) a second subgroup of the remaining patches stabilizes
to endemic equilibrium E∗(x∗, y∗) corresponding to the condition, βinfn = 0.017 > βc. Parameters are b = 0.2, c = 130, d = 0.165, α =
0.01, γ = 0.005. Initial conditions are x(0)i ∈ [10, 25] and y(0)i ∈ [1, 5].

become infected at ε = 1. It indicates two important issues
of concern. An outbreak of a highly infectious disease may
turn into an epidemic if the outbreak occurs from centrally
located patches of the lattice (ICP arrangement). The lattice
never recovers from the epidemic, and no self-organized re-
covery process is seen to be initiated with migration. A disease
control strategy, in such a case, needs to be adopted that
should include restricted migration and appropriate contact
reducing techniques or social distancing of individuals. The
raccoon rabies epidemic spreading in the south-central states
of the United States during the mid-1970s [38] seems similar
to the disease spreading process in the lattice with the ICP

arrangement. It was reported that rabies in the counties of
the state of Kentucky spread through rabid raccoons imported
by private hunting clubs during 1975–1976. The disease sub-
sequently spread over West Virginia, Virginia, Pennsylvania,
and other neighboring states through infected migrants and
became the largest and most devastating wildlife rabies epi-
demic [39]. However, it was endemic and confined to Florida,
a peripheral state of the USA, for a long time after 1947
and spread towards the north and the central provinces during
1960–1970 [40].

In contrast, in the case of IPP arrangement of initial
infection, the disease also spreads, in the beginning, with

(A1) ε = 0 (A2) ε = 0.05 (A3) ε = 0.2 (A4) ε = 0.5 (A5) ε = 1

(B1) ε = 0 (B2) ε = 0.2 (B3) ε = 0.5 (B4) ε = 0.63 (B5) ε = 0.65

(C1) ε = 0 (C2) ε = 0.01 (C3) ε = 0.04 (C4) ε = 0.2 (C5) ε = 0.316

FIG. 3. Evolution of infected patches in a lattice with increasing migration rate ε (ε1 = ε2 = ε) for different initial arrangements of infected
patches. Upper row: Status of infection with increasing migration rate, when infection starts spreading from the core of the lattice (ICP
arrangement). Middle row: Infection spreads from the periphery of the lattice (IPP arrangement). Lower row: Infection spreads from randomly
distributed patches of the lattice (RDIP distribution). The number of initial infected patches is considered as 19% of the total patches in all
three cases. Force of infection is considered as β0m = 0.002 for infection-free (white circles) patches and βinfn = 0.017 in case of infected
patches (red circles). Other parameters are as given for Fig. 2.
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FIG. 4. Upper row: Progress of infection and recovery process in the lattice for varying migration rate, ε. Each of the (a) ICP, (b) IPP, and
(c) RDIP distribution starts with 19% infected patches and five different force of infections βinfn = (0.012, 0.015, 0.017, 0.02, 0.022, 0.035).
The critical migration rates for which the lattice is globally recovered with a given force of infection are as follows: (a) ICP case, εc = 0.07
for βinfn = 0.012; (b) IPP case, εc = (0.02, 0.34, 0.65) for βinfn = (0.012, 0.015, 0.017), respectively; (c) RDIP case, εc = (0.01, 0.2, 0.35,
0.66) for βinfn = (0.012, 0.015, 0.017, 0.02), respectively. The shaded regions indicate standard deviations. It shows that increasing migration
can make the lattice disease-free for various βinfn (> βc) in the case of RDIP but remains unsuccessful in case of ICP and IPP. Middle row:
(d–f) Largest eigenvalues (λmax) are plotted using Eqs. (A1) and (A2) to confirm stability of the HSS when the critical migration rate crosses
the zero line (solid blue line). Such critical migration rates are estimated for all three cases as follows: ICP case, εc = 0.07 for βinfn = 0.012;
IPP arrangement, εc = (0.02, 0.34, 0.65) for βinfn = (0.012, 0.015, 0.017), respectively; RDIP case, εc = (0.01, 0.2, 0.35, 0.66) for βinfn =
(0.012, 0.015, 0.017, 0.02), respectively. Lower row: Percentage of equilibrium prevalence of disease in the lattice for varying migration rate
corresponding to each βinfn for (g) ICP, (h) IPP, and (i) RDIP distributions. Parameters are as given in Fig. 2, and in particular, βom = 0.002 is
kept always fixed.

migration into neighboring infection-free patches of the lattice
as shown in panels (B1)–(B4) in Fig. 3; however, a recovery
process starts with higher migration, and finally the lattice
becomes infection-free for larger migration (panel B5, Fig. 3,
ε = 0.65).

For the initial RDIP distribution of infected sites, the
spreading of infection and its eradication follow a trend
similar to the IPP case. The spreading process occurs in
a comparably smaller range of migration rate as seen in
the lower panels (C1)–(C4) in Fig. 3; however, the lat-
tice also becomes infection-free for a smaller migration rate
(panel C5, Fig. 3) compared to the IPP case. The infec-
tion spreads very fast to cover almost 80% of the patches
at a migration rate ε = 0.04, and it is eradicated at a

relatively faster rate to become infection-free at a lower
ε = 0.316.

B. Combined role of migration and force of infection

A broader scenario of infection spreading and recovery
processes is presented here (Fig. 4) for all three initial arrange-
ments of infected sites under the joint effect of migration and
a range of forces of infection, βinfn = (0.012, 0.015, 0.017,
0.02, 0.022, 0.035), when 19% of the patches of the lattice
are initially infected (81% infection-free patches). In the case
of ICP arrangement, the number of infected patches increases
almost monotonically with migration ε [Fig. 4(a)]. The lattice
becomes infection-free only for a very low force of infection
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βinfn = 0.012 or less, otherwise, the lattice never recovers
from the infection.

On the other hand, for an initial IPP arrangement
[Fig. 4(b)], the number of infected patches reaches a max-
imum level and then starts declining for a range of forces
of infection, βinfn = (0.012, 0.015, 0.017) and the lat-
tice eventually recovers from the disease at their respective
critical migration rates (εc = 0.02, 0.34, 0.65). The lat-
tice never becomes infection-free in the range of larger
βinfn (= 0.02, 0.022, 0.035). In the case of RDIP distribution
[Fig. 4(c)], the spreading and the recovery processes follow
a similar trend as observed in the IPP case; however, the dis-
ease eradication process is significantly enhanced. The lattice
becomes infection-free at lower critical values of migration,
εc = (0.01, 0.2, 0.35, 0.66) for the respective forces of in-
fection, βinfn = (0.012, 0.015, 0.017, 0.02) considered for the
other two cases. For a larger βinfn = 0.022, the global recovery
does not occur, but a trend of significant recovery is noticed
with a largely decreasing number of infected patches. How-
ever, if infection pressure is too high (βinfn � 0.035), even a
higher rate of migration fails to start a recovery process and a
global prevalence (infection spreads into all the patches of the
lattice) occurs at a significantly lower value of ε = 0.44. The
shaded region in each plot indicates the standard deviation
estimated from average values of 50 numerical realizations
by varying only the random locations of the infected sites,
while other parameters and conditions are kept fixed. Hence
results of the RDIP initial distribution are robust, in the sense
that the qualitative nature remains unaffected by the changes
in random positions of the infectious patches. We observe
a dual nature of spreading and healing processes for RDIP
initial distribution of infection under migration in a global
recovery of the lattice. The infection initiated from random
sites can enhance resilience under low and moderate forces of
infection; however, it is less resistive to the considerably high
virulence of attack and hence cannot prevent a global out-
break. Although other two initial spatial arrangements (ICP
and IPP) are vulnerable against the epidemic that promotes
spreading, the percentage of infected patches is less compared
to the RDIP case. As mentioned in Sec. III, results are qual-
itatively independent of the threshold level of infected hosts
such as yh = 0.001, as illustrated in Fig. 8 in the Appendix.

We interpret our results from a purely dynamical sys-
tem point of view, using the pictures of the time evolution
of infected and infection-free hosts in all the sites for in-
creasing migration for all three initial distribution patterns of
infected sites in the lattice. For the initial ICP arrangement,
we can explain the dynamics of the lattice as a transition to
inhomogeneous steady states (IHSS) [41–44] for increasing
migration in the lattice. In the IHSS, the lattice is stabilized
to different steady-state values (infected or infection-free) as
shown in the time evolutions presented in the Appendix [see
Figs. 9(a) and 9(b) and Figs. 9(c) and 9(d) for ε = 0.5 and
ε = 1, respectively, for both hosts xi and yi]. A large number
of sites coexists with both hosts (xi > 0, yi > 0) and some
others exist with susceptible hosts only (xi > 0, yi = 0). The
lattice with initial ICP distribution of infection never realizes
a completely infection-free state (xi > 0, yi = 0) for larger
migration. For the IPP case, the time evolution for increasing
migration rate shows a gradual convergence to a homogeneous

steady state (HSS) [see Figs. 9(e) and 9(f) and Figs. 9(g)
and 9(h)]. In this case, xi and yi converge to a unique steady-
state, which defines the desired infection-free equilibrium
(xi = xs, yi = 0) for ε = 0.65. For the RDIP initial arrange-
ment, the lattice clearly passes through an intermediate IHSS
for ε = 0.2 to a final infection-free HSS state (xi = xs, yi = 0)
at ε = 0.316 [see Figs. 9(i)–9(l)].

It is noteworthy that we do not observe any oscillatory
states for our selected range of parameters in the whole in-
vestigation as seen in Fig. 9. We always dealt with either the
IHSS or HSS. The local stability of such a state as our most
desired infection-free equilibrium Es = (xs, 0) is checked for
all three cases. We derive the Jacobian matrix by linearizing
the whole system at the infection-free equilibrium (see the Ap-
pendix) and then plot the largest eigenvalues as a function of
migration rate ε using Eqs. (A1) and (A2) for all three cases,
ICP, IPP, and RDIP, in Figs. 4(d)–4(f). The largest eigenvalue
crosses the zero value (blue horizontal line) at a critical value
ε = εc, where the lattice emerges with a stable infection-free
state. By comparing Figs. 4(a)–4(c) and Figs. 4(d)–4(f), it is
confirmed that in all three cases, εc values exactly match their
numerically computed εc values for respective βinfn values.
Note especially that for the ICP case, the largest eigenvalue
crosses the zero line (blue line) only for a low βinfn = 0.012,
thereby confirming the failure of recovery in this case.

We also determine the disease prevalence, an important
metric in epidemiology that defines the fraction of infected
individuals. It measures the severity of the disease and quanti-
fies the chance of disease transmission. The larger the value of
prevalence, the greater is the chance of disease transmission
[45]. For a single patch, prevalence is determined by the
ratio of infected hosts to the total population. The fraction
of infected population in the lattice at an equilibrium state
(Equilibrium Prevalence %) is measured by

Equilibrium Prevalence(%) = EPP

= 1

N × N

N×N∑
i=1

ỹi

x̃i + ỹi
× 100,

(2)

where x̃i and ỹi are, respectively, the steady-state values of
susceptible and infected populations of the ith patch. If all
the patches in the lattice are infection-free, then EPP = 0,
otherwise EPP �= 0. EPP of the entire lattice for a given force
of infection steadily increases with increasing migration in the
case of ICP arrangement for moderate to higher values of βinfn

[Fig. 4(g)], whereas it decreases for IPP and RDIP distribu-
tions [Figs. 4(h) and 4(i)]. It presents a comparative scenario
by the fraction of infected population. More than 7.5% of the
total hosts at equilibrium appear infected across the lattice at
a lower migration rate ε = 0.175 for the RDIP arrangement
[Fig. 4(i)]; however, it is much lower in the ICP and IPP cases
Figs. 4(g) and 4(h)] at the same migration rate. The infection
declines at a faster rate with increasing migration (for all βinfn

values cited here) in the RDIP arrangement, however, effec-
tively eradicating the infection for low to moderate values of
migration.
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FIG. 5. (a) Recovery limit of the lattice under ICP, IPP, and RDIP initial distributions of infected sites. The percentage of initial infected
patches from which a lattice can recover (a global recovery) for different forces of infections (βinfn = 0.015, 0.017, 0.02, 0.022, 0.035).
Parameters are as in Fig. 4 with ε = 1. (b) Initial infected patches (%) and the relative infectivity, η = βinfn/βc follows an exponential law in the
disease eradication process for the RDIP case. Dashed lines are the best fitting for exponential decay of initial infection (%) for two selected
migration rates ε = 0.5 (green circles) and ε = 1 (black squares). Error bars indicate standard deviations from an average of 50 individual
simulations by varying the initial positions of infected patches only.

C. Effect of initial number of infected patches

Results of disease spreading and recovery are so far pre-
sented with 19% initial infected patches. Now we check
how an arbitrarily chosen larger fraction of initially infected
patches affects the recovery process. Figure 5(a) presents the
overall scenario of disease spreading and the recovery process,
for all the three initial arrangements, where we vary the initial
fraction of infected sites. It reconfirms that the lattice has a
better ability, in the case of RDIP initial arrangement (green
bars), to heal the entire lattice even from a situation of a larger
fraction of initially infected patches. Results are repeated for
five different forces of infection βinfn (0.015, 0.017, 0.02,
0.022, 0.035) at a fixed ε = 1 and compared with the other
two cases, ICP and IPP arrangements (blue and red bars).
For example, for a βinfn = 0.015 and RDIP arrangement, the
lattice is able to recover from initial infection in more than
50% of patches, while for ICP and IPP arrangements, it cannot
recover from such a large fraction of initially infected patches.
The lattice, with IPP initial arrangement, can recover at best
from initial infection of about one-fourth of its patches [blue
bar in Fig. 5(a)] for a moderate value of βinfn = 0.015. The
recovery process is exceptionally poor for initiation of the
disease from centrally located patches (ICP arrangement); at
best it can recover from an initial infection of about 10% of
patches (red bar) for βinfn = 0.015. Compare with Fig. 4(a),
for the ICP arrangement, the lattice can recover with 19% ini-
tial infected patches for βinfn = 0.012 only. If the transmission
rate βinfn is further increased, the recovery process declines to
a smaller number of initially infected sites (%) for all three
cases; however, the RDIP case always outperforms the other
two initial spatial arrangements. Our results indicate that in-
fection management would be harder for both the ICP and IPP
cases for infectious diseases with high transmissibility. Since
in the case of RDIP initial distribution the lattice can handle
a larger fraction of initial infected patches, we explore the
situation further with a wide variation of the force of infection.

For a better presentation of the scenario, we redefine the force
of infection as relative infectivity with a normalization of βinfn

by the critical value βc of β above which a disease can invade
a single patch. Thus the relative infectivity, η = βinfn

βc
, is used

in search of the underlying recovery process for this RDIP
distribution. Noticeably, for increasing η, the lattice follows an
exponential decay of initial fraction of infected patches from
which the lattice can start a self-organized process of recovery,
as shown for two different migration rates ε = 0.5 (green cir-
cles) and 1.0 (black squares) in Fig. 5(b). More accurately, the
recovery process follows an exponential law defined by τe−ηξ ,
where τ and ξ are positive parameters that measure the slope
of the fitted lines (dashed lines) in a semilog scale. The slope
of the exponential line varies with the rate of migration. The
lattice can be globally recovered if initially infected sites are
below the line of the corresponding migration rate. Chances of
recovery decrease with increasing order of relative infectivity,
η. Similar investigations for two other initial spatial arrange-
ments of infection also show similar trends; however, their
percentages of initial infections that start a self-organizing
recovery process go so low with relative infectivity that we
do not want to make any conclusive statement at this time.

D. Recovery process: Role of random rewiring

We focus here on the case of ICP initial arrangement that is
the worst performer in the recovery process of the lattice. The
randomization of the initial spread of infected sites, as adopted
for the RDIP case, significantly improves the recovery pro-
cess which encourages us to apply a kind of randomness
by rewiring of links of the lattice with some probability, p,
keeping the total number of links unchanged. The rewiring
strategy [34] allowed us to construct a new connectivity
graph from regular (p = 0) to random (p = 1) by introducing
long- and short-range interactions among the patches that
showed a history of improved performance with an emergent
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(a) p = 0 (b) p = 0.1 (c) p = 0.15 (d) p = 0.2

(e) p = 0.22 (f) p = 0.22

FIG. 6. Snapshot of infected patches in the lattice with increasing rewiring probability (p) in the case of ICP initial arrangement of infection.
(a) Initial infection in 75% of the patches at a fixed migration rate ε = 1 and βinfn = 0.017 where p = 0 [similar to Fig. 3 (A5)]; (b) infection
spreads to more infection-free patches when few long-range connections (p = 0.1) are added. Recovery starts with a gradual decrease in the
number of infected patches for increasing rewiring probability (c) p = 0.15, (d) p = 0.2. (e) A new network emerges from the lattice that
becomes infection-free at p = 0.22. Long-range connections are indicated by thin black lines in (b)–(e). (f) Final emergent network (p = 0.22)
that presents a better visualization of degree distributions of each node or patch, where the size of the circles indicates the degree of the nodes.
Other parameters are the same as given in Fig. 3 (A5).

infection-free network. The movement of susceptible and in-
fected hosts is no longer restricted to nearest neighbors only,
hosts are rather allowed by this rewiring to migrate to long-
distance sites of the lattice. We initiated the study with 85%
infected patches in ICP initial arrangement at a migration rate
ε = 1, βinfc = 0.017, and p = 0 as shown in Fig. 6(a) [which
is the original lattice structure in Fig. 3 (A5) with no rewiring].
A random rewiring adds new direct connections or links (thin
black lines) between the long-distance patches beyond imme-
diate neighbors and withdraws some of the nearest neighbor
links, but keeping the total number of links remain unchanged.
As a consequence of our proposed rewiring, infection spreads
into noninfected patches and at first deteriorates the epidemic
situation in the emerging networks [Fig. 6(b)] for varying
p. However, a gradual recovery of infected patches in the
lattice is then noticed as the rewiring probability is further
increased as shown in Figs. 6(c) and 6(d). A global recovery
from infection is observed at a rewiring probability p � 0.22
[Fig. 6(e)]. The emergent network structure (with rewired
black links) in Fig. 6(e) for p = 0.22 is redrawn in Fig. 6(f)
for a better visualization of the degree distribution of nodes
and their links, where the degree is represented by the size of
the nodes (white circles).

We investigate the progress and recovery of infection with
rewiring probability and its relation to the critical migration
rate when a lattice is globally infection-free. For this purpose,
for a fixed βinfn and a given rewiring probability p, the critical
migration rate ε = εc is estimated. The estimation of εc is
repeated with varying rewiring probability p. The estimation

of εc with varying p is then repeated for two additional
βinfn values. A plot of critical migration rate and rewiring
probability follows a power law εc(p) = κ p−α , as shown in
Fig. 7. Numerically simulated data points (triangles, circles
and squares) of εc are plotted in a log-log scale for three
different βinfn = (0.015, 0.017, 0.02) and fitted with dashed
lines that show an exponent value of α = 0.75 with a nor-
malization coefficient κ set between 0.18 � κ � 0.5. The
statistical variation in the estimation of the critical migration
rate for 50 repeat simulations is shown in bars in each plot for
random variations in infected sites for each set of parameters.
The power law explains that at a given βinfn and for a lower
rewiring probability p, a larger critical migration εc is neces-
sary for a complete disease-free state with the emergence of
a new network; increasing p can reduce the critical migration
rate εc to a lower value for realizing a disease-free network.
And for each set of parameters (εc, p) there is one emergent
network free from the disease. In principle, we can obtain a
number of infection-free emergent networks for each set of
given parameters. The possibility of getting any infection-free
network decreases with increasing βinfn values. An infection-
free state is never achieved as revealed by the three plots
for βinfn = (0.015, 0.017, 0.02) where the span of the plots
decreases with βinfn , and for larger values it vanishes. An
interesting point to note is that the critical migration rates
(εc � 0.185, 0.33, 0.63) obtained by the power law at p = 1
for the three cases are almost close [cf. Fig. 4(c)] to the
critical rates of migration (εc = 0.2, 0.35, 0.65) obtained from
the RDIP initial distribution for the same values of βinfn =
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FIG. 7. Critical migration rate (εc) against rewiring probability
(p) plot in log-log scale. Three different plots represent three forces
of infection βinfn = 0.015 (red triangle), 0.017 (blue circle), 0.02
(red square). For each value of p, estimates of εc are averaged over
50 simulations on generated network samples, and the variations
(standard deviation) are marked by bars. For each set of parameters
(εc, p, and βinfn ), there is one emergent network that evolves with
rewiring and becomes infection-free. The span of each plot decreases
with higher βinfn indicating that for a larger value, there exists no
emergent network with a possibility of a disease-free state. All other
parameters including βom = 0.002 are kept fixed as given in Fig. 2.

(0.015, 0.017, 0.02), which corresponds to global extinction
of infection. It supports a general perception about the con-
structive role of random processes in many natural phenomena
[46–48].

IV. CONCLUSION

Disease progression and recovery in a network is a com-
plex process. We target a particular situation of disease
spreading with a variation in the initial pattern of infected
sites in a network, and investigate how a particular pattern
of initially infected sites affects the disease spreading with
the dispersal of both an infected and susceptible population,
and if a self-organized recovery process starts at all. We give
due attention to the impact of the number of initial infected
patches, the migration rate, and the force of infection. The
lattice is most vulnerable to infection if it is initiated from
centrally located sites (ICP initial arrangement) and spreads
via migration of both the infected and the susceptible popula-
tion between the neighboring nodes. Global prevalence of the
disease is most likely to occur if the initial number of infected
patches and the migration rate are both high; no self-organized
healing process starts except for a low force of infection.
Disease management in such a case may be harder, and
controlling strategies should contain the restricted movement
of the hosts and various disinfection methods. Comparably,
spreading from initial infection in peripheral sites (IPP case),
although it increases with migration, shows signs of recovery
at a higher rate of migration. On the contrary, an initial ran-
domly distributed infected sites (RDIP) in the lattice shows a
higher resilience compared to other two initial arrangements

ICP and IPP. In particular, the RDIP initial distribution in the
lattice plays a significant role in the recovery process besides
its dependence on the initial number of infected patches (%),
rate of migration, and force of infection. We estimated the
largest initial fraction of infected patches (%) for the RDIP
distribution that can achieve an infection-free state when the
recovery process shows to follow an exponential law with
relative infectivity. Seemingly, the initial ICP arrangement
is the worst performer in both the spreading and recovery
process. In this particular case, a random rewiring of links or
addition of long-range links as new migratory paths improves
the disease state, and the global prevalence thereby declines
and this condition progressively improves with the rewiring
probability. Finally, at a critical migration rate and a rewiring
probability, an infection-free network emerges. Interestingly,
the critical migration rate and the rewiring probability that
finally governs the recovery process follows a power law. In
principle, for each set of (βinfn , p, and εc) values, there is
an emergent infection-free network, which, of course, does
not exist for larger βinfn . Although this study has not targeted
a specific disease in the lattice, it explains the underlying
mechanisms of disease spreading and the recovery process of
many different types of diseases, in particular, those which
are self-declining. While preparing our report, the world pan-
demic due to SARS-CoV-2 has arrived, locking down the
entire world with daily reports of new spread and death, which
is still not under control and poorly understood. We do not
rush to make any statement on the spread and recovery of the
disease at this time.
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APPENDIX

In this Appendix, we elaborate that an arbitrary choice
of yh threshold does not affect the qualitative nature of our
main results. Then we show the temporal dynamics of all the
infected and infection-free (susceptible) hosts in the whole
population of all the sites in the lattice. They reveal their
states for a long-time run with increasing migration. They
present a real-time impression of the actual state of the whole
population in all the sites and how they evolve in time during
a process of recovery or failure from recovery with increas-
ing migration. The stability of the final stages of both the
host populations (susceptible and infected) is analyzed using
eigenvalue analysis of the lattice whose dynamics is defined
by a set of coupled differential equations. A semianalytical
technique has been adopted here for the coupled dynamical
equations to derive the stability condition of the asymptotic
states of the lattice. We form the Jacobian matrix of the
coupled dynamical equations of the lattice by linearizing at
the infection-free equilibrium state. Then we numerically de-
termine all the eigenvalues of the matrix. When the largest
eigenvalue becomes negative or crosses the zero line (blue
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FIG. 8. Infection spreading and recovery process in the lattice with migration rate, ε. To define an infected patch, the threshold is chosen
as yi > yh = 0.001. Each of (a) ICP, (b) IPP, and (c) RDIP cases starts with 19% infected patches for five different force of infections βinfn

= (0.012, 0.015, 0.017, 0.02, 0.022, 0.035). Parameters are as in Fig. 4. It shows that infection spreading and recovery is not affected by the
considered threshold value, yh = 0.01.

line) as shown in Figs. 4(d)–4(f), with increasing migration
ε, we obtain a stable infection-free state.

1. Effect of the threshold value yh

In the main text, we chose the threshold value yh = 0.01 ar-
bitrarily to define an infected patch and plotted Figs. 4(a)–4(c)
to show how infected patches recover from the disease with
increasing migration for three considered initial arrangements
of infected sites. We reproduced the results in Figs. 8(a)–8(c),

here with a lower threshold yh = 0.001. It confirms that the
qualitative nature of the results with yh = 0.001 remaining the
same as those of yh = 0.01.

2. Time evolutions of susceptible and infected population

Here we show the temporal evolutions of the susceptible
(xi) and infected hosts (yi) in all the sites in Fig. 9 with
increasing migration that correspond to Fig. 3. Such a de-
scription of time evolution visualizes the real-time evolution

FIG. 9. Temporal evolution of susceptible (xi) and infected (yi) population. First row: Population densities of the lattice with ICP
arrangement for ε = 0.5 (a, b) and ε = 1 (c, d) corresponding to Figs. 3 (A4) and 3 (A5), respectively. These figures show that infection
persists in the lattice for both cases. Second row: Population densities of the lattice with IPP arrangement for ε = 0.63 (e, f) and ε = 0.65 (g,
h) corresponding to Figs. 3 (B4) and 3 (B5), respectively. These figures show that infection persists in the lattice for ε = 0.63 but dies out for
ε = 0.65. Third row: Population densities of the lattice with RDIP arrangement for ε = 0.2 (i, j) and ε = 0.316 (k, l) corresponding to Figs. 3
(C4) and 3 (C5), respectively. These figures show that infection persists in the lattice for ε = 0.2 but dies out for ε = 0.316. Parameters are as
in Fig. 3.
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of each host in all sites. For the ICP case, time evolutions
of xi and yi are shown in Figs. 9(a) and 9(b) for ε = 0.5
(corresponding to panel A4 in Fig. 3), which confirms that the
susceptible population takes different stable values (xi �= 0) in
the long-time run while the infected population also assumes
different values ranging from yi = 0 to yi �= 0. This particular
state is defined as the IHSS in the literature [41–44]. Some
more patches are infected when the migration rate becomes
higher as shown in their time evolutions in Figs. 9(c) and 9(d)
for ε = 1.0 (cf. panel A5 in Fig. 3). The IHSS state explains
the coexistence of susceptible and infected populations in
long time, which never converge to a unique infection-free
stable state (xi �= 0, yi = 0). In the case of IPP, IHSS has also
emerged as shown for a migration rate ε = 0.63 in Figs. 9(e)
and 9(f) (cf. panel B4 in Fig. 3). However, the steady-state
values are slowly converging and finally reach the HSS state
for ε = 0.65; time evolutions of xi and yi in Figs. 9(g) and 9(h)
(cf. panel B5 in Fig. 3) show that both hosts converge to the
unique infection-free equilibrium state (xi �= 0, yi = 0). Such
a unique equilibrium state as reached by all the hosts in the
lattice is defined as the homogeneous steady state (HSS) in the
literature [41–44]. This HSS basically represents a stable equi-

librium state of an uncoupled node [Es = (xs, 0)], where the
entire lattice is infection-free, as confirmed by our eigenvalue
analysis. For the RDIP case, the time evolution of the hosts
xi and yi passes through an IHSS state for an intermediate
value of ε = 0.2 as shown in Figs. 9(i) and 9(j) (cf. panel
C4 in Fig. 3) and eventually converge to the unique HSS in
Figs. 9(k) and 9(l) (cf. panel C5 in Fig. 3) for ε = 0.316.

3. Stability of the infection-free equilibrium of the lattice

In the infection-free state, the lattice reaches an HSS state,
when the susceptible population arrives at the stable equilib-
rium Es(xs, 0) where the infected population no longer exists,
yi = 0. A semianalytical strategy is performed to confirm the
local stability of the HSS state first by linearizing the coupled
equations (1) representing the lattice, to derive the Jacobian
matrix at the infection-free equilibrium Es = (xs, 0), then nu-
merically calculating all the eigenvalues of the matrix for the
corresponding set of selected parameters. The Jacobian matrix
of the coupled system of the square lattice of 20 × 20 patches
(1) at the infection-free equilibrium Es = (xs, 0) then reads

J(xs ,0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xsb1(2c1−1)
c1(1−c1 ) − d1 − ε,

xsb1(2c1−1)
c1 (1−c1 ) + γ − xsβ1,

ε
2 , 0, 0, 0, · · · 0, 0, 0, 0

0, xsβ1 − d1 − γ − α − ε, 0, ε
2 , 0, 0, · · · 0, 0, 0, 0

ε
3 , 0,

xsb1 (2c1−1)
c1(1−c1 ) − d1 − ε,

xsb1(2c1−1)
c1(1−c1 ) + γ − xsβ2,

ε
3 , 0, · · · 0, 0, 0, 0

0, ε
3 , 0, xsβ2 − d1 − γ − α − ε, 0, ε

3 , · · · 0, 0, 0, 0
...

. . .
...

...
. . .

...

0, 0, 0, 0, 0, 0, · · · ε
2 , 0,

xsb1 (2c1−1)
c1 (1−c1 ) − d1 − ε,

xsb1 (2c1−1)
c1 (1−c1 ) + γ − xsβ400

0, 0, 0, 0, 0, 0, · · · 0, ε
2 , 0, xsβ400 − d1 − γ − α − ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A1)

We numerically calculate the eigenvalues of J(xs,0) with
varying ε. Let the maximum of the real eigenvalue spectrum of
the Jacobian (A1) at Es = (xs, 0) as a function of ε be defined
as

λmax(ε) = Re
∣∣eig

[
J(xs,0)

]∣∣
max. (A2)

The critical value, εc, is numerically obtained when λmax

becomes negative from its positive value. Thus,

λmax < 0, for ε > εc. (A3)

Under the condition (A3), the infection-free equilibrium state
is locally stable, implying that the entire lattice recovers

completely from the infected state. The largest eigenvalues
for HSS are plotted in Figs. 4(d)–4(f). Thereby, we semian-
alytically estimate the critical values ε = εc for different βinfn

in the cases of ICP, IPP, and RDIP arrangements, and they are
verified with their numerical counterparts shown in Figs. 4(a)–
4(c). The critical migration rates are estimated for all three
cases: (1) ICP initial arrangement, εc = 0.07 for βinfn = 0.012
(only one case when the lattice becomes infection-free);
(2) IPP arrangement, εc = 0.02, 0.34, and 0.65 for βinfn =
0.012, 0.015, and 0.017, respectively; and (3) RDIP arrange-
ment, εc = 0.01, 0.2, 0.35, and 0.66 for βinfn = 0.012, 0.015,
0.017, and 0.02, respectively.
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