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Role of modularity in self-organization dynamics in biological networks
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Interconnected ensembles of biological entities are perhaps some of the most complex systems that modern
science has encountered so far. In particular, scientists have concentrated on understanding how the complexity
of the interacting structure between different neurons, proteins, or species influences the functioning of their
respective systems. It is well established that many biological networks are constructed in a highly hierarchical
way with two main properties: short average paths that join two apparently distant nodes (neuronal, species,
or protein patches) and a high proportion of nodes in modular aggregations. Although several hypotheses
have been proposed so far, still little is known about the relation of the modules with the dynamical activity
in such biological systems. Here we show that network modularity is a key ingredient for the formation of
self-organizing patterns of functional activity, independently of the topological peculiarities of the structure of
the modules. In particular, we propose a self-organizing mechanism which explains the formation of macroscopic
spatial patterns, which are homogeneous within modules. This may explain how spontaneous order in biological
networks follows their modular structural organization. We test our results on real-world networks to confirm the

important role of modularity in creating macroscale patterns.

DOI: 10.1103/PhysRevE.102.052306

I. INTRODUCTION

Patterns are macroscopic structures that are the distinctive
mark of the self-organization in a system of microscopic in-
teracting entities [1]. They are ubiquitous in nature and can
be seen in the spots of a leopard’s fur or the colored scales
of a butterfly’s wing [2]. In 1952, Alan Turing published his
seminal work on pattern formation, The Chemical Basis of
Morphogenesis, where he laid down an elegant and plausible
theory that can be used to explain the formation of patterns
[3]. Turing developed a simple model of pattern formation
that established the minimal requirements for a biochemical
system to self-organize. Turing’s minimal system is composed
of two “competing” chemicals, an activator and an inhibitor,
which share the same spatial domain where they react and
diffuse. Based on a diffusion-driven instability mechanism,
today known as Turing instability, Turing showed that it is
possible to explain and predict the growth of spatially inho-
mogeneous perturbations away from a spatially homogeneous
steady state. These perturbations in concentration are later sta-
bilized by nonlinearities in the system, yielding the celebrated
Turing patterns. It can be shown that the right combination
of short-range activation and long-range inhibition, caused by
slowly diffusing activators and rapidly diffusing inhibitors,
enables the pattern forming phenomenon [4].

Conventionally, an activator-inhibitor system is modelled
using a set of reaction-diffusion equations that describe the
evolution of the concentrations of activator and inhibitor
throughout a continuous medium. These equations can read-
ily be adapted to describe activator-inhibitor systems in
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discrete systems such as regular lattices, and they have been
used in this way to describe pattern formations in cellular
tissues [4,5]. However, biological tissue often takes more
complex forms, and the spatial support cannot always be
adequately formulated via regular lattices. Inspired by the
network structures of early stages of embryogenesis [6], eco-
logical metapopulations [7], or coupled chemical reactors [8],
researchers have extended the reaction-diffusion formalism to
complex biological networks [5,9-15]. These discrete struc-
tures consist of graphs where the nodes usually represent
the cells inside which reactions occur, and the edges usually
represent the routes through which cells communicate by ex-
changing chemicals.

Hiitt er al. [16] recently argued that the formalism of
activator-inhibitor systems is relevant to the dynamical pro-
cesses evolving in the brain [16]. The implementation of
network tools for analyzing the brain’s structure has been used
since the first years of network science [17]. In their seminal
work, Watts and Strogatz [17] studied the topology of the
neuronal network of the nematode C. elegans and discovered
that these networks possess a “small-world” property. In the
literature, it has also been argued that many brain networks
might be small-world networks [18-20]. It is widely accepted
that the small-world property of brain connectomes should
help the communication between neurons inside the brain by
integrating multiple segregated sources of information [21].

A further property of brain networks is that they are of-
ten modular [18] so that the neurons can be segregated into
communities (referred to as modules) where two neurons
chosen at random from the same module are much more
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likely to be connected than two neurons chosen at random
from different modules. The functional role that the modu-
larity of brain connections has been discussed from several
perspectives. For example, due to the increased structural
stability [21,22], the modularity might have been crucial in
the evolution and development of the brain. According to
[18,22] modular topology can also optimize the wiring cost in
the case of spatial networks. A small number of long-range
(and thus costly) connections reduces the diameter of the
network, and allows the remaining nodes, now grouped into
communities or modules, to form dense small world networks.
Also, more compact segregation of neurons may contribute
to the specialization of the neurons in their functional duties
[21]. To ensure both a low shortest path length, and a high
clustering coefficient, brain networks are organized in a strict
hierarchical manner [18,23,24] where at the first level of the
hierarchy sets of nodes (the modules) are connected to mimic
a small-world topology and the same happens at the second
level of hierarchy and so on, until the single node level. For
a more detailed discussion of the role of the hierarchy in the
pattern formation process see the Appendix.

More generally, modularity is a common topological prop-
erty that naturally emerges in biological, ecological, and
social scenarios where the different communities are asso-
ciated with different functions of the system represented by
the network as a whole [25]. There are many examples of
this: in protein interaction networks, the proteins that share
similar functions are grouped together in modules [26]; in
metabolic networks, there are structural and functional com-
munities corresponding to cycles or pathways [27]; and in
citation networks, scientific papers are clustered according to
their research topic [28]. In addition to these properties, in this
paper, we propose a mathematical mechanism that highlights
the role that modularity takes in self-organizing processes in
biological networks.

Using the Turing theory of pattern formation, we show that
spatially extended patterns can be triggered by the segregation
of the nodes (neurons) in distinguishable communities. To for-
mally analyze the chances of such networks self-organizing,
we use a linear stability approach known in the literature as the
dispersion relation [2]. We focus on modular networks, which
in contrast to many other random networks, are characterized
by a small spectral gap, i.e., a small distance of the second
largest eigenvalue [29] of the Laplacian from the origin. Let
us notice here that a small spectral gap is a characteristic also
of large (dense) regular graphs; however, here we focus on
random graphs. To anticipate some of the technical details, we
discuss the key features of modular networks in the following
paragraphs and outline how these affect pattern formation.

For modular networks, the Laplacian eigenvalues that may
be responsible for the Turing instability can be split into two
sets. In one set, we have the eigenvalues emerging due to the
global modularity of the network, which we denote as “mod-
ular eigenvalues.” In Sec. III, we will show that when only
this part of the spectrum is responsible for the instability, then
the shape of the associated pattern follows that of the network
in the sense that nodes belonging to the same modules have
very similar concentrations of the species among themselves,
but these concentrations are distinctly different from the con-
centrations in other modules. In contrast, if the instability is

caused by the remaining set of eigenvalues, which correspond
to the local connectivity of nodes, here denoted as “nonmodu-
lar eigenvalues,” then all the nodes have (in principle) different
concentrations making the pattern globally heterogeneous. In
this later case, if the eigenvalues responsible for the instability
are limited to the eigenvalues belonging to a single module,
then the pattern will first emerge in that module.

We aim to create a bridge between the role of the struc-
ture in many biological networks with the dynamical activity
therein. In particular, in our model, we explain how commu-
nities of biological entities (cells, individuals, etc.) can act as
functional units in their corresponding biological systems. As
a consequence, we argue that this approach can potentially be
used in community detection methods [30-32] for networked
biological systems where Turing patterns are known to exist.
However, it is important to note that this method partitions
the network in a similar fashion to the Fiedler partitioning.
Therefore, it is possible to underestimate the total number
of communities. Additionally, using pattern formation for
community detection does not distinguish between functional
communities and structural communities.

In this paper we begin in Sec. II with a description of the
mathematical background of Turing patterns. This will lead
us into a discussion as to why modularity is critical to the
formation of patterns in Sec. II. We describe the different
types of patterns which form in Sec. III, and show how in-
creasing the modularity helps in the formation of patterns.
Finally in Sec. IV we look for Turing patterns in some real
world networks.

II. PATTERN FORMATION ON A NETWORKED SYSTEM

In a continuous domain, the most simple Turing mecha-
nism is given in terms of reaction-diffusion equations that
describe the evolution through time and space of the con-
centrations of two competing chemical species, called the
activator [with concentration denoted u(x, ¢)] and the inhibitor
[with concentration denoted v(x, )] [2,3]. In general, an ac-
tivator increases production of both itself and the inhibitor.
The inhibitor, in turn, slows down the growth in the activa-
tor. When the spatial support is instead discrete, constituted
by spatial patches (nodes) connected through communicat-
ing routes (links) the reaction-diffusion mechanism can be
formulated using ODEs, instead of PDEs [5]. In general, a
two-species reaction-diffusion model on a network of N nodes
will take the form

du; .

ng(“ia vi)+Du2j:Lijuj, Vi=1,...,N,

dv; .
?zg(ui,vi)+DvZL,’jvj, Vi=1,...,N, (1)

J

where u; and v; represent the concentrations of activator and
inhibitor, respectively, at node i; f and g are nonlinear func-
tions that describe the net production rates of activator and
inhibitor, respectively; D, and D, are the diffusion coefficients
of activator and inhibitor, respectively; and L is the graph
Laplacian operator. The entries L;; of the graph Laplacian
are defined by L;; = A;; — k;8;;, where A is the adjacency
matrix, k; is the degree of node i, § is the Kronecker delta and
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where we do not sum over repeated indices. To understand
the development of spatial patterns, we analyze the linear
stability of the system starting from a homogeneous steady
state (u*, v*) that is stable in the absence of diffusion. If the
diffusion coefficients are nonzero and the ratio p = D, /D, is
large enough, the steady state (u*, v*) becomes unstable and
small random perturbations of the previous steady state will
grow. This growth is exponential in the initial linear regime,
and may then be stabilized by the nonlinear terms of the
functions f and g so that the system reaches a stable but
spatially inhomogeneous steady state. Such a mechanism is
responsible for the emergence of Turing patterns.
The linearized system in matrix form reads

d(6x)
dt

where 6x = (u — u*1y, v — v*1y) is the perturbations vector
of the activator u and inhibitor v species, 1y is the all-ones
N-dimensional vector, and

DIy 0
D—[ 0 DUIN]

= (J + DL)sx, (2)

is the diffusion constant matrix. Note that Iy represents the N
by N identity matrix, so that D is 2N by 2N. The Jacobian
matrix and the extended Laplacian are correspondingly

s |y flv| ¢ _|L O
= N L - .
J [guIN ngN 0 L
Note here that the notation J will be reserved to identify the
Jacobian of the 2 x 2 reactions matrix:

g [f ]
8u  8v
We then look for solutions to Eq. (2) of the form

N
Su = Zbae"(/‘”)’@“,

a=1

N
SV = Z Cue” P P (3)

a=1

where A, ®¢ are, respectively, the eigenvalues and eigenvec-
tors of the Laplacian L matrix, o (A, ) are the eigenvalues of
the extended Jacobian (J + DL), and « is the index term.

As will be seen in the following, the description of the
linear solution through the eigenvectors of the Laplacian ma-
trix will be essential in our analysis for the prediction of
the modularity of final patterns. In fact, depending on which
eigenvalues o (A, ) have positive real part, we can control the
final shape of the pattern, as in Fig. 3.

Following the standard approach described by [2,5,9], we
substitute the expansion of the perturbations into Eq. (2). This
decomposes the extended Jacobian to a 2 x 2 matrix (for each
index «) for which the eigenvalue problem needs to be solved

_ fu+Dqut fv
J“‘[ 2 gv+DvAa]’ @

where subscripts on the activation function f(u, v) and the
inhibition function g(u, v) represent partial derivatives eval-
uated at (u*, v*). To study the stability of the linear system

we look for positive real parts of the eigenvalues of J,.
Turing instability occurs when the real part of the larger of
the two eigenvalues o (Ay) = (trJ, + +/ (trJ,)? — 4det],)/2
is positive. The relation between the eigenvalues of the ex-
tended Jacobian and the eigenvalues of the Laplacian o (Ay)
is known in the literature as the dispersion relation [2], for
the continuous version see Appendix A 2. For an activator-
inhibitor system the necessary conditions for stability are
trJ, < O and detJ, > 0. The first condition is always true
since trJ, = trJ + (D, + D,)A,, and this is negative since
the stability of the fixed point in the absence of diffusion
implies that trJ < 0, while the nonpositivity of the Laplacian
spectrum implies A, < 0. We therefore turn our attention to
the second condition for stability, which concerns detJ, =
detJ + (fuDy + gvDy) Ao + DL,DUA(%. In order for a Turing
instability to occur, we require det]J, < 0. Noting that the
stability of the fixed point in the absence of diffusion implies
that det(J) > O and noting that A, < 0, it is straightforward
to conclude that the only way for detJ, to be negative is for
(fuDy + guD,) to be positive. Without loss of generality we
define u to be the activator and v to be the inhibitor. Recall-
ing the previous definition of an activator-inhibitor system, u
increases the production of both species while v decreases
the production of both species. As a result of this, the signs
of the respective partial derivatives are f, > 0, and g, < 0.
Therefore, we require p = D, /D,, > 1 for instability [2,3,5],
implying that the inhibitor should diffuse faster than the
activator in order for Turing patterns to arise. In many prac-
tical cases, this difference needs to be very large to achieve
det(J,) < 0.

Case for D, = D,

From experimental observations [33-36] it is rarely true
that the inhibitor diffuses much faster than the activator, but
instead the chemicals diffuse with similar rates. In the case
where D, 2 D, it can be shown that the dispersion relation is
positive only for values of the spectrum of the Laplacian very
near to the origin. To prove this we analyze the behavior of
det(J,) when considered as a function of A,; more precisely,
we focus on the value of A, corresponding to a minimum of
det(J,). It is known in the literature [2] that for the continuous
case, there will always exist a nonpositive value of A, such
that det(J,) < O or, in other words, that Turing instability
can occur. To proceed with our analysis, in the following, we
will consider that A, takes continuous values and will see
that the spectrum of a (strongly) modular network fits in the
domain of the continuous dispersion relation for which the
instability occurs for the particular case D, 2 D,. We start
by differentiating with respect to A, and after some algebraic
manipulation, we find that the minimum of det]J, is found at
Ay = Apin Where

Amin = — . (5)

From relation (5) we note that if D, is kept fixed while p — 1
then A, — 0. To show this we set p = 1 4+ €. Under the
conditions of the Turing instability, A, is nonpositive, so
(1+€)f, + gv > 0. Rearranging, we can write (1 +€)f, +
g, = tt] + € f, and, noting that trJ is necessarily negative, we
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conclude that the positive quantity trJ + € f;, can be at most of
order € since €f, > |trJ|. This shows that A, is of order €.
Therefore, as € decreases, the value of A, for which det], is
at its minimum tends towards the origin. Hence, the possible
values of A, that may permit Turing instabilities tend towards
zero as the ratio p of diffusivities tends to 1. In practice, this
implies that the range of values of A, for which instabilities
can occur decreases in size and is restricted to small values
of A,. Therefore, a small spectral gap is needed to allow
patterns to form. This is significant for the analysis of modular
networks that follows since, as shown in the following section,
modular networks are characterized by a small spectral gap
|A, — Ay]. Hence the Laplacian of a modular network will
have eigenvalues close to the origin. Because of this, we are
able to find modular networks where Turing instabilities, and
thus pattern formation, may occur where otherwise (i.e., in
nonmodular networked systems) they would not. This modu-
lar pattern formation may even occur for values of p that are
close to those observed in real systems.

III. TURING PATTERNS ON MODULAR NETWORKS

It has been argued that that the existence of particular
topological features in many types of networks, including
brain networks, are of crucial importance in several important
processes from neuronal communication [39] to structural
robustness [40]. Such functional properties are based on the
short average path length that characterizes this family of
networks. We emphasized in the preceding subsection that the
spectral gap is an important ingredient for the Turing instabil-
ity. In this section, we further illustrate this fact by taking into
account a special family of networks, the modular ones, that
are known for for their lack of spectral gap. As a comparison
we contrast the process of pattern formation in a nonmodular
network such as a Newman-Watts (NW) network (a particular
case of a small-world network) with the pattern formation on
a modular network generated using the stochastic block model
(SBM).

As described in Refs. [18,21,41], modular structure has
been identified in many brain networks. Since the FitzHugh-
Nagumo model [42,43] is both useful for modeling neuronal
dynamics [2], and since it can exhibit spatial pattern forma-
tion [2,11], we will use this model throughout this paper. In
dimensionless form, FitzZHugh-Nagumo dynamics correspond
to using the functions f(u,v)=u—u®> —v and gu,v) =
c(u — a + bv) to describe the net production of activator and
inhibitor in Eq. (1) where a, b, and ¢ are constants. The
parameters of the model are always chosen such that we have
a stable fixed point.

In Fig. 1 we compare the pattern on a single-module NW
network (of 125 nodes and 660 edges) and a modular network
with five communities, each with 25 nodes and a local Erdés-
Rényi (ER) topology. As can be observed from the dispersion
relation in Fig. 1(b), the distribution of the eigenvalues of the
Laplacian matrix for the NW network, which shows a large
spectral gap. This makes the Turing instability impossible for
the given choice of parameters (including p = 5.5), since the
instability (i.e., values of A corresponding to positive values
of the continuous curve) is concentrated near the origin. We
could potentially create an instability by significantly increas-

ing p, or optimize the rewiring to minimize the diameter.
As t — oo, the FitzHugh-Nagumo models considered in this
paper will tend to an equilibrium. One way to depict these
equilibria is to plot the concentration of the activator species
at long times. For the nonmodular network described above,
this is shown in Fig. 1(a) and we see that the activator concen-
tration is homogeneous across all nodes as expected.

In contrast to this, for a strongly modular topology the
spectrum is divided into two distinct sets of eigenvalues. The
first set is those nonzero eigenvalues near the origin (of which
there are M — 1 where M is the number of the modules) and
the second set is composed of all the remaining eigenvalues
that are far from the origin [44]. We note that both the NW net-
work and the modular network have the same number of nodes
and edges, so the difference between the networks’ spectra
cannot be attributed to a difference in the number of nodes or
in the average degree of these nodes. As already anticipated,
we will refer to the first set of nonzero eigenvalues of the
Laplacian matrix as the modular eigenvalues [for example, in
Fig. 1(d) the first four nonzero eigenvalues]. In Fig. 1(d), we
observe that the modular eigenvalues are sufficiently close to
0 and in the interval of possible values of the spectrum where
the instability can develop; in Fig. 1(c) we see that this leads
to a pattern in the activator concentrations at equilibrium.

To understand the reason why the spectrum of a modu-
lar network can be divided into two subsets we should first
explain the reason behind the spectral gap in small-world net-
works. As mentioned earlier, the denomination “small-world”
refers to a certain class of networks, one feature of which
is the small average distance between nodes. In Ref. [45],
Bojan showed that the absolute value of the second largest
Laplacian eigenvalue |A;| is bounded below by |%|, where
N is the number of nodes in the network and d is the di-
ameter. This means that for a fixed value of the size N of
the network, the lower bound of the spectral gap (equiva-
lently, |A;|) is larger when the diameter d is smaller; this
prevents a nonmodular network (such as a NW network)
having a smaller spectral gap than a modular network [46].
We want to emphasise that regular networks (e.g., rings)
have a large diameter, too, having this way a small spectral
gap. However, our focus here is on random networks which,
apart from the modular ones, are characterised by a small
diameter.

To further investigate how the spectral gap changes for dif-
ferent network topologies, we look at three different networks
in Fig. 2. We create these networks in a simple way. First we
divide our 125 nodes into five modules of nodes, and define
the total number of intra-edges (connections within mod-
ules) and inter-edges (connections between modules). Then
we allocate each module an equal number of intra-edges and
inter-edges and randomly connect nodes within and between
the modules, while avoiding double entries in both cases. If
we define the number of intra-edges to be much larger than the
number of inter-edges, then this process will yield a network
with as strong modular structure. We describe three examples
of these networks with increasing “modularity,” where modu-
larity is defined by the Q function described in Refs. [37,38].
We first look at an ER graph, as shown in Fig. 2(b). Notice
that there is a large spectral gap in the corresponding dis-
persion relation, as shown in Fig. 2(a). By simply modifying
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FIG. 1. Modular vs. nonmodular topology in Turing pattern formation. (a) A Newman-Watts (NW) network with N = 125 nodes, and 660
edges, where patterns are absent. The color of the nodes represents the concentration of the activator u;(¢), at long time. (b) The dispersion
relation of the NW network (red stars) overlain on the dispersion relation of the continuous case (blue curve), i.e., if the system was on a
continuous domain and not on a network, where we substituted the eigenvalues of the Laplacian with a wave number k2. Notice the absence
of the unstable eigenvalues (inset) and the gap between the zero eigenvalue and the second smallest A,, known as the spectral gap. (c) A
modular network of the same size (same number of nodes and edges) as in (a) where indeed Turing patterns are present. The five modules
are of the Erdds-Rényi (ER) family. The color of the nodes again represents the concentration of the activator u;(¢) at long time. Note that the
concentration of activator is homogeneous within modules, this is due to the modular nature of the network. (d) The dispersion relation of the
modular network (red stars) overlain on the dispersion relation of the continuous domain (blue curve). Notice here the presence of unstable
eigenvalues (inset) and that the eigenvalues are separated in two sets by an important gap, between the first and second set of eigenvalues.
The first four nonzero eigenvalues are denoted as the modular eigenvalues and the remaining nonzero ones as the nonmodular eigenvalues.
The parameters of the FitzHugh-Nagumo model are in both cases D, = 1, p = 5.5, a = 0.7, b = 0.05, ¢ = 1.7. Finally, note the different
colormaps used between panels (a) and (c) to highlight the lack of patterns in the former.

the ratio of inter-edges to intra-edges, we can then generate
a new network which begins to close the spectral gap, as
in Figs. 2(c) and 2(d). Finally in Fig. 2(f) we have reduced
the number of inter-edges such that patterns form, and the
spectral gap is greatly decreased, as in Fig. 2(e). Notice again
that there are two set of eigenvalues, the first four nonzero
eigenvalues (which we refer to as modular eigenvalues) and
the remaining nonmodular eigenvalues. This leads us to ask
why a highly modular network closes the spectral gap so
well. Note that in the Appendix, we consider the hierarchi-

cal case where each module is arranged in a small-world
fashion.

To understand the small spectral gap of modular networks,
we first imagine a scenario in which the modules are discon-
nected from each other. Individually, these modules are denser
and smaller than the Newman-Watts network, therefore each
of them is expected to have a relatively large spectral gap.
From the algebraic connectivity theorem [47] we know that
the number M of the connected components (the modules
in this case) corresponds with the number of zero eigenval-
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FIG. 2. Emergence of patterns by changing the modularity. (a) The dispersion relation for an ER network [shown in panel (b)], made of
125 nodes and 660 edges, and modularity measure Q = 0.02562. (c) The dispersion relation for a weakly modular network shown in panel
(d) consisting of five modules and 540 intra-edges within modules, and 120 inter-edges between modules, and modulalarity Q = 0.6150.
Notice that there is an emerging gap now between the first four nonzero eigenvalues and the rest of them. (e) The dispersion relation for a
strongly modular network (f) with 630 intra-edges, 30 inter-edges, and Q = 0.7545. Notice that the spectral gap between the zero eigenvalue
and the smallest nonzero eigenvalue is much smaller and a pattern has formed on the network. For all simulations D, =1, p = 5.5,a = 0.7,
b =0.05, and ¢ = 1.7. Also we used the algorithms described in Refs. [37,38] with resolution parameter y = 1 the modularity Q in each case.

ues of the Laplacian operator. However, once the modules
are connected with a small number of links then M — 1 of
these eigenvalues will move away from zero. From a spec-
trum perturbative analysis, we find that these become very
small nonzero eigenvalues, with only one zero eigenvalue
still remaining to signify that the whole modular network is
connected [48]. Notice also that due to the algebraic connec-
tivity, a network with a Laplacian spectral gap will always
be modular. This explains the small size of the spectral gap
in modular networks and consequently the emergence or not
of Turing patterns, respectively, in small-world and modular
networks [49,50].

We notice from Fig. 1(c) that although the pattern is highly
heterogeneous at a global level, the patterns on nodes within
each single module are quite homogeneous, having almost
the same concentration of the species for each node in the
module. Such macroscopic spatially extended patterns where
densely connected entities (e.g., of biological nature) show
the same amount of activity have been observed in different
biological contexts [25-27] and in particular in dynamics
of the brain [51,52]. While [51] is mainly an experimental
paper, and first highlights the observation of spatial patterns
on brain networks, we laid down a rigorous mathematical
foundation that explores the importance of modularity to the
formation of Turing patterns. Additionally, we here propose a
self-organizing mechanism that explains the uniformity at the
module level of Turing patterns in biological networks.

We can obtain insight into the patterns of # and v observed
at equilibrium by constructing and analyzing the eigenvec-

tors associated with the Turing instabilities. From an initial
condition close to the unstable homogeneous equilibrium, the
rate of change in the concentrations u# and v will initially
be dominated by the eigenvector associated with the largest
positive eigenvalue of the Jacobian. This initial growth will
ultimately be stabilized by nonlinear terms, and we expect
that the state equilibrium pattern of concentrations will be
reminiscent of the eigenvectors associated with the instability
[2,3]. To begin our analysis of the resultant patterns, we select
parameters which lead to a single modular eigenvalue being
positive, and observe the final “homogeneous by module”
pattern as in Figs. 3(a)-3(c). The situation changes when
the instability is exclusively induced from the nonmodular
eigenvalues. In this case the concentration is no longer uni-
form for each module as shown in Figs. 3(d)-3(f). A hybrid
state is obtained instead when both sets of eigenvalues con-
tribute to the Turing instability as in Figs. 3(g)-3(i). These
hybrid states can lead to patterns that are similar to either
the modular patterns or the heterogeneous patterns. This is
because the Turing instability in this case involves a compe-
tition between the eigenvectors associated with the unstable
modular eigenvalues and the eigenvectors associated with
the nonmodular eigenvalues. The dominant instability (and
therefore the eigenvector that we expect to be most similar
to the equilibrium pattern) will be the eigenvector associated
with the largest eigenvalue of the Jacobian. In Fig. 3(h),
for example, we observe that the largest eigenvalue of the
Jacobian is associated with one of the modular eigenval-
ues of the Laplacian, and this is associated with a pattern

052306-6



ROLE OF MODULARITY IN SELF-ORGANIZATION ...

PHYSICAL REVIEW E 102, 052306 (2020)

@ L@ ®
11 ' 1 11 0.15 1 1I
- ° - e ° ° 03
2. " Soog0 02 ° :'. i o° 01 %o
& ‘; \{ "‘o. at 0.1 f V' v ~"0 hd 0.05 N .“0. g o2
oo o ° :; L Y ] e o :; o [ Y ]
o 0 o N 0.1
o % e ® o ° .
o _-» o o e o o et . o o °o o
s % > 0. g .‘ 8" o ¢ 0.1 s 5 0. g 0.1
.‘ :. ° 02 r‘ :. L (] .‘ :0 (]
v ’. » e o 03 v d o o -0.15 v '. ° e 2 o 02
juis Juit " s
- 03
(e) (h)

0.3

R (o (M)

Node index

100 200 300 400 500
Time

1000

2000
Time

20

3000 4000 5000 100 200 300 400 500

Time

FIG. 3. Patterns classification on modular networks. In all the cases we used a network with N = 125 nodes, 660 edges, and a diameter of
d = 5. (a) Modular patterns are formed when the concentration u; is homogeneous across all nodes in the same module. (b) In the corresponding
dispersion relation we fix the parameters in order to have a single positive modular eigenvalue. The parameters are a = 0.7, b = 0.05, ¢ = 1.75,
p =5.5,D, = 1. (c) Temporal evolution of the modular pattern. (d) A heterogeneous pattern emerges when the nodes inside the modules have
different concentrations. (e) In the corresponding dispersion relation we fix the parameters in order to have a multiple positive nonmodular
eigenvalues. The parameters are a = 0.4, b = 0.05, ¢ = 4.1, p = 14, D, = 0.1. (f) Temporal evolution of the heterogeneous pattern, in which
one can see that the instability first developed in the central module. (g) In-between pattern is a mixed state of the previous patterns. (h) In
this case the instability comes from the contribution of both modular and nonmodular eigenvalues. Here the parameters are a = 0.6, b = 0.05,
¢ =3.625, p =20, D, = 0.16. (j) Temporal evolution of the mixed pattern.

in Fig. 3(i) that could be described as almost being modu-
lar. In the Supplementary Material (SM) we discuss several
criteria to establish which eigenvalue is dominating over the
others [53].

To understand why the final shape of the pattern can be
modular we focus on the study of the eigenvectors as plotted
in Fig. 4. From the stability analysis we know that initially
the pattern is shaped according to the unstable eigenvectors
and this form is largely retained in the final nonlinear regime.
Nevertheless, what surprises is the particular form of the
eigenvectors associated with the modular eigenvalues as in
Fig. 4(a); in particular, the fact that the components of the
modular eigenvectors are segregated according to the respec-
tive modules [54]. To shed light on this peculiarity we will
resort again to spectral graph theory.

As anticipated earlier, the smallest nonzero eigenvalue of
the Laplacian A, defines the spectral gap known also in the
literature as the Fiedler eigenvalue and defines the algebraic
connectivity [55,56]. Its corresponding eigenvector is known
as the Fiedler eigenvector and has the property that the en-
tries of the nodes corresponding to the same modules take
very similar values. Because of this property, the Fiedler
eigenvector has been extensively used as the basis of several
community detection methods [37,49,50]. However, it should
be noted that the Fiedler partitioning can underestimate the
total number of modules as we show in Fig. 4. The other
modular eigenvectors also behave in a similar manner to the
Fiedler eigenvector; their entries are segregated by module
[49,50]. Since the modular eigenvectors are often the fastest
growing modes in the Turing instability, this means that the
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single positive modular and nonmodular eigenvalue, respectively. (a) A modular pattern (inset) is formed when one (or more) of the set of the
modular eigenvalues is unstable and dominant over the nonmodular ones. The parameters are the same as in Fig. 3(a). (b) However, when the
nonmodular eigenvalues dominate over the rest of the spectrum then heterogeneous patterns are created (inset). Furthermore in this setting it is
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for each entry i, and the same normalization is used for the eigenvector. Also the nodes are organized here in

blocks of 25 individuals for each module. Finally the parameters for (b) are D, = 0.1, p = 13.38,a = 0.4, b = 0.05, c = 4.

modular shape of the global pattern is a consequence of the
modularity of the structure of the network itself.

On the other hand, when the instability is caused strictly by
the nonmodular eigenvalues, another behavior occurs during
the pattern forming phenomenon. This is best considered by
again considering a modular network to be a perturbation
of a network with initially M disconnected components. In
such a case, each nonzero eigenvalue of the Laplacian will
correspond to an eigenvector whose components are all zero

small perturbation to this, and so the nonmodular eigenvectors
will also be close to zero except within a single component.
If only one nonmodular eigenvalue corresponds to a Turing
instability, then only one module of the network will show
pattern formation, as illustrated in Fig. 4(b). Thus, we can
predict the module on which pattern formation will occur by
looking at the components of the eigenvector whose eigen-
value corresponds to the fastest growing mode of the Turing
instability.

outside a single component. A modular network will be a

(a)s (b)55

0.5 :
0.2 0.4 0.6 0.8 1 0.4 ' . 0.6 0.7 0.8 0.9 1

a a a

FIG. 5. Parameter space for decreasing diffusivities ratio. We classify different types of pattern on modular graphs in the parameter space
of the (a), (c¢) FitzHugh-Nagumo model, a fixed value of b = 0.05, D, = 0.15, and (a) p = 20, (b) p = 10, (c) p = 6. The portion of the
parameter space indicated in red represents the region where no Turing patterns are allowed, as the system (in the absence of diffusion) is not
in a steady state. All other regions correspond to parameters’ sets for which Turing instability is allowed. The blue part is when the system
is Turing stable, that is, the system is at a steady state but no Turing patterns form. The rest of the region is when patterns may occur: in
the magenta region patterns only form in the continuous domain case, in green we have “modular” patterns, Fig. 3(a), yellow “mixed” state
patterns, Fig. 3 (g), and cyan heterogeneous patterns, Fig. 3(d). Notice that as the ratio of diffusivites approaches 1, p — 1, the only patterns
which form are the modular patterns, showing that in a real scenario modularity is the only way to induce pattern formation in networks with
modular structures, e.g., brain networks.
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FIG. 6. Modular patterns on real-world networks. (a) The modular pattern of the neuronal network of 54 nodes of the nematode P. Pacificus
[57] with parameters D, = 0.7, p = 4.5, a = 0.75, b = 0.04, ¢ = 1.5. (b) The comparison between the normalized unstable eigenvector and
the final pattern shows the presence of two distinct modules. (c) The modular pattern of the network of 23 individuals (nodes) of a zebra herd
[58] with parameters D, = 0.7, p = 4.5, a = 0.75, b = 0.04, ¢ = 1.5. (d) The comparison between the normalized unstable eigenvector and
the final pattern shows the presence of a main module. Note that, to concentrate on the effects of modularity only, in both cases the networks
were simplified to be undirected, and unweighted. We also extracted the giant component in each case.

So far we considered the contribution in the formation of
patterns of both modular and nonmodular eigenvalues, how-
ever, when we deal with Turing patterns in real scenarios the
ratio p = D, /D, is quite close to one [33-36]. To evaluate the
conditions under which different patterns form in real condi-
tions we now explore the parameter space of the FitzHugh-
Nagumo dynamics in more detail. Note that in order for a Tur-
ing pattern to form, we must begin from a stable fixed point.

In Fig. 5 it can be observed that although different types of
patterns can be found in the space of the parameters a and c,
as the ratio of diffusivities gets closer to 1 the region where
patterns can occur shrinks and, more importantly, the only
possible Turing patterns are modular ones (indicated in green
color). One could find patterns in the other regions by tuning
the diffusion parameters, except in the red region due to the
absence of a stable fixed point.

The result that brain networks have optimized their spatial
interaction matrix to allow pattern formation has been al-
ready claimed by experimental observers [51,52]; we present

a mechanism that explains the role of modularity in achieving
this pattern formation.

IV. SELF-ORGANIZATION IN REAL
MODULAR NETWORKS

Heretofore we discussed the role of modularity in the
formation of patterns only for synthetic networks. In this part
we will illustrate our findings in real examples of biological or
ecological networks. The neuronal networks of several primi-
tive animals such as nematodes have been well characterized.
Indeed, it was the study of nematode neuronal networks that
first inspired the development of small-world network models
[17]. In Fig. 6(a) we show the final modular pattern of the
nematode P. pacificus [57]. This follows from the theoretical
prediction of the unstable Fiedler eigenvector, shown in
Fig. 6(b). Here we used the Fiedler eigenvector to identify the
communities of neurons [37]. In this particular case two mod-
ules are clearly distinguishable and the level of activity of the
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nodes inside the modules are quite homogeneous. Other ex-
amples of Turing patterns in neuronal networks are presented
in the Supplementary Material [53]. Although the modularity
of brain networks has been well-studied [18,21,39,41] other
types of natural networks manifest this property also. For
instance, this is the case for ecological networks where the in-
dividuals are connected to each other through trophic relations
[2,58]. Such modular contact networks have also been shown
to be crucial for the pattern of disease spreading [59,60]. In
Figs. 6(c) and 6(d) we present, respectively, the equilibrium
pattern of the FitzHugh-Nagumo equations and its
comparison to the unstable eigenvector of the contact network
of a zebra herd [58] where a community of 11 individuals out
of a total of 23 is clearly visible. However, the formation of
patterns of spreading are not limited only to contact networks,
which in general can be small in size. Modularity is a common
property in other types of networks which, although they are
not directly related to biological systems, are still essential
for biological phenomena occurring on them. This is, for
instance, the case for networks of human mobility, such
the roads networks in the city of Chicago presented in the
SM [53,61-64], which are decisive for the spreading of an
epidemics in the entire urban area [59,60]. These examples
all show agreement with the mathematical analysis we show
so far.

V. DISCUSSION AND CONCLUSION

In this paper we analytically and numerically explored
pattern formation on modular networks. We showed that mod-
ularity, a ubiquitous topological feature of many biological
networks, is crucial for the self-organization of the global
dynamics on a network. To study this behavior we considered
here the Turing instability as a paradigmatic mechanism for
pattern formation in biology, ecology, or neuroscience. The
possibility of pattern formation via the Turing mechanism
on nonmodular networks is limited to unrealistically extreme
ratios of the diffusion constants of the activator and inhibitor
species making the small spectral gap of the Laplacian matrix
a fundamental requirement for the Turing instability. This
feature is a structural advantage of modular networks which
follows from spectral perturbation theory. A strongly modular
network can be considered as a set of connected components
weakly attached with a small number of intermodule links.
From spectral perturbation theory this yields a number —
equal to one fewer than the number of modules — of nonzero
eigenvalues very near to the origin. This characterization at
the linear stability level influences the shape of the spatially
extended patterns. Due to the segregation of the entries of the
eigenvectors corresponding to the set of modular eigenvalues,
we are able to explain why Turing patterns are homogeneous
per module on these networks.

This result opens to an important aspect regarding the
functional resolution of the brain modes which was hypothe-
sized [16,18,65] in several experimental observations [51,52].
The model we present here constitutes an alternative self-
organizing mechanism where the modules are presented as
functional blocks of biological networks. In this sense, we
argue that the module is the smallest spatial unit to be taken
into account from the functional point of view, i.e., if we

“zoom” out far enough from a modular network, the indi-
vidual modules behave like individual supernodes. For the
particular example of the brain the modules might be the
supernodes of the functional connectomes [41,51,65]. Indeed,
the (self)segregation of the network structure in modules [25]
influences also the shape of the dynamical pattern on it. Based
on the fact (see [16,18,41] and Fig. 6) that in real scenarios
Turing patterns should be exclusively modular, we believe that
the results we show here can be potentially used to formulate
a community detection protocol [25,32,37] in the case where
patterns of self-organized activity are known to exist.

In the case when we relax Turing conditions to allow the
instability for the nonmodular part of the spectrum, then we
can use the eigenvector corresponding to the largest eigen-
value to indicate the module in which the Turing pattern is first
seeded before finally spreading to the rest of the network. This
behavior can potentially make the pattern formation process a
powerful diagnostic tool for studying and eventually control-
ling the emergence of abnormal dynamics which characterize
many neurological diseases [66] or the spread of an epidemic
in a group of individuals [59,60]. We test our theoretical
results on several real connection data sets of neuronal, eco-
logical, and infrastructure networks verifying the correctness
of our findings, that modularity is crucial for the development
of patterns, and that when the instability is derived from
the first set of modular eigenvalues, that the resultant self-
organization follows the modular structure of the network.

The results we presented here can extend also to more
complicated scenarios. This is, for example, the case when
the hierarchy of a network is considered as a complement
to its modularity. In the Appendix we show that in a hier-
archical modular network the modular eigenvalues are even
more relevant for the Turing pattern forming process. Further
extensions of our approach are also possible; for example, to
consider the effect of directed edges in a modular network. In
this case we expect a richer dynamics where traveling Turing
waves should emerge in a directed modular networks [11].
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APPENDIX

1. FitzHugh-Nagumo model

We used the Fitzhugh-Nagumo model throughout this
paper [42,43], which is one of the first and best-known math-
ematical models used to describe the spiking dynamics of
neurons. In terms of mathematical equations the behavior of a
single neuron is described by

du 3

— =u—u —v,

dt

D _ o b) (Al)
— =c(u—av —b),

dt
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diamonds) and modular network with random (ER) modules (red stars) with the same number with D, = 0.15, p = 17, a = 0.7, b = 0.05,
¢ = 3.625. The larger gap between the first five eigenvalues and the rest arises due to the hierarchy of the network.

where u is the membrane potential and v the recovery variable.
The model itself was first introduced by FitzHugh [42] to
explain the generation of spikes in excitable systems, i.e.,
neurons. A spike is a short-lasting elevation of the membrane
voltage u diminished over time by a slower and linear re-
covery variable v once the system is periodically excited by
an external current. The following year Nagumo et al. [43]
developed the electric circuit which mimics such behavior.
However, although the model itself is mainly used to describe
the oscillatory behavior of neurons, it also admits a stable
fixed point, which is a necessary requirement for Turing insta-
bilities. Once this model is equipped with a diffusion term, it
turns out to be a perfect candidate for pattern formation [2]. In
recent years, with the rapid development of network science,
the FitzHugh-Nagumo model has been extended to diffusively
coupled networks [11,67].

2. Continuous Formulation

The original continuous framework for pattern formation,
in one dimension, is

ou 9%u
= ) Du )
o flu,v) + o
v 3%
— = Dy—, A2
oy = 8. v) + ox? (A2)

where notation is as in Sec. II. The derivation of Turing pat-
terns follows the same process as we describe in the main text,
except in a continuous form. Of note, the extended Jacobian
is now

Ji1 — k*D, Jiz
o Jn —k*D, |’ (A3)

where k is the wave number. Then, the continuous dispersion

relation, o (k), is plotted against the wave number, k? instead
of the eigenvalues of the Laplacian.

h=J—Dﬁ=[

3. Role of hierarchy of the brain networks
in the pattern formation

We discussed the role that modularity has on pattern for-
mation, isolating it from other topological features, which
is, in fact, an integral aspect of many networks, including
brain networks. So then a question that arises naturally is,
how does the brain cope with maintaining both features and
their functional properties at the same time? We now are able
to answer this question by recalling an important empirical
result that characterizes most real networks, their hierarchical
structure [18,32,68]. In fact, most of the connectomes studied
are organized in a modular structure, however, each module
is further organized in a small-world fashion. This is another
amazing observation how nature tends to self-organize to bet-
ter optimize the benefit from the both structural features, the
modularity and the small-worldness. In a hierarchical modular
network the entire network is organized in modules which are
attached to each other so as to have a small diameter and at
the same time the nodes in the modules are connected in such
way to form submodules again minimizing their diameter and
this process goes on this way up to smallest building unity,
the single nodes. A hierarchical structure stresses once more
the necessity of modularity for the self-organizing phenomena
in the networks. In Fig. 7 we show that the difference of
the smallest nonmodular eigenvalue from the origin is larger
when the modules have a small-world topology compared to
when they are organized at random (e.g., ER network) for the
same number of nodes, edges and modules. The reason for this
can be found once more by taking a perturbative approach.
The spectral gap of an individual module (disconnected from
the rest of the network) is larger when its diameter is smaller,
as it is in the Newman-Watts network used in Fig. 7.

Thus, in the presence of hierarchy, the cyan and the yellow
regions in Fig. 5 would be even smaller making the modularity
region shown in green larger compared to the previous two.
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We notice, however, that the instability invariance is still valid
for values of the diffusivites ratio p near to 1, that is when
only the green region in the parameter space is available. In
conclusion, a hierarchical arrangement where each module

is arranged in a small-world fashion, and these modules are
again connected in a small-world fashion, are even better
candidates for forming modular patterns than the modular
networks studied in the main text.

[1] G. Nicolis and 1. Prigogine, Self-Organization in Nonequilib-
rium Systems. From Dissipative Structures to Order Through
Fluctuations (Wiley, New York, 1977).

[2] J. D. Murray, Mathematical Biology II : Spatial Models and
Biomedical Applications (Springer-Verlag, Berlin, 2001).

[3] A. M. Turing, Bull. Math. Biol. 52, 153 (1990).

[4] A. Gierer and H. Meinhardt, Kybernetik 12, 30 (1972).

[5] H. G. Othmer and L. E. Scriven, J. Theor. Biol. 32, 507 (1971).

[6] R. Schnabel, M. Bischoff, A. Hintze, A.-k. Schulz, A. Hejnol,
H. Meinhardt, and H. Hutter, Dev. Biol. 294, 418 (2006).

[7] M. D. Holland and A. Hastings, Nature 456, 792 (2008).

[8] W. Horsthemke, K. Lam, and P. K. Moore, Phys. Lett. A 328,
444 (2004).

[9] H. Nakao and A. S. Mikhailov, Nat. Phys. 6, 544 (2010).

[10] M. Asllani, D. M. Busiello, T. Carletti, D. Fanelli, and G.
Planchon, Phys. Rev. E 90, 042814 (2014).

[11] M. Asllani, J. D. Challenger, F. S. Pavone, L. Sacconi, and D.
Fanelli, Nat. Commun. 5, 4517 (2014).

[12] M. Asllani, D. M. Busiello, T. Carletti, D. Fanelli, and G.
Planchon, Sci. Rep. 5, 12927 (2015).

[13] M. Asllani, T. Carletti, and D. Fanelli, Eur. Phys. J. B 89 260
(2016).

[14] R. Muolo, M. Asllani, T. Carletti, D. Fanelli, and P. K. Maini, J.
Theor. Biol. 480 81 (2019).

[15] M. Asllani, T. Carletti, D. Fanelli, and P. K. Maini, Eur. Phys. J.
B 93 135 (2020).

[16] M.-T. Hiitt, M. Kaiser, and C. C. Hilgetag, Philos. Trans. R.
Soc. B 369, 1653 (2014).

[17] D. Watts and S. Strogatz, Nature 393, 440 (1998).

[18] D. Meunier, R. Lambiotte, and E. T. Bullmore, Front. Neurosci.
4,200 (2010).

[19] L. Harriger, M. P. V. D. Heuvel, and O. Spoorns, PLoS One 7,
e46497 (2012).

[20] J. D. Hahn, O. Sporns, A. G. Watts, and L. W. Swanson, Proc.
Natl. Acad. Sci. 116, 8018 (2019).

[21] O. Sporns, Networks of the Brain (MIT Press, Cambridge, MA,
2010).

[22] H. A. Simon, Proc. Am. Philos. Soc. 106, 467 (1962).

[23] O. Sporns, C. J. Honey, and R. Kétter, PLoS One 2, e1049
(2007).

[24] E. Bullmore and O. Sporns, Nat. Rev. Neurosci. 10, 186 (2009).

[25] M. Girvan and M. E. Newman, Proc. Natl. Acad. Sci. USA 99,
7821 (2002).

[26] F. Luo, Y. Yang, C.-F. Chen, R. Chang, J. Zhou, and R. H.
Scheuermann, Bioinformatics 23, 207 (2007).

[27] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L.
Barabasi, Nature 407, 651 (2000).

[28] S. Redner, Eur. Phys. J. B 4, 131 (1998).

[29] The definition of the spectral gap depends on the way one
defines the Laplacian matrix [32]. In our case the spectrum of
the Laplacian is nonpositive.

[30] S. Fortunato, Phys. Rep. 486, 75 (2010).

[31] M. E. Newman and M. Girvan, Phys. Rev. E 69, 026113 (2004).

[32] M. E. J. Newman, Networks: An Introduction, 2nd ed., (Oxford
University Press, New York, 2018).

[33] J. A. Vastano, J. E. Pearson, W. Horsthemke, and H. L. Swinney,
Phys. Lett. A 124, 320 (1987).

[34] J. E. Pearson and W. Horsthemke, J. Chem. Phys. 90, 1588
(1989).

[35] V. Castets, E. Dulos, J. Boissonade, and P. De Kepper, Phys.
Rev. Lett. 64, 2953 (1990).

[36] 1. S. J. Horvéath and P. D. Kepper, Science 324, 772 (2009).

[37] M. E. J. Newman, Phys. Rev. E 74, 036104 (2006).

[38] J. Reichardt and S. Bornholdt, Phys. Rev. E 74, 016110
(2006).

[39] O. Sporns and .
(2004).

[40] R. Albert and A. L. S. Barabdsi, Rev. Mod. Phys 74, 47 (2002).

[41] O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag, Trends
Cognit. Sci. 8, 418 (2004).

[42] R. FitzHugh, Biophys. J. 1, 445 (1961).

[43] J. Nagumo, S. Arimoto, and S. Yoshizawa, Proc. IRE 50, 2061
(1962).

[44] T. P. Peixoto, Phys. Rev. Lett. 111, 098701 (2013).

[45] B. Mohar, in Proceedings of the Sixth Quadrennial International
Conference on the Theory and Applications of Graphs, edited
by Y. Alavi, G. Chartrand, O.R. Oellermann, and A.J. Schwenk
(Wiley, New York, 1991).

[46] We want to emphasize that regular networks (e.g., rings) have

D. Zwi, Neuroinformatics 2, 145

a large diameter also, having this way a small spectral gap.
However, our focus here is on random networks which, apart
from the modular ones, are characterized by a small diameter.

[47] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed.,
(Johns Hopkins University Press, Baltimore, MD, 1996).

[48] Notice also that due to the algebraic connectivity, a network
with a Laplacian spectral gap will always be modular.

[49] L. Donetti and M. A. M. Muiloz., J. Stat. Mech.: Theor. Exp.
(2004) P10012.

[50] E. Andreotti, D. Remondini, G. Servizi, and A. Bazzani, Linear
Algebra Appl. 544, 206 (2018).

[51] G. B. Smith, B. Hein, D. E. Whitney, D. Fitzpatrick, and M.
Kaschube, Nat. Neurosci. 21, 1600 (2018).

[52] P. L. Baniqued, C. L. Gallen, M. W. Voss, A. Z. Burzynska,
C. N. Wong, G. E. Cooke, K. Duffy, J. Fanning, D. K. Ehlers,
and E. A. Salerno, Front. Aging Neurosci. 9 426 (2018).

[53] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.102.052306 for more information on these
criteria.

[54] Notice here that it may be, as in the case of Fig. 4, that different
modules might share by chance the same level of components.
However, this should not be understood as these entries belong-
ing to the same module.

052306-12


https://doi.org/10.1016/S0092-8240(05)80008-4
https://doi.org/10.1007/BF00289234
https://doi.org/10.1016/0022-5193(71)90154-8
https://doi.org/10.1016/j.ydbio.2006.03.004
https://doi.org/10.1038/nature07395
https://doi.org/10.1016/j.physleta.2004.06.044
https://doi.org/10.1038/nphys1651
https://doi.org/10.1103/PhysRevE.90.042814
https://doi.org/10.1038/ncomms5517
https://doi.org/10.1038/srep12927
https://doi.org/10.1140/epjb/e2016-70248-6
https://doi.org/10.1016/j.jtbi.2019.07.004
https://doi.org/10.1140/epjb/e2020-10206-3
https://doi.org/10.1038/30918
https://doi.org/10.3389/fnins.2010.00200
https://doi.org/10.1371/journal.pone.0046497
https://doi.org/10.1073/pnas.1819448116
https://doi.org/10.1371/journal.pone.0001049
https://doi.org/10.1038/nrn2575
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1093/bioinformatics/btl562
https://doi.org/10.1038/35036627
https://doi.org/10.1007/s100510050359
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1016/0375-9601(87)90019-3
https://doi.org/10.1063/1.456051
https://doi.org/10.1103/PhysRevLett.64.2953
https://doi.org/10.1126/science.1169973
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1385/NI:2:2:145
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1016/j.tics.2004.07.008
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1103/PhysRevLett.111.098701
https://doi.org/10.1088/1742-5468/2004/10/P10012
https://doi.org/10.1016/j.laa.2018.01.009
https://doi.org/10.1038/s41593-018-0247-5
https://doi.org/10.3389/fnagi.2017.00426
http://link.aps.org/supplemental/10.1103/PhysRevE.102.052306

ROLE OF MODULARITY IN SELF-ORGANIZATION ...

PHYSICAL REVIEW E 102, 052306 (2020)

[55] R. Schnabel, M. Bischoff, A. Hintze, A.-k. Schulz, A. Hejnol,
H. Meinhardt, and H. Hutter, Czech. Math. J. 23, 298
(1973).

[56] F. Chung., Spectral Graph Theory (American Mathematical
Society, Providence, RI, 1997).

[57] D. J. Bumbarger, M. Riebesell, C. Rodelsperger, and R. J.
Sommer, Cell 152, 109 (2013).

[58] S. R. Sundaresan, 1. R. Fischhoff, J. Dushoff, and D. I
Rubenstein, Oecologia 151, 140 (2006).

[59] G. Sun, Nonlinear Dyn. 69, 1097 (2012).

[60] G. Sun, M. Jusup, Z. Jin, Y. Wang, and Z. Wang, Phys. Life Rev.
19, 43 (2016).

[61] https://icon.colorado.edu/#!/networks.

[62] R. W. Eash, K. S. Chon, and D. E. Boyce, Transp. Res. Rec.
994, 30 (1983).

[63] D. E. Boyce, K. S. Chon, M. E. Ferris, Y. J. Lee, K.-T. Lin, and
R. W. Eash, Implementation and Evaluation of Combined Mod-
els of Urban Travel and Location on a Sketch Planning Network
University of Illinois, Urbana, and Chicago Area Transportation
Study, xii + 169 (1985).

[64] J. Kunegis, in Proceedings of the 22nd International Conference
on World Wide Web Companion, Rio De Janeiro (ACM Digital
Library, 2013), pp. 1343-1350.

[65] O. Sporns and R. F. Betzel, Annu. Rev. Psychol. 67, 613
(2016).

[66] M. Asllani, P. Expert, and T. Carletti, PLoS Comput. Biol. 14,
€1006296 (2018).

[67] M. Perc, New J. Phys. 7, 252 (2005).

[68] E. B. Ravasz and A. L. S. Barabdsi, Phys. Rev. E 67, 026112
(2003).

052306-13


https://doi.org/10.21136/CMJ.1973.101168
https://doi.org/10.1016/j.cell.2012.12.013
https://doi.org/10.1007/s00442-006-0553-6
https://doi.org/10.1007/s11071-012-0330-5
https://doi.org/10.1016/j.plrev.2016.08.002
https://icon.colorado.edu/#!/networks
https://doi.org/10.1146/annurev-psych-122414-033634
https://doi.org/10.1371/journal.pcbi.1006296
https://doi.org/10.1088/1367-2630/7/1/252
https://doi.org/10.1103/PhysRevE.67.026112

