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Robustness of behaviorally induced oscillations in epidemic models
under a low rate of imported cases
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This paper is concerned with the robustness of the sustained oscillations predicted by an epidemic ODE model
defined on contact networks. The model incorporates the spread of awareness among individuals and, moreover,
a small inflow of imported cases. These cases prevent stochastic extinctions when we simulate the epidemics and,
hence, they allow to check whether the average dynamics for the fraction of infected individuals are accurately
predicted by the ODE model. Stochastic simulations confirm the existence of sustained oscillations for different
types of random networks, with a sharp transition from a nonoscillatory asymptotic regime to a periodic one as
the alerting rate of susceptible individuals increases from very small values. This abrupt transition to periodic
epidemics of high amplitude is quite accurately predicted by the Hopf-bifurcation curve computed from the ODE
model using the alerting rate and the infection transmission rate for aware individuals as tuning parameters.
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I. INTRODUCTION

The importance of the interplay between epidemic spread-
ing and preventive behavioral responses in a globalized world
has long been recognized and was specially highlighted after
the SARS outbreak of 2003 [1,2]. The rise of the incidence
rate of sexually transmitted diseases (STDs) [3] and the cur-
rent resurgence of measles [4] are also examples of such an
interplay. For STDs, increasing high risk sexual behavior and
novel sexual networks are among factors responsible for their
reemergence, whereas vaccine hesitance and distrust in public
health intervention programs are among behavioral factors
responsible for the rise of diseases like measles.

Risk perception is an important determinant of self-
initiated, voluntary protective behavior [5]. It constitutes the
basic ingredient in many epidemic models to encapsulate
human behavior in their formulation [2]. For instance, some
extensions of classic deterministic compartmental models in-
clude the impact of behavior on disease transmission by
assuming more general incidence rates than the standard one
(bilinear). The latter is proportional to the product of the
number of susceptible (S) and infectious individuals (I), βSI ,
whereas its generalizations assume a saturation with respect
to the number of infectives to model a reduction of the contact
rate in the presence of a high disease prevalence [6–9].

Other model extensions take into account awareness
transmission among individuals. For example, one of them
[10,11] divides each epidemic compartment [S, I, and R
(recovered/immune)] into two subcompartments of aware
and unaware individuals, respectively, and introduces the
corresponding transition rates between subcompartments.
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Other models assume one or more additional compartments
consisting of aware (A) individuals [12–15]. Some of these
works consider several awareness levels resulting from the
assumption of a degradation in the quality of the information
as it is passed from one individual to another [16,17]. In all
these examples, the effect of preventive behavior is to modify
the values of the epidemic parameters like the probability of
infection or the recovery rate.

When the contact network structure of a population is
explicitly considered, the effect of behavioral responses can
also affect the contact structure itself when modeling social
avoidance behaviors. This reduction of the exposure to dis-
ease has been modelled by means of preventive disconnection
from infectious neighbors [18–25] or, also, by replacing some
infected nodes by healthy ones [26], leading, in both cases,
to dynamical networks. Here the assessment of disease preva-
lence is based on the individual neighborhood (local contacts),
in contrast to homogeneous compartmental models where
information about the prevalence is assumed to be globally
available [2].

Under the previous modeling approaches, protective be-
havioral responses are triggered by the disease prevalence. As
long as these responses are based on the global prevalence,
one expects the likelihood of epidemic oscillations to be high.
Moreover, the linear dependence of the standard incidence
rates on the number of infected individuals implies that, when
these oscillatory solutions occur, they should pass through low
prevalence levels due to the lack of an abrupt switching behav-
ior. A low prevalence, in turn, will drive the number of aware
individuals down as a consequence of a lower perception of
the contagion risk, and the cycle repeats again with a new rise
in the number of infectives. In fact, several ODE epidemic
models with transmission of awareness [17,27] or assuming
self-initiated, voluntary vaccination [28] exhibit such periodic
solutions under some values of the parameters. In particular,
the variability in the propensity of aware individuals to further
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propagate awareness as the driving mechanism for sustained
oscillations was proved in Ref. [17]. More precisely, it was
proved there that, in the absence of demographics, standard
incidence rates of infections and awareness do not lead to
oscillations even though aware individuals disseminate aware-
ness among susceptible ones, unless a class of individuals
with a lower level of awareness (labeled U for unwilling to
disseminate) is also assumed.

In this paper we study the robustness of the determin-
istic oscillations of a model (which we call SAUIS-ε) that
is an extension of the SAUIS model studied in Ref. [17].
The reason for this choice is twofold. First, because the only
driving mechanism for the existence of periodic solutions in
the SAUIS model is the variability in the propensity of alerted
individuals to further propagate awareness in the population.
Second, because the model does not consider recruitment of
susceptible individuals in terms of newborns or in terms of a
prevalence-dependent recruitment of them into a core group,
which turns out to be an essential requirement for having sus-
tained oscillations in many epidemic models with and without
vaccination [9,28,29].

Another behavioral mechanism also responsible for the
occurrence of periodic solutions in epidemic models is
preventive rewiring in adaptive contact networks. Such a
mechanism aims to minimise the infection risk of susceptible
individuals while maintaining them connected to the network
[18,20,21,27]. So, both approaches try to explain epidemic
oscillations on a pure behavioral basis.

In addition, damped epidemic oscillations have been pre-
dicted in Ref. [16], where an SIR epidemic model without
demography is coupled with a sophisticated mechanism of
degradation of the information quality. Such degradation is
translated into individuals with different levels of awareness in
the population. However, the eventual depletion of susceptible
nodes prevents the occurrence of sustained oscillations.

In countries where an infectious disease has been declared
eradicated, new cases can still occur, but these will be isolated
and will have limited spread within the community as long
as vaccination coverage is high enough. These new cases are
usually imported either from tourists, foreign workers, etc., or
by local individuals that have been infected abroad in regions
where the disease is endemic or large outbreaks are taking
place. However, if the vaccination coverage in these countries
decreases because of lower levels of awareness (for instance,
in countries where vaccination is not mandatory), then such
few cases can mount into major outbreaks.

In fact, regions that have achieved the WHO eradication
status for a given disease can lose it as a consequence of
a marked increase in the number of confirmed cases. For
measles, a country attains this status when there is no endemic
transmission for 12 months in a specific geographic area. For
instance, the UK achieved WHO measles eradication status in
2017, based on data from 2014 to 2016. However, two years
later, this status was lost after 991 confirmed cases in England
and Wales in 2018, more than three times the number of cases
(284) in 2017 [30]. Other European countries that have also
lost the WHO eradication status for measles in 2019 are Alba-
nia, Greece, and the Czech Republic [31]. Of course, the role
of imported cases is also important in new emergent diseases
like Covid-19 where vaccination coverage is not present at

all. An illustrative example of their importance is given by the
data of Covid-19 in Iceland (as of June 3, 2020): 343 cases out
of 1806 were reported to be infected abroad [32].

Here, we consider the occasional introduction of new cases
into the population, at a very small rate ε, the rate of im-
ported cases. From a mathematical point of view, these new
cases will not destroy the deterministic oscillations obtained
in Ref. [17] from a Hopf-bifurcation as long as ε is low enough
and, at the same time, they prevent stochastic epidemic oscil-
lations from extinction, as it happens when periodic solutions
reach very low levels of prevalence (see Sec. IV C).

The main goal is, then, to analyze the SAUIS-ε model and
to perform stochastic simulations of epidemics on networks to
compare the regions of the parameter space where oscillations
occur under both (deterministic and stochastic) approaches.
Such a comparison will show that a significant part of the
original region of the parameter space where deterministic
oscillations occur is preserved when stochastic simulations
are performed under the presence of a low rate of imported
cases. Moreover, we will see that, as expected, a low level of
awareness in the population at the moment of their introduc-
tion raises the chances of sparking sustained transmission and,
hence, of generating new waves of infection. This could be,
for instance, the situation in many countries once lockdown
restrictions for Covid-19 have been lifted because most of
their inhabitants are not immunized yet, as it happened in
Singapore with a second wave of Covid-19 infections within
its population of foreigner workers [33].

II. THE SAUIS-ε MODEL ON A GENERAL NETWORK

According to the SAUIS model introduced in Ref. [17],
each node of a network of size N can be in one of the following
four states: S (susceptible), A (aware), U (unwilling), and I
(infected). Given any node n, let us denote the probabilities
that n will have the respective states at time t by Sn(t ), An(t ),
U n(t ), and In(t ). Note that Sn(t ) + An(t ) + U n(t ) + In(t ) = 1
for all time t � 0, since each node has to be in one of the
four states. Moreover, for the sake of simplicity, we assume
along the paper that the alerting rates per link α0

a , ν0
a , α0

i , the
infection transmission rates per link β0, β0

a , β0
u , the decay

rates δa, δu, and the recovery rate δ are the same for all the
nodes. For instance, if at time t a node n is aware and one
of its neighbors, m, is susceptible, then the probability that
n successfully alerts m during the time interval (t, t + �t ) is
αa�t + o(�t ) provided that αa�t < 1. Similarly, the prob-
ability that a noninfected node contracts the infection from
abroad (imported case) during a time interval of length �t is
ε�t + o(�t ). Here it follows a summary of all transitions (or
reactions) defining the SAUIS-ε model:

I + S
β0

−→ I + I, I + A
β0

a−→ I + I, I + U
β0

u−→ I + I,

I + S
α0

i−→ I + A, A + S
α0

a−→ A + A, A + S
ν0

a−→ A + U,

I
δ−→ S, A

δa−→ U, U
δu−→ S, {S, A,U } ε−→ I.

Let us recall that the SAUIS model tries to account for the
degradation of information quality among individuals that are
aware of the epidemic situation. As well as in the standard
SAIS models, the transition I + S → I + A represents the
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creation of a new aware individual that has acquired first-hand
information about the epidemic by means of a direct contact.
Also, the transition A + S → A + A creates new aware indi-
viduals that get indirect information from their acquaintances.
Such new aware individuals have the same responsiveness as
the information disseminators, which is not always the case.
That is why the SAUIS model also includes the A + S →
A + U transition, where U stands for unwilling to disseminate
information. So, an unwilling individual has a lower level of
awareness, in the sense that he or she does not try to convince
other people about the risk, having in addition a weaker be-
havioral response.

The original SAUIS model in Ref. [17] contemplates the
possibility that an infected individual, after recovering, may
become aware with probability p, unwilling with probability
q, as well as susceptible with probability 1 − p − q. Under
these two additional transitions, periodic solutions are also
possible (cf. Figs. 7 and 8 in Ref. [17]) but, since our ultimate
goal is to provide evidence of robustness of the oscillatory
regime in nondeterministic epidemics and to simplify the

analysis, we will assume p = q = 0 along the paper. For the
sake of simplicity, we have omitted them in the previous
description of possible transitions.

Let us derive the approximate discrete-time equations for
the evolution of these probabilities. An exact (but unfeasible)
description would require the probability of the system being
in any of the 4N possible states. So, to derive approximate
equations we will assume, as usual, that the joint probability
for nodes n and m to be, respectively, in states X and Y is
independent of the neighborhood’s configuration of n and m.
That is, it equals the product of both probabilities. This hy-
pothesis will allow us to close the system without considering
higher order terms for the joint probabilities (see Ref. [13] for
a related discussion for the SAIS model).

Let �t > 0 be small enough in such a way that, for every
occurrence rate κ of a single event, the probability for this
event to happen in the time interval (t, t + �t ) is κ�t +
o(�t ). For 1 � n, m � N , let anm be the (n, m) element of the
N × N adjacency matrix of the contact network, i.e., anm = 1,
if the nodes n and m are first neighbors, and anm = 0 other-
wise. With these ingredients, we can now write

An(t + dt ) = An(t )
(
1 − δadt − εdt − (

1 − ∏
m

[
1 − anmβ0

a dtIm(t )
]))

+ Sn(t )
(
1 − ∏

m

[
1 − anmα0

i dt Im(t )
] ∏

m

[
1 − anmα0

adtAm(t )
])

.

The term multiplying An(t ) corresponds to the event that the node n keeps being aware at time t + dt provided it was aware at
time t , so it is 1 minus the sum of the probabilities of the three competing events that change the state A to another one: A → U
with probability δadt , A → I with probability εdt , and the event that one or several infected neighbors of n succeed in performing
the transition I + A → I + I (with probability β0

a dt). For simplicity, the probability of this third event is computed as 1 minus
the probability that none of such neighbors succeeds. Analogously, the term multiplying Sn(t ) accounts for the probability that n
is aware at time t + dt provided it was susceptible at time t . Now observe that, neglecting terms of order o(dt ), the expressions
of the form

∏
m[1 − anmκdtX m(t )] read as 1 − κdt

∑
m anmX m(t ). This yields

An(t + dt ) = An(t )[1 − δadt − εdt − β0
a dt

∑
m anmIm(t )]

+ Sn(t )
(
1 − [

1 − α0
i dt

∑
m anmIm(t )

][
1 − α0

adt
∑

m anmAm(t )
])

= An(t )
[
1 − δadt − εdt − β0

a dt
∑

m anmIm(t )
] + Sn(t )

[
α0

i dt
∑

m anmIm(t ) + α0
adt

∑
m anmAm(t )

]
,

where in the second equality we have neglected again the terms of order o(dt ). Subtracting An(t ) to both sides of the previous
equation, dividing them by dt , and letting dt → 0, we obtain the differential equation governing the time evolution for An(t ).
Proceeding along the same lines for the other probabilities, we finally arrive at the following system of 3N ODEs:

dAn(t )

dt
=

N∑
m=1

anm
[
α0

aAm(t ) + α0
i Im(t )

]
Sn(t ) − β0

a

N∑
m=1

anmAn(t )Im(t ) − (δa + ε)An(t ),

d U n(t )

dt
= δaAn(t ) + ν0

a

N∑
m=1

anmSn(t )Am(t ) − β0
u

N∑
m=1

anmU n(t )Im(t ) − (δu + ε)U n(t ), (1)

dIn(t )

dt
=

N∑
m=1

anm
[
β0Sn(t ) + β0

a An(t ) + β0
uU n(t )

]
Im(t ) − δIn(t ) + ε[1 − In(t )],

where the equation for Sn(t ) is omitted because it is redundant
(the sum of the nodal probabilities is always equal to 1).

From the solution of Eq. (1) endowed with an initial
condition, we can compute the expected number of aware,
unwilling and infectious nodes at time t by summing the
corresponding probabilities over the whole network, that is,

NA(t ) = ∑
n An(t ), NU (t ) = ∑

n U n(t ), NI (t ) = ∑
n In(t ), and

NS (t ) = N − NA(t ) − NU (t ) − NI (t ).
Similar approaches to derive a system of equations for the

probabilities for a node of being in one of several disease
states have been previously introduced for the study of epi-
demics on networks and have received different names like,
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for instance, microscopic Monte Carlo approach in a discrete-
time setting [34], or N-intertwined model in a continuous-time
setting [35]. An extension of the latter to multilayer networks
is given in Ref. [36].

III. THE SAUIS-ε MODEL ON REGULAR
RANDOM NETWORKS

To analyze Eq. (1) we start by the simplest case. So, let
us consider the model over a random regular network (not
necessarily fully connected) of degree k. As we will see, in
this particular case the solutions of these 3N ODEs can be
identified with the solutions of a much simpler system of three
ODEs.

On this sort of networks, every node has the same vulner-
ability against the disease (in this setting, the degree is the
only characteristic that distinguishes one node from another).
So, it is reasonable to assume the same initial probabilities
of being aware, An(0) = a0, unwilling, U n(0) = u0, and in-
fected, In(0) = i0, for all nodes (what we call a uniform initial
condition).

Now we focus on uniform solutions of Eq. (1), defined as
those solutions An(t ), U n(t ), In(t ) that are independent from
n. So, we can write An(t ) = a(t ), U n(t ) = u(t ) and In(t ) =
i(t ) for all 1 � n � N . Then, the sums in Eq. (1) reduce
to

∑
m anmAm(t ) = k a(t ) and

∑
m anmIm(t ) = k i(t ) because

each node has the same degree k. So, the time evolution of
these probabilities satisfies the following initial value problem
(IVP):

da

dt
= αi s i + αa s a − βaa i − δa a − εa, βa < β,

du

dt
= δa a + νa s a − βuu i − δuu − εu, βu < β, (2)

di

dt
= (β s + βaa + βuu − δ)i + (1 − i)ε,

s + a + u + i = 1, endowed with the initial condition a(0) =
a0, u(0) = u0, and i(0) = i0. Here all the alerting and infec-
tion transmission rates are per node and not per link, that
is, αi = k α0

i , αa = k α0
a , νa = k ν0

a , β = kβ0, βa = kβ0
a , and

βu = kβ0
u .

Note that an initial condition a(0) = a0, u(0) = u0, i(0) =
i0 of Eq. (2) corresponds to the uniform initial condition
An(0) = a0, U n(0) = u0, In(0) = i0 for 1 � n � N of Eq. (1).
Then, the local existence and uniqueness of solutions for both
IVPs implies that a solution for Eq. (2) is also a solution (uni-
form by construction) for Eq. (1). That is, they are equivalent
formulations of the epidemic on regular networks (see Lemma
3.1 in Ref. [13] for a proof of a similar result for the SAIS
model).

Notice also that NA(t ) = a(t )N , NU (t ) = u(t )N , and
NI (t ) = i(t )N . So, instead of thinking of nodal probabilities,
we can consider the expected fraction of aware, unwilling
and infected individuals as the macroscopic description (state
variables) of our system which is more convenient to compare
theoretical predictions with the outputs of the stochastic sim-
ulations of the epidemics.

As an incidental remark, it turns out that uniform equi-
librium solutions for the complete system of 3N equations

are only possible over regular networks. To see it, set
An = A, U n = U , In = I for all 1 � n � N and denote
the degree of any node n by kn. At the equilibrium,
we have that 0 = dAn(t )/dt = kn(α0

aA + α0
i I )S − β0

a knAI −
(δa + ε)A. Considering a pair of different nodes n, m, from
dAn(t )/dt = dAm(t )/dt we easily get that kn = km. In conse-
quence, all nodes must have the same degree.

A. Behavior of the equilibria

Similarly to the SAUIS model in Ref. [17], the tetrahedron
	 := {(a, u, i) ∈ R3 : 0 � a + u + i � 1} is positively invari-
ant under the flow of Eq. (2). In fact, the vector field on the
boundary of 	 points strictly toward its interior for ε > 0. In
consequence, there are no equilibria on the boundary of 	.

When ε = 0 the SAUIS model may have three different
kinds of equilibria in 	: the trivial equilibrium P1 = (0, 0, 0),
the disease-free equilibrium P2 = (a∗

0, u∗
0, 0) with

a∗
0 = δu

(
1 − δa

αa

)
δa

(
1 + νa

αa

) + δu
, u∗

0 = δa
(
1 − δa

αa

)(
1 + νa

αa

)
δa

(
1 + νa

αa

) + δu
,

and endemic equilibria P3 = (a∗, u∗, i∗) ∈ 	 with

i∗ = 1 −
(

1 − βa

β

)
a∗ −

(
1 − βu

β

)
u∗ − δ

β
> 0.

Note that several distinct endemic equilibria may coexist.
When ε > 0 in the SAUIS-ε model, the first two kinds of
equilibria cannot exist and all possible equilibria are endemic.
In fact, if ε is a small parameter the equilibria of SAUIS-ε
can be interpreted as perturbations of the equilibria P1, P2

and P3 of the unperturbed SAUIS model. To study how these
equilibria behave when ε is included in the model, we denote
by f j (a, u, i; ε) the right-hand side of the jth equation in (2).
Any equilibrium e∗(ε) = (a∗(ε), u∗(ε), i∗(ε)) of the system
is implicitly given by the equations f j (e∗(ε); ε) = 0, j =
1, 2, 3. We can derive implicitly the equations with respect
to ε and get

∂ f j

∂a
(e∗(ε); ε)

da∗

dε
+ ∂ f j

∂u
(e∗(ε); ε)

du∗

dε

+ ∂ f j

∂i
(e∗(ε); ε)

di∗

dε
+ ∂ f j

∂ε
(e∗(ε); ε) = 0, j = 1, 2, 3.

In the particular case of the equilibrium e∗(0) = P1 =
(0, 0, 0) the previous system for ε = 0 can be solved and

da∗

dε

∣∣∣∣
ε=0

= αi

(β − δ)(αa − δa)
,

du∗

dε

∣∣∣∣
ε=0

= αi(δa + νa)

δu(β − δ)(αa − δa)
,

di∗

dε

∣∣∣∣
ε=0

= − 1

β − δ
.

In order that the trivial equilibrium P1 of the SAUIS model
stays inside the biologically feasible region 	 when perturbed
by ε, the three previous expressions must be positive. This oc-
curs when β < δ and αa < δa. In any other case, the SAUIS-ε
model has no endemic equilibria bifurcating from P1 for ε > 0
small. In fact, the eigenvalues of P1 for the unperturbed SAUIS
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model are

λ1(P1) = αa − δa, λ2(P1) = −δu, λ3(P1) = β − δ.

In consequence, P1 bifurcates to an endemic equilibrium for
the system SAUIS-ε when P1 is hyperbolic stable in the
SAUIS model. Moreover, by the hyperbolic property the equi-
librium remains stable for ε > 0 small in the SAUIS-ε model.
The basic reproduction numbers R0 = β/δ and Ra

0 := αa/δa

(see Ref. [17]) provide a clear interpretation of this fact:
For the SAUIS-ε model with ε > 0 small enough, a stable
equilibrium with all coordinates positive and small emerges
when R0 < 1 and Ra

0 < 1, corresponding to a nonspreading,
dying out SAUIS epidemic. In this case, the small equilibrium
values of aware, unwilling and infected are essentially fed by
the introduction of new infection cases at a rate ε rather than
by the epidemic propagation itself.

When the perturbation is considered from the equilibrium
e∗(0) = P2 = (a∗

0, u∗
0, 0), the previous equations imply

di∗

dε

∣∣∣∣
ε=0

= −1

β − δ − (β − βa)a∗
0 − (β − βu)u∗

0

.

Thus, the condition such that the perturbation of the disease-
free equilibria is inside the region 	 for ε > 0 small is

β − δ − (β − βa)a∗
0 − (β − βu)u∗

0 < 0. (3)

We point out that the expression on the left-hand side of the
previous inequality is the same as the expression of the unique
eigenvalue of P2 for the unperturbed SAUIS model that may
take positive values (see Eq. (13) in Ref. [17] and comments
surrounding). The other two eigenvalues are either negative
or have negative real part. In particular, this expression is
negative if β < δ (since β > βa, βu), meaning that di∗

dε
|
ε=0

is
positive and, so, the SAUIS-ε system has an endemic equilib-
rium bifurcating from P2 for ε > 0 small. When β > δ, the
expression can be positive or negative depending on the other
parameters. This change can be controlled by taking βa as a
bifurcation parameter and so the bifurcation value is

βc
a := β − 1

a∗
0

[β − δ − (β − βu)u∗
0],

as shown in Ref. [17]. In the SAUIS model, the system shows
a transcritical bifurcation as βa passes through the bifurca-
tion value and the authors illustrate that this bifurcation may
occur in two different directions. That is, by changing the
stability of P2, from an stable equilibrium P2 for βa < βc

a a
forward stable endemic equilibrium may bifurcate; or from
an unstable equilibrium P2 for βa > βc

a a backward unsta-
ble endemic equilibrium may bifurcate. In both cases, the
disease-free equilibrium is stable if βa < βc

a and unstable
otherwise. In consequence, an endemic equilibrium bifurcates
from the disease-free equilibrium in the SAUIS-ε when P2 is
hyperbolic stable. As before in the case of P1, the stability is
preserved for ε > 0 small because of the hyperbolic property.

The fact that the equilibria enter the region 	 for ε > 0
when they are hyperbolic stable is not surprising. Indeed, the
vector field of the SAUIS-ε model at the boundary of 	 points
toward its interior for ε > 0. This would be in contradiction
with a hyperbolic unstable equilibrium entering 	 from the
boundary.

FIG. 1. Hopf-bifurcation curves in the (βa, αi ) parameter space
for ε = 0 (dashed line), ε = 10−5 (dotted line) and ε = 10−4 (solid
line). Parameters: δ = 1, δa = 0.01, δu = 0.05, β = 3, βu = 0.5,
αa = 0.01, νa = 1.

A similar treatment of the effect of immigration of in-
fected individuals on the disease-free equilibrium of a general
epidemic model (without awareness), in terms of the basic
reproduction number, is given in Ref. [37].

Concerning the endemic equilibria P3, by means of the
implicit function theorem, we know that the root e∗(ε) of
Eq. (2) will persist inside 	 for ε > 0 small enough under
the classical transversal condition as well as its stability. We
refer to Ref. [38] for further information on the dynamical
techniques used in this section and the forthcoming one.

B. Robustness of the oscillatory regime

The stability of an endemic equilibrium can change under
a suitable election of parameters’ values. In particular, for
ε = 0, a Hopf-bifurcation curve H0 in the (βa, αi ) parameter
space was obtained in Ref. [17]. Here we also do the analysis
for ε = 10−5 and ε = 10−4, which are small but still large
enough to allow the existence of Hopf-bifurcation curves Hε

clearly separated from H0 (see Fig. 1). For each value of ε, the
regime of sustained oscillatory solutions of Eq. (2) lies inside
the region of the parameter space limited by βa = 0 and the
corresponding Hopf-bifurcation curve. Outside this region,
solutions tend to a stable endemic equilibrium. This behavior
is due to the fact that the real eigenvalue λr of the Jacobian
matrix J of Eq. (2) at the endemic equilibrium is always
negative for any point of the considered region. Actually, λr

is smaller than the real part of the conjugate pair of complex
eigenvalues λ± that constitute, together with λr , the spectrum
σ of J . So, this means that the stability modulus of J , namely,
max{Re(λ) | λ ∈ σ (J )}, is given by Re(λ±).

We recall that to compute the Hopf-bifurcation curve in
the (βa, αi ) parameter space we need to find the solutions
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FIG. 2. Stability modulus of the Jacobian matrix at the endemic
equilibrium of Eq. (2) as a function of αi. Parameters: δ = 1, δa =
0.01, δu = 0.05, β = 3, βa = 0.1, βu = 0.5, αa = 0.01, νa = 1, ε =
10−4.

(β∗
a , α∗

i , a∗, u∗, i∗) of the system of equations given by the
three equilibrium equations of Eq. (2) together with the con-
dition that follows from Theorem 2.1 and Table 1 in Ref. [39]
which guarantees that the Jacobian matrix J at the endemic
equilibrium has a pair of pure imaginary eigenvalues. Pre-
cisely, this condition is

c0 − c1c2 = 0 with c1 > 0, (4)

where c0 = − det(J ), c1 is the sum of the principal minors of
J , and c2 = −trace(J ).

From Fig. 1 we see that, for ε > 0, the region limited by Hε

is entirely contained in that limited by H0. It follows that the
more ε increases, the more the upper part of the original region
of the oscillatory regime is reduced, whereas the lower part of
this region remains almost the same for the three bifurcation
curves. This fact suggests the existence of an abrupt transition
from the nonoscillatory regime below the lower branch of the
curves to the oscillatory one in the upper side of this branch.
This transition is hardly perturbed by the external infection
rates ε, provided that they are small enough.

In fact, the qualitative behavior of the solutions of Eq. (2)
presents significant differences between parameter values near
the upper and the lower boundary of the region determined by
the Hopf-bifurcation curve. Although all solutions outside the
confined zone are foci, a simple study of the eigenvalues of
the Jacobian matrix at the endemic equilibrium shows that the
transition from focus state (damped oscillations) to a periodic
regime is faster through the lower boundary than through the
upper one.

More precisely, it follows that the absolute value of the
derivative of the stability modulus that controls the oscillatory
motion is much larger for lower values of αi on the bifurcation
curve (lower branch) than for higher ones (upper branch). In
Fig. 2 we represent the stability modulus for βa = 0.1 in terms
of αi. This fact becomes crucial to understand the difference
of sensibility between the two boundaries in the stochastic
Hopf-bifurcation diagrams appearing in next sections. A good
example of this fact is the diagram presented in Fig. 9, where
the simulations delimit the lower boundary of the Hopf curve
almost identically as the theoretical curve. However, the upper

boundary is hardly identified without taking into account the
amplitude of the signal.

IV. STOCHASTIC SIMULATIONS

A. General simulation setup

As usual in the setting of continuous-time stochastic simu-
lations, we use the well-known Gillespie algorithm on graphs
[40]. All networks are randomly generated using the config-
uration model algorithm [41]. Given a network of size N ,
a combination of model parameters, and an initial condition
a(0), u(0), i(0), we run 50 independent simulations, each cor-
responding to a random distribution of a(0)N , u(0)N , i(0)N ,
and [1 − a(0) − u(0) − i(0)]N nodes having, respectively, the
initial states of aware, unwilling, infected, and susceptible. For
any experiment, we store the evolution of a(t ), u(t ), and i(t )
as three time series of 212 equally spaced points in the interval
[0, T ], where T is the maximum running continuous-time of
the simulation. All along the paper, the caption of each re-
ported figure obtained by simulation includes the specification
of the values of N , a(0), u(0), i(0), and T .

B. The special case of regular random networks

It is worth noticing that the classical Gillespie algorithm on
graphs is highly time-consuming when executed over a net-
work of about 104 nodes, in such a way that it is not feasible
to construct a bifurcation diagram on two parameters, p1 and
p2, running 50 experiments for each pair (p1, p2), when in
addition the number of pairs is of the order of 103. In the par-
ticular case of regular random networks, this serious drawback
can be overcome by using what we will call the fast Gillespie
algorithm (FGA in what follows). The FGA crucially relies
on the following mean-field hypothesis (MFH): on a regular
random network of big enough degree, the probability that
a neighbor of a node has a given state can be approximated
by the fraction of nodes on the entire network having that
particular state. Let us see how the MFH can be used to speed
up the Gillespie algorithm.

Assume that during an experiment over a given network
a susceptible node n gets infected. In this case, the Gillespie
algorithm updates the state of n (from S to I) and then explores
all neighbors of n to update the number and type of links to be
considered in the next time step. For instance, if a neighbor of
n is aware, we lose a link of type A − S with associated weight
α0

a + ν0
a , and we gain a link of type I − S with associated

weight β0 + α0
i . This exploration of the neighbors of a node

through an adjacency matrix (usually a pointer of pointers),
that has to be done at every discrete time step, is one of the
main computational loads of the classical Gillespie algorithm
on graphs.

But assume now that the approximation given by the MFH
assumption is good enough. Let N , NS , and NI be, respectively,
the total number of nodes, susceptible nodes, and infected
nodes in a regular network of degree k. If the MFH holds,
then the total number of links of type I − S can be simply
computed as kNI NS/(N − 1). Since the infection event I +
S −→ I + I has rate β0 = β/k, the total weight associated
to all such events is then βNI NS/(N − 1). Analogously, the
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(a) (b)

FIG. 3. Evolution of i(t ) for t ∈ [1500, 3000] predicted by Eq. (2) and outputs from Gillespie and FGA (adaptive mean over 50
experiments). Parameters of the simulations: N = 1000, degree k = 50 for the Gillespie algorithm, δ = 1, δa = 0.01, δu = 0.05, β = 3,
βu = 0.5, αa = 0.01, νa = 1, ε = 10−4, βa = 0.1, i(0) = 0.1, a(0) = u(0) = 0.2. (a) αi = 0.04, (b) αi = 0.14.

total weight associated to the event A + S −→ A + A, with
rate α0

a = αa/k, would be αaNANS/(N − 1), and so on.
The high speed of the FGA is achieved because the pro-

gram does not manage any particular network but only three
integer variables NA, NI , NU (absolute numbers of aware,
infected, and unwilling nodes, respectively), with NS = N −
NA − NI − NU . The total weight of all possible events is then

R := NI NS (β + αi )

N − 1
+ NANS (αa + νa)

N − 1
+ NI NAβa

N − 1

+ NI NU βu

N − 1
+ NIδ + NAδa + NU δu + (N − NI )ε.

A particular event as, for instance, I + S −→ I + I is chosen
with probability (NI NSβ/(N − 1))/R. In this case, we just in-
crease NI by 1, recompute R according to the previous formula
and proceed to the next time step. There is no need to store a
particular adjacency matrix and explore the neighbors of any
particular node, simply because the MFH assumption allows
us to work just with the absolute numbers of aware, infected,
and unwilling nodes. Observe that FGA is independent of the
degree k. In other words, k is not a parameter of the algorithm.
The FGA performs statistically exact simulations of Marko-
vian epidemic processes over regular random networks of high
enough degree (that is, as long as the MFH applies). It is worth
mentioning that what we have called FGA can be identified
with the original version of the algorithm [40], which was
aimed at the stochastic simulation of a fully mixed chemically
reacting system.

Let us see to which extent the outputs of the FGA and
the Gillespie algorithm are essentially equivalent. Recall
(Sec. III B) that for δ = 1, δa = 0.01, δu = 0.05, β = 3, βu =
0.5, αa = 0.01, νa = 1, and ε = 10−4, a Hopf-bifurcation
curve was obtained in the (βa, αi )-plane. In Fig. 3 we have
shown the time evolution of the fraction of infected nodes
according to the numerical integration of Eq. (2), together
with the adaptive averaged outputs (see Sec. IV D) of the
Gillespie algorithm over a regular random network of size
N = 1000 and degree 50, and FGA with N = 1000. When
αi = 0.04 and βa = 0.1 [Fig. 3(a)], we are below the Hopf

curve and so we have an stable endemic equilibrium. Observe
that the three curves are essentially identical. For αi = 0.14
and βa = 0.1 [Fig. 3(b)] we are inside the Hopf curve and we
get a stable periodic orbit. In this case, the outputs from Gille-
spie and FGA seem qualitatively equivalent up to stochastic
fluctuations.

Of course, we should give a precise meaning to the
sentence seem qualitatively equivalent up to stochastic fluc-
tuations. This is in fact the aim of Sec. IV D, where we
give a detailed explanation about the statistical treatment of
the simulation data to test the significance of the oscillatory
regime. In Fig. 4 we show the complete Hopf-bifurcation di-
agram for the detection of the oscillatory regime in (βa, αi ) ∈
[0, 0.7] × [0, 1] after processing the output data obtained by
both the classical Gillespie algorithm over a regular random
network of N = 1000 nodes and degree 50 [Fig. 4(a)] and the
FGA with N = 1000 [Fig. 4(b)]. We stress that this figure is
intended only to compare both algorithms. In particular, we
have chosen here N = 1000 since a higher order for N makes
the computation of the Hopf-bifurcation diagrams under the
Gillespie algorithm on networks highly costly in time. Ob-
serve that the two diagrams are essentially identical, showing
that, as expected, the FGA is a good substitute of the Gillespie
algorithm on regular graphs even for degrees as small as 50
(over 1000 nodes).

C. Impact of imported cases in the prevention
of stochastic extinctions

Imported cases have an impact on the evolution of an
epidemic if they happen when both disease prevalence and
awareness level in the population are low. In their absence
(ε = 0), an epidemic becomes eventually extinct because the
number of infected nodes becomes extremely low when the
level of awareness in the population is very high. In such
a situation, it is well known that stochastic extinctions are
extremely likely.

We can observe this fact in Fig. 5, which shows that
all the region of the (βa, αi )-space where periodic solutions
(interior of the Hopf-bifurcation curve) and weakly damped
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(a) (b)

FIG. 4. Hopf diagram of SAUIS-ε obtained according to the description in Sec. IV D, using (a) Gillespie algorithm and (b) FGA with
N = 1000 nodes and time T = 3000. Parameters: degree k = 50 (for the Gillespie algorithm), δ = 1, δa = 0.01, δu = 0.05, β = 3, βu = 0.5,
αa = 0.01, νa = 1, ε = 10−4, i(0) = 0.1, a(0) = u(0) = 0.2, 50 experiments for each pair (βa, αi ). The gradient of colors evidences the
amplitude of the signal corresponding to the fraction of infected nodes. The black line is the theoretical Hopf-bifurcation curve.

oscillatory solutions are predicted by Eq. (2) lies within the
extinction zone (dark region). Note that, for a fixed value
of αi, the greater βa is, the higher the disease prevalence at
the endemic equilibrium and, hence, the lower the extinction
probability of the epidemic. Conversely, for a fixed βa, the
higher the alerting rate αi is, the lower the prevalence because
aware individuals are more easily created and, hence, the
higher the extinction probability is. This is the reason why
the nonextinction region corresponds to the lower right part of
this figure.

Figure 6(a) shows one stochastic simulation of an oscillat-
ing epidemic on a random regular network of 1000 nodes and,

FIG. 5. Fraction p of stochastic simulations with positive preva-
lence up to time T = 3000 for ε = 0 and N = 10 000 using FGA
algorithm. The Hop-bifurcation curve (white curve within the ex-
tinction region) is included for a better visualisation of the extinction
range. Parameters: δ = 1, δa = 0.01, δu = 0.05, β = 3, βu = 0.5,
αa = 0.01, νa = 1, ε = 0, i(0) = 0.1, a(0) = u(0) = 0.2, 100 exper-
iments for each pair (βa, αi ).

also, the moments where external infections are introduced.
Such an oscillatory behavior is, in fact, predicted by Eq. (2).
However, the extremely low prevalence attained in each cycle
makes the stochastic extinction of the disease unavoidable, un-
less the occasional introduction of imported cases takes place
when population awareness is low. The crucial role of such
an introduction in maintaining the epidemic is revealed in
Fig. 6(b), where the arrival of imported cases has been forced
to cease (ε = 0) just at the beginning of the fourth flare-up.
As expected, the fifth flare-up (dashed line) that would appear
by keeping ε = 10−4 now does not happen and the epidemic
dies out. The total number of imported cases from t = 0 to
t = 1200 is 119 in Fig. 6(a), whereas it is equal to 85 in
Fig. 6(b), where ε = 0.

The low number of imported cases in the previous example,
about 1 case every 10 infectious periods on average in a
population of size 1000, shows that it is not necessary to have
a high number of imported cases to prompt the occurrence of
important flare-ups in populations whose individuals have a
low level of awareness. This situation reminds, for instance, of
what happened in New Zealand after the praised management
of their first wave of COVID-19, where a reemergence of
cases occurred after weeks with no community cases once
social restrictions were lifted [42].

D. Statistical significance of the oscillatory regime

Our approach for the statistical detection of oscillations in
the time series has two parts. The first one consists in the
generation of three signals from the output of the stochastic
simulations, one for each state variable of the model. As stated
in Sec. IV A, for each combination of parameters we run
K = 50 independent experiments. Each realisation consists on
212 points, of which we eliminate the first half seeking for
stationarity of the time series, ending up with M = 211 points.
In stochastic epidemic models, the usual way to construct
a single signal from data is through the average. It is well
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(a) (b)

FIG. 6. (a) Time evolution of a stochastic simulation of an epidemic on a random regular network of size N = 1000 and degree k = 100
showing the input of imported cases (infections from abroad) for ε = 10−4 (black dots on the time axis). (b) Fraction of infected nodes in the
same simulation until the beginning of the fourth flare-up where ε = 0 (lockdown). Dashed line: Fraction of infected nodes without lockdown.
Parameters: δ = 1, δa = 0.01, δu = 0.05, β = 3, βa = 0.05, βu = 0.5, αi = 0.15, αa = 0.01, νa = 1, i(0) = 0.1, a(0) = u(0) = 0.2.

known that ODE systems are a good approximation of the
mean of realisations of stochastic processes in systems with
a large number of components (nodes, molecules in reaction
systems, etc.). However, although the standard average of tra-
jectories works for endemic equilibria with a high prevalence
[see Fig. 3(a)], it is not always a good option when a system
exhibits dynamics where some of its components are present
in low numbers [43].

In particular, the relationship between behavior and dis-
ease we are considering allows the existence of epidemics
with periods of very low prevalence once individuals have
become aware and adopt efficient protective measures against
infection. Such periods are followed by relaxation in the
adoption of preventive measures because of a decay in aware-
ness which, in turn, is translated into new epidemic flare-ups.
During these time intervals of low prevalence [see Fig. 6(a)],
the stochastic trajectories of the epidemic show significant
random fluctuations which lead to a phase shift in the time
series with respect to the deterministic trajectory given by the
solution of the ODE model. Consequently, when the average
of trajectories is computed, the resulting signal has an impor-
tant decrease of the amplitude of the oscillations and even a
deformation of the periodic component.

To overcome this difficulty, we perform an adaptive mean
of the signals. The idea is to locally align the signals before
computing the average, which acts in favour of preserving
periodic motion when the mean is performed. The first part of
this method is classic in signal processing. To begin with, we
perform a moving average computed over a sliding window
of length 21 centered about each element in the time series.
This acts as a low-pass filter to each time series attenuating
the signal and omitting extreme frequencies. Then, taking the
first time series, say X1, as a sample, we determine the time
delay between X1 and each of the other signals. To accomplish
this, for each time series Xk , k = 1, . . . , K , we compute the
cross-correlation between X1 and Xk . The position τk where
the maximum is reached, that is

τk := argmaxn((X1 � Xk )(n)), n = 1, . . . , M,

corresponds to the position where the signals are best aligned.
For each of the signals Xk we define a new one, X̂k , by
applying a circular shift of τk positions to Xk . In practice
the previous cross-correlation is computed for small delays
to ensure that the alignment is local. The adaptive mean we
consider is given by

Y := 1

K

K∑
k=1

X̂k .

The second part of the detection of oscillations consists
in proving the statistical significance of the periodicity of the
resulting data Y . To do so we define the periodogram of the
zero-mean time series Ŷ := Y − Y by

P(ω0) = �t

M

∣∣∣∣∣
M∑

j=1

Ŷ ( j)

∣∣∣∣∣
2

,

P(ωn) = 2�t

M

∣∣∣∣∣
M∑

j=1

Ŷ ( j)e− 2πni
M ( j−1)

∣∣∣∣∣
2

,

for n = 1, . . . , M
2 − 1, and

P(ωM/2) = �t

M

∣∣∣∣∣
M∑

j=1

Ŷ ( j)e−π i( j−1)

∣∣∣∣∣
2

,

with ωn = n
M�t and �t being the time step of the time series.

The periodogram is suitable to find hidden periodicities on the
data. Indeed, data following a pure random process show a flat
periodogram. However, if the time series presents a periodic
motion, then the frequencies involved are shown as peaks of
the periodogram. Fisher’s g-test [44] is commonly used in this
scenario to reject the null hypothesis that the random process
is Gaussian white noise against the alternative hypothesis
that the series contains a deterministic periodic component
of unspecified frequency. The statistic taken into account to
reject the null hypothesis is the maximum of the periodogram
compared with the sum of all the values of the periodogram.
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(a) (b)

(c) (d)

FIG. 7. Periodograms of SAUIS-ε obtained using FGA with N = 10 000 nodes and time T = 3000 (adaptive mean over 50 experiments).
The number of points used is M = 211 for panels (a) and (c), and M = 27 for panels (b) and (d), according to the procedure in Sec. IV D.
Parameters: δ = 1, δa = 0.01, δu = 0.05, β = 3, βa = 0.1, βu = 0.5, αa = 0.01, νa = 1, ε = 10−4, i(0) = 0.1, a(0) = u(0) = 0.2. (a, b) αi =
0.04. (c, d) αi = 0.14.

That is,

g = maxn P(ωn)∑M/2
n=1 P(ωn)

.

The previous maximum, as well as the summation, is taken for
n = 1, . . . , M/2. This is so because the term P(ω0) contains
only information about the mean of the data. This term plays
no role in the detection of oscillatory motion and, in fact,
vanishes for zero-mean time series. The test is performed by
computing the realised value g∗ of g from the data and then
use the exact distribution of g given by Fisher in Ref. [44],

P(g > x) =
b∑

k=1

(−1)k−1
(

M
2

)
!(1 − kx)

M
2 −1

k!
(

M
2 − k

)
!

,

where b is the largest integer less than 1/x. If the probability
P(g > g∗) is less than α, then the null hypothesis can be
rejected at level α. For further details on Fisher’s test for
hidden frequencies we refer to Refs. [45–47].

For the time series resulting from the parameters we are
interested in, the direct application of the Fisher’s test results
positive for all configurations. This is so for two reasons.
First, all motions associated to the solutions of Eq. (2) have
an oscillatory component since they correspond to either a
focus or a periodic orbit. Second, for the expression of the

probability above, it easily follows that the larger the number
of points M, the smaller the value of the probability. To be
more precise in the determination of oscillatory motions, we
reduce the points of the signals after the adaptive mean in
a ratio 1 : 24. That is, we end up with M = 27 points. This
procedure enables to detect the strongest periodic motions in
the parameter space, since weaker periodic signals will not
pass Fisher’s test with fewer points. Figure 7 illustrates it
with two parameter configurations. On the left, periodograms
with 211 points pass Fisher’s test for both configurations.
On the right, the periodograms of the same averaged signals
with 27 points. In this case the configuration corresponding
to the periodogram on the top side does not pass Fisher’s
test, whereas the one on the bottom side still passes the test.
Notice that these parameter configurations correspond to the
signals of top panels in Fig. 11. It is worth to mention that the
frequencies avoided by the reduction of points are much larger
than the frequencies of the data as can be seen in Fig. 7 and
information about the periodicity of the signal is not lost.

For those parameters passing the Fisher’s g-test with a
p-value less than or equal to α = 0.01 we consider the
corresponding peak frequency of the time series. The bifur-
cation diagram shows those parameters with an estimated
frequency larger than the minimum observable frequency
fmin = 1/1500. A gradient of colors illustrates the amplitude
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FIG. 8. Comparison of the algebraic Hopf-bifurcation curve for
regular random networks with two approximations obtained integrat-
ing Eq. (1) up to two different times and using for CV = 0.1% to
discriminate between periodic and nonperiodic solutions.

of the averaged signal corresponding to infected nodes. In
Fig. 9 we have shown the corresponding bifurcation dia-
gram for the outputs of the SAUIS-ε model using the FGA
with N = 10 000. The threshold below which oscillations are
considered to be internal random fluctuations (noise) of the
system is given by the inverse of the square root of the number
of nodes, namely, 0.01 (and 0.03 when N = 1000 as in Figs. 4
and 10). This value comes from the so-called linear noise

FIG. 9. Hopf diagram obtained according to the description in
Sec. IV D of the FGA with N = 10 000 nodes and time T = 3000.
The gradient of colors evidences the amplitude of the averaged signal
of the fraction of infected nodes. The black line is the algebraic Hopf-
bifurcation curve for ε = 10−4.

approximation used in modeling of chemical reaction kinetics
[48,49]. Such an approximation assumes that, in a system
formed by different “chemical species” (nodes in different
states in our context), the standard deviation of random fluctu-
ations about the mean number of molecules of these chemical
species scales as the square root of the size of the system (the
number N of nodes in our network). So, dividing these mean
numbers by N , it follows that, under this approximation, the
standard deviation of the random fluctuations of the fractions
of A, U , and I nodes is proportional to N−1/2.

E. Oscillations in other network architectures

Another aspect of the robustness of the oscillations is their
likelihood when other network topologies are considered. Are
they still present when the epidemic spreads on more hetero-
geneous networks? If this is the case, then are they observed in
the solutions of Eq. (1)? To answer these questions, we have
used the configuration model algorithm to generate a Poisson
network with mean degree 50 and an exponential network
with mean degree 50 and minimum degree 25. The first de-
gree distribution corresponds to the well-known Erdös-Rényi
random graphs, whereas exponential degree distributions have
been observed in empirical contact networks [50] and have a
much higher variability.

Unfortunately, in this case it is not possible to reduce
Eq. (1) to a simpler system, as it was done in Sec. III B for reg-
ular random networks. So, the algebraic approach used there
for computing Hopf-bifurcation curves is no longer feasible.
Instead, using βa and αi as tuning parameters (with increments
of size 0.002 or even smaller when approaching the turning
point of the curve), we have obtained an approximation to
these curves by numerically integrating Eq. (1) for N = 1000
(i.e., the full system of 3000 equations) until a long enough
time T2. Then, for each pair (βa, αi ), we computed the coef-
ficient of variation (CV ) of the fraction of aware, unwilling
and infected nodes from the solution Ai(t ), U i(t ), and I i(t ) of
Eq. (1) for the last 1000 units of time (T2 − T1 = 1000). Pre-
cisely, for the fraction x(t ) = ∑

i xi(t )/N where xi(t ) = Ai(t ),
U i(t ), I i(t ), respectively, we compute CVx(t ) = σx(t )/x̄ × 100
with

x̄ = 1

T2 − T1

∫ T2

T1

x(t ) dx

and

σ 2
x(t ) = 1

T2 − T1

∫ T2

T1

(x(t ) − x̄)2dx.

Finally, an approximate Hopf-bifurcation curve is obtained
by using the criterion that, for a given pair (βa, αi ), a solution
is not periodic if the corresponding CV � 0.1% for the three
fractions of nodes. Note that, close to the Hopf-bifurcation,
solutions classified as periodic when we integrate the system
up to a given time can become nonperiodic when longer times
are considered. This is particularly relevant when trying to
delimit the upper branch of the bifurcation curve. Here the
transition from periodic solutions to very weakly damped
solutions is hardly noticed because of its flatness, which was
already observed when computing the algebraic curve for the
regular case (see Fig. 2).
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(a) (b)

FIG. 10. Hopf diagram of SAUIS-ε obtained according to the description in Sec. IV D with N = 1000 nodes and time T = 3000, in
two different network architectures of mean degree 50: (a) Poisson and (b) Exponential. Parameters: δ = 1, δa = 0.01, δu = 0.05, β = 3,
βu = 0.5, αa = 0.01, νa = 1, ε = 10−4, i(0) = 0.1, a(0) = u(0) = 0.2, 50 experiments for each pair (βa, αi ). The gradient of colors evidences
the amplitude of the signal corresponding to the fraction of infected nodes. The black line is the theoretical Hopf-bifurcation curve.

To calibrate our criterion with respect to the integration
time, we compared the algebraic Hopf-bifurcation curve for
Eq. (2) with those obtained from Eq. (1) for a regular random
network of degree 50. Notice that Eq. (2) and, hence, the
corresponding algebraic Hopf-bifurcation curve, do not de-
pend on the degree, while Eq. (1) does depend on it. Figure 8
shows that, as expected, increasing the integration time from
T2 = 10 000 to T2 = 20 000 leads to a better approximation to
the whole algebraic curve (solid line). This figure also shows
that, for T2 = 20 000, the disagreement with respect to the
algebraic curve is only perceptible in its upper branch. There-
fore, the (approximate) Hopf-bifurcation curves for Poisson
and exponential networks were constructed from the solutions
of Eq. (1) using an integration time T2 = 20 000 and a thresh-
old value of CV equal to 0.1% for the fraction of the three
types of nonsusceptible nodes.

F. Simulation results and discussion

The values of the parameters used in the simulations are
taken from Ref. [17] (except for the rate of imported cases
ε) and reflect what we consider it is a natural scenario, al-
though they are not intended to model any particular disease.
First, aware (and unwilling) individuals are affected by lower
transmission rates because of the adoption of preventive mea-
sures. Second, the mean infectious period is much shorter
than the mean duration of awareness. Finally, it is assumed
that is more difficult for an aware individual to convince a
susceptible one to become aware than to convince him to
become simply unwilling, i.e., to adopt preventive measures
but without willingness to convince others about the risk of
infection. The values of the awareness and unwillingness de-
cay rates lead to oscillations whose period is about 1.3 times
the sum of the mean duration of the awareness period (1/δa =
100) and the mean duration of the unwillingness period
(1/δu = 20).

The procedure of the adaptive mean of the signals from the
stochastic simulations gives an excellent reconstruction of the
oscillatory behavior of single trajectories. In Fig. 11, we show
the comparison of a solution of Eq. (2), the adaptive mean
of the 50 realisations of an epidemic on a regular random
network of size N = 10 000 generated by means of the FGA,
and the trajectory used as the reference for the alignment of
the signals. Note that this alignment preserves the periodicity
of the original signals (trajectories) but, at the same time, it
reduces their amplitudes. With this respect, it is worth recall-
ing that the amplitudes shown in the Hopf diagrams do not
correspond to stochastic simulations of single epidemics, but
to the adaptive means of 50 stochastic trajectories for each
pair (βa, αi ) of parameter values (see Sec. IV D for details).

Hopf-bifurcation diagrams show that the abrupt transition
between a nonoscillatory regime and an oscillatory one given
by the lower branch of the Hopf-bifurcation curve is quite
accurately captured in all the settings we have considered. The
robustness of this transition is, in fact, already observed when
this curve is computed for different rates of imported cases
(see Fig. 1).

The best agreement is achieved for regular random net-
works of size N = 10 000. Figure 9 shows that the region
with periodic solutions with amplitudes larger than 0.05 falls
neatly within the limits predicted by the Hopf-bifurcation
curve. Comparing this figure with the panels in Fig. 4 ob-
tained for N = 1000, one can see that the agreement of the
observed region of periodic solutions with high amplitudes
(yellow and orange squares) with the predicted one clearly
increases with the number of nodes. Moreover, we recall that
all the simulations have been carried out until time T = 3000
which can be not enough for weakly damped oscillations to
disappear.

A similar agreement with the predictions as the one in
Fig. 4 is also observed in networks with different topologies
but with the same number of nodes, N = 1000 (see Fig. 10).
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(a) (b)

(c) (d)

FIG. 11. Evolution of i(t ) for t ∈ [1500, 3000] predicted by Eq. (2) (solid line), adaptive mean of outputs from FGA (over 50 ex-
periments, dashed line) and a single experiment from FGA (dotted line). Parameters of the simulations: N = 10 000, δ = 1, δa = 0.01,
δu = 0.05, β = 3, βa = 0.1, βu = 0.5, αa = 0.01, νa = 1, ε = 10−4, i(0) = 0.1, a(0) = u(0) = 0.2. (a) αi = 0.04, (b) αi = 0.14, (c) αi = 0.16,
(d) αi = 0.26.

Moreover, we can observe that the differences between the
Hopf-bifurcation curves when the degree distributions have
different variability are remarkable. For regular random net-
works and Poisson networks, these differences are small,
i.e., both types of networks lead to similar (but not equal)
Hopf-bifurcation curves. However, the resulting curve for an
exponential network is clearly different, with a turning point
at a higher value of αi and lower values of βa [see Fig. 10(b)].
Interestingly, the region of the (βa, αi ) parameter space corre-
sponding to periodic solutions with large amplitudes (yellow
squares and most of the orange ones) clearly falls inside the
region limited by the Hopf-bifurcation curve.

All in all, stochastic simulations confirm the predictions
of the ODE model showing that the proposed mechanism
for prompting awareness is able to generate recurrent epi-
demic cycles on different network architectures, including
the one with an exponential degree distribution which has
been claimed to describe contact patterns in real populations.
Interestingly, in all cases the predicted region of the param-
eter space for the oscillatory regime satisfy that βa < βu, a
natural condition according to the higher level of alertness
assumed for aware individuals with respect to the unwilling

ones. Moreover, these regions always contain those averaged
stochastic trajectories with the highest amplitudes.

V. CONCLUSIONS

The interplay between human behavior and epidemic
spread has been considered in many papers during the last 15
years [2,51]. Most of them have as the main goal to elucidate
the dependence of the basic reproduction number on the dif-
ferent behavioral responses as, for instance, social distancing,
rewiring of connections, awareness, etc. [10,11,13,14,23,25].
Few of them address the existence of oscillating epidemics
[20,21,27–29] and, as far as we know, only in Ref. [17] sus-
tained oscillations arise uniquely from the interaction between
awareness dissemination and epidemic spread, i.e., without
the need of any recruitment of new (susceptible) individuals.

In this paper we have challenged the existence of oscilla-
tions predicted by the SAUIS model introduced in Ref. [17]
by means of stochastic simulations on different network
topologies. The model has been formulated on networks and
considers the existence of a very small inflow of imported
cases. These cases are essential to keep the epidemic going
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on because disease prevalence attains very low levels when
there is a high degree of awareness in an oscillating epidemic.
This is not a problem at all in a deterministic framework, but
it leads to an unavoidable stochastic epidemic extinction in
all parameter combinations where sustained oscillations are
present.

Our simulations show that the presence of a small num-
ber of imported cases allows, when the disease prevalence
is low and the number of aware and unwilling individuals
decreases, an oscillatory behavior of the stochastic epidemics
which closely resembles the one predicted by the determinis-
tic counterpart of the model. In particular, the existence of an
abrupt transition from a stationary regime where oscillations
are strongly damped to an oscillatory one with amplitudes of
more than 10% in the number of infected nodes predicted
by the ODE model is clearly observed in the simulations
over different types of networks. Moreover, when the size of
the network increases (N = 10 000), periodic epidemics with
amplitudes larger than 5% carried out on regular random net-
works fall within the oscillatory regime in the parameter space
predicted by the ODE model (see Fig. 9). So, the robustness of
the predictions about the existence of oscillations due to pure
behavioral changes has been established.

An interesting example of oscillating epidemics is given
by the evolution of the incidence rate of STDs during the last
decades. The reemergence of STDs like syphilis and gonor-

rhea occurring since the mid-1990s [52] has been associated
with a decrease in awareness after the introduction of the
antiretroviral therapy for HIV and, indeed, it appeared after
an incidence decline in the 1980s. This decline coincided
with the emergence of the global AIDS pandemic and has
been attributed to preventive behavioral changes in response
to HIV campaigns during that time [53]. However, it has been
also claimed that the drop in incidence before 1984 occurred
too early to be ascribed to such induced behavioral changes
and may be part of a long term cyclic trend of this type of
diseases (although the nature of this periodic behavior remains
unexplained) [54].
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