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Nonparametric filtering for stochastic nonlinear oscillations
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This paper proposes a method of nonparametric filtering for stochastic nonlinear oscillations with particular
interest in their derivative estimation. Based on a second-order ordinary differential equation, a stochastic
oscillation is modeled by a two-variate stochastic differential equation without specifying the function form
of the drift function, where the first variable is assumed to be observable but not the other. Given the discrete
time series with observation error, the proposed method enables us to estimate the values of the drift function and
its derivatives including those of the unobservable variable. According to the results of numerical experiments to
compare estimation accuracy with a parametric method, the proposed method shows better performance in the
estimation of nonlinear models.
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I. INTRODUCTION

Nonlinear oscillations can be seen in so many fields of
sciences that various methods for their nonlinear analysis are
reported from natural science to social science; for example,
in neuroscience neural oscillations are modeled by nonlinear
oscillations which are estimated from EEG time series [1–5],
in geoscience oscillations of climate are modeled by nonlinear
stochastic differential equations and applied to proxy data
for temperature [6,7], in astronomy nonlinear oscillations are
used for modeling time evolution of the light emitted from the
center of galaxies [8,9], in finance those models are used for
describing time series of asset prices [10,11], and so on. Math-
ematically their dynamics could be modeled by the following
second-order ordinary differential equation:

ẍ = f (x, ẋ).

To study the dynamic behavior of the solution to the differ-
ential equation from a geometric viewpoint, analysis of the
trajectory on the phase space can be performed. For this pur-
pose, the following equivalent first-order differential equation
is often used as well:

dx1 = x2dt

dx2 = f (x1, x2)dt,

where x1 = x and x2 = ẋ.
Then, investigating a trajectory implied by the differen-

tial equation on the two-dimensional phase space, we can
grasp geometrically the dynamic behavior of the original x.
Various trajectories (x1(t ), x2(t )) can be produced depending
on the function form of f ; circular trajectories can be ob-
served in some cases where f is linear and more complex
trajectories can be seen in nonlinear cases, Van der Pol os-
cillation and Duffing oscillation, for example. In addition, the
derivatives of f are necessary for investigating the behavior
of a trajectory because the trajectory can be characterized
by its vector field V = (ẋ1, ẋ2) = (x2, f ) and the acceleration

dV/dt = (ẋ2, ḟ ) = [ f , (∂ f /∂x1)x2 + (∂ f /∂x2) f ]. Hence, the
values of f and its derivatives are essential quantities for
analysis of the trajectory.

Turing our attention to real applications, internal or ex-
ternal disturbances cause unexpected fluctuations so that
stochastic differential equations (SDEs) may be more useful
for describing the dynamics than the ordinary differential
equation. Taking the above differential equation, its stochastic
version can be expressed, for example, as follows:

dX1,t = X2,t dt,

dX2,t = f (X1,t , X2,t )dt + σdBt ,

where X1 and X2 correspond to x1 and x2, respectively, and Bt

is a standard Brownian motion. So, fitting (X1, X2) into real-
ized trajectories, we can characterize the dynamic behavior of
our interest more clearly by the estimated model.

However, the modeling is not easy. In the first place, we
have almost no information on the function form of f before
analysis, especially for highly complex real systems, although
what function is used for f plays a crucial role in describ-
ing the dynamics. In addition, we cannot always obtain full
information, e.g., information of both X1 and X2, necessary
for estimation. Suppose modeling the dynamics of heart beat
or a stock price index for example. We can easily observe
electrical impulses of heart beat or its price but not observe
their time rate of change, e.g., their velocity, much less their
acceleration. Therefore the estimation must be conducted only
by partially observed data.

Taking these restriction into account, we have to estimate
an SDE. When estimating models without specifying the
function form, we could use such a nonparametric method as
the kernel regression which is a method of fitting a polynomial
function into data locally [12–14]. However, the regression
method is not useful for our analysis because it needs data
of the objective and explanatory variables and thus data of
both X1 and X2 would be required for estimation. To estimate
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a model from partially observed data with nonlinear and/or
non-Gaussian systems, unscented Kalman filter [2,6,15–19],
particle filters [20,21] or sequential Monte Carlo methods
[22,23] could be used. However, because our main interest is
to estimate f and particularly its derivatives, direct application
of these methods does not fit our purpose.

The aim of this paper is to propose a method of estimat-
ing stochastic oscillations under the restrictions above. To
this end, it may be useful to use a nonparametric method
proposed in Ref. [24], which was developed to estimate X1,t

and X2,t from partially observed data without specifying f .
As a by-product, the method could produce estimates of the
values of f and its derivatives. Though the paper investigated
the estimation accuracy for X1,t and X2,t , the paper gave no
quantitative evidence of the estimation accuracy for f nor its
derivatives. Moreover, the paper assumed no observation er-
rors, which is not general enough to handle filtering problems,
although it may be desirable for practical use to include the
observation errors. Due to these drawbacks, it is questionable
whether the method can practically work as an estimation
method of f and its derivatives. In this paper, we conduct
a numerical study of investigating the estimation accuracy
of f and its derivatives together with observation errors. We
compare the performance of the proposed method with that of
the parametric method where f is modeled by a polynomial
function which contains the exact function form of f as a sub-
set. Through the comparison, we will show that the proposed
method can be used to estimate nonparametrically f and its
derivatives from partially observed data.

The paper is organized as follows. In Sec. II we pro-
pose a nonparameteric filtering method to estimate f and its
derivatives from discrete observations. In Sec. III we conduct
numerical experiments to compare estimation accuracy of the
proposed method with that of a parametric method. We con-
clude in the final section.

II. NONPARAMETRIC FILTERING: NPF METHOD

We consider a stochastic process which satisfies the fol-
lowing two-variate stochastic differential equation:

dX1,t = X2,t dt, (1)

dX2,t = f (X1,t , X2,t )dt + σdBt . (2)

Here we assume X1,t to be observable but X2,t to be unob-
servable. In addition, given observed discrete time series data
{Ztk }1�k�n, because data always contain observation errors, the
process Ztk is assumed to be given by

Ztk = X1,tk + εk, (3)

where εk is independently identically normally distributed
with mean zero and variance σ 2

ε . Hence the statistical model
for estimation comes to a state space model, whose system
equation is characterized by SDE (1) and (2) and whose ob-
servation equation is expressed as (3).

Here note the qualitative difference between the system
equation and the observation equation; the former is formu-
lated in continuous time but the latter in discrete time. To
estimate from discrete observations, the SDE needs to be
discretized with attention to no assumption on the function

form of f . To this end, we use a nonparametric method pro-
posed in Ref. [24]. On the basis of mth-order expansion, the
approximate discretized version of the state space model is
given as follows. Let the state vector ξk at discrete time tk be a
vector in RM[M = 2 + m(m + 1)/2)], which is given by

ξk = (
X1,tk , X2,tk ,Y (0,0)

tk ,Y (1,0)
tk ,Y (0,1)

tk , . . . ,

Y (m−1,0)
tk , . . . ,Y (0,m−1)

tk

)
T ,

where

Y (0,0)
t = f (Xt ),

Y (1,0)
t = ∂ f

∂x1
(Xt ), Y (0,1)

t = ∂ f

∂x2
(Xt )

...

Y (m−1,0)
t = ∂m−1 f

∂xm−1
1

(Xt ), . . . , Y (0,m−1)
t = ∂m−1 f

∂xm−1
2

(Xt )

with

Xt = (X1,t , X2,t ).

Since we make no assumption about the function form of
f , we estimate the values of the function and its partial
derivatives from discrete observations, {Ztk }1�k�n. That is
why additional (M − 2) states are considered as unobservable
states.

The state vector ξk satisfies the following linear system and
observation equations. See Appendix A 1 for outline of the
derivation.

ξk+1 = Fkξk + ck + ek+1, (4)

Ztk = Hξk + εtk , (5)

where

Fk = IM + GkAk, (6)

ck = Gkbk, (7)

ek+1 = Gkεk+1, (8)

with the h × h identity matrix Ih and

Ak =

⎛
⎜⎜⎜⎜⎝

0 A1,2 A1,3 0 · · · 0
0 A2,2 A2,3 0 · · · 0
0 · · · 0
...

...

0 · · · 0

⎞
⎟⎟⎟⎟⎠,

(
A1,2 A1,3

A2,2 A2,3

)
= (

Jtk

)−1{exp(Jtk �t ) − I2},

Jtk =
[

0 1
Y (1,0)

tk |tk Y (0,1)
tk |tk

]
,

Gk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 1 0 · · · 0

Y (1,0)
tk |tk Y (0,1)

tk |tk 1 · · · 0
...

...
...

. . .
...

θm−2 θm−1 0 . . . 0
θm−1 θm 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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bk =

⎡
⎢⎢⎢⎢⎢⎢⎣

(
J−1

tk

)2{exp(Jtk �t ) − I2 − Jtk �t}Mtk
σ 2

2 Y (0,2)
tk |tk �t

σ 2

2 Y (1,2)
tk |tk �t
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

εk+1 =

⎡
⎢⎢⎣

∫ tk+1

tk
exp{Jtk (tk+1 − u)}σdBu

0
...

0

⎤
⎥⎥⎦,

H = (1 0 · · · 0),

Mtk =
[

0
σ 2

2 Y (0,2)
tk |tk

]
, S =

(
0
σ

)
.

Since the above state space model is linear with respect
to ξk , we can apply the Kalman updating formula like
the extended Kalman filtering, the filter and prediction of
ξk , which are given as ξk|k = E [ξk|{Ztj }1� j�k] and ξk+1|k =
E [ξk+1|{Ztj }1� j�k], can be computed as follows:

ξk+1|k = Fkξk|k + ck, (9)

	k+1|k = Fk	k|kF T
k + Qk, (10)

Kk = 	k|k−1HT
(
H	k|k−1HT + σ 2

ε

)−1
, (11)

ξk|k = ξk|k−1 + Kk
(
Ztk − Hξk|k−1

)
, (12)

	k|k = (I − KkH )	k|k−1, (13)

where 	k+1|k and 	k|k are the covariance matrix of prediction
and filtering, respectively, and Qk is the covariance matrix
of ek+1. Then the estimates of the unobservable states of our
interest can be found in the components of ξk|k or ξk+1|k . For
example, the estimate of the unobservable state X2,tk is given
by the second component of ξk|k , and the predicted values of
X1,tk+1 and X2,tk+1 are given by the first and second components
of ξk+1|k , and so on.

Here note that the system has several parameters to be es-
timated; σ and σε and the nuisance parameters θ0, θ1, . . . , θm,
which correspond to Y (m,0)

t ,Y (m−1,1)
t , . . . , Y (0,m)

t . These pa-

rameters can be estimated by the quasi-maximum likelihood
estimation from {Ztk }1�k�n by using the following likelihood
function. For the parameter vector θ ,

L(θ ) = 
n−1
k=1 p(Ztk+1 |Ztk ; θ ), (14)

p(Ztk+1 |Ztk ; θ ) = (
2π

(
H	k+1|kHT + σ 2

ε

))−1/2
(15)

× exp

{
− (Ztk+1 − Hξk+1|k )2

2
(
H	k+1|kHT + σ 2

ε

)
}
.

Then maximizing L(θ ) with respect to θ , the maximum like-
lihood estimate θ̂ is obtained.

III. NUMERICAL EXPERIMENT

We conduct numerical experiments to compare estimation
accuracy of the NPF method with that of such a parametric
method of filtering as discussed in Refs. [25,26], called the
PF method here, in which a cubic polynomial function is
used as f in (2) but its values of parameters unknown, which
are estimated from discrete time series. Once the polynomial
function is estimated, its derivatives can be easily computed
as well. The formula of the PF method are given in Appendix
A 2.

Here consider the following examples of f .

Model f (x1, x2)

Linear −x1 − 0.001x2

Van der Pol −x1 + 0.75
(
1 − x2

1

)
x2

Cubic −0.2
(
x3

1 + x3
2

)
Unforced Duffing x1 − x3

1 − 0.5x2

In the experiments, we are particularly interested in the
estimation of the partial derivatives of f . Because the exam-
ples of f considered here are at most cubic polynomial, the
polynomial function used for the PF method certainly includes
the exact function forms of the models as subsets and thus it
may be reasonable that the performance of the PF method is
taken as a benchmark for the comparison.

TABLE I. RMSE of each state by each method is presented; the RMSE is computed from one sample path of size 4000.

Method x1 x2 f ∂1 f ∂2 f ∂2
1 f ∂1∂2 f ∂2

2 f

Linear
PF 0.0007 0.0399 1.5150 1.9987 1.0074 0.0027 0.0030 0.0205
NPF 0.0008 0.0594 0.7752 1.0541 1.4821 1.9977 1.7913 0.0643
Van der Pol
PF 0.0008 0.0541 2.3210 2.1741 1.8426 2.4001 2.0215 0.8502
NPF 0.0006 0.0157 0.1732 0.6300 0.6472 0.6917 0.7691 1.0707
Cubic
PF 0.0006 0.0231 0.5591 0.7635 0.9270 1.6736 0.1587 0.3975
NPF 0.0003 0.0034 0.0187 0.0295 0.0453 0.0722 0.0315 0.1279
Duffing
PF 0.0004 0.0062 0.0581 0.3139 0.2089 1.2063 1.2110 0.8397
NPF 0.0002 0.0019 0.0176 0.0148 0.0127 0.1321 0.0167 0.0540
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Throughout the experiments, �t , σ and σε are
fixed with �t = 1/100, σ = σε = 1/1000 for all the
examples. Estimation accuracy is measured by root mean
squared errors (RMSE) in estimating the states of X1, X2,
f (X1, X2) and its partial derivatives up to second order. In
simulation the discretized process of an SDE is required
for generating its discrete observations {Ztk }1�k�n. Except
for the linear model, however, because it is difficult to
derive the exact discretized process from a nonlinear SDE, an
approximate discretized process is needed. In our experiments
the same discretization method as used in the PF method,
called the local linearization (LL) method discussed in
Ref. [25], is applied for the derivation. Of course there may
be an influence of the approximation on evaluation of the
estimation accuracy. However, if any, it would favor the
performance of the PF method.

The first experiment is the comparison on the basis of one
sample path of size 4000. As for the NPF method, its order of
expansion must be determined before the comparison. Here
the expansion of up to sixth order is considered and then
we select the optimal order on the basis of the maximized
log-likelihood, showing that the sixth order is optimal for all
examples. The result of RMSEs are presented in Table I and
the true curves (in red line) and their estimated (in blue line)
are displayed in Figs. 1–8. Looking at the result of the linear
model, Table I shows that the PF method produces slightly
more accurate estimates than the NPF method. In the case
of the linear model the second-order derivatives are all zero.
However, the curves estimated by the both methods in Figs. 1
and 2 display periodic waves. Anyway, we can see that the two

methods show comparable performance. On the other hand,
the results of the nonlinear models in Table I show that the
estimation by the NPF method is much more accurate than by
the PF method. This is also confirmed graphically. Looking at
the difference between Figs. 3 and 4, the estimates by the NPF
method look more accurate than those estimates by the PF
method, especially for the second-order derivatives. This can
be seen in the estimation of the Cubic model and the Duffing
model as well.

These results are obtained certainly from the experiment of
only one sample path. Hence it may be questionable if these
results might be a special outcome from a special sample path.
To exclude the possibility of particular choice of sample paths,
the same experiment is carried out 100 times and then the
average of RMSEs are computed, which are given by Table II.
In repeated experiments, the values of parameters and the
order of expansion of the NPF method are fixed at the same
as the first experiment. The results show that the averaged
RMSEs of the both methods are almost the same as those of
one sample path, suggesting that the estimation accuracy is
not so affected by choice of sample paths.

Finally, we conduct an experiment to see the influence of
sample size on the performance of estimation referring to
Ref. [27]. Here consider four different sample sizes N = 500,
1000, 2000, and 4000. For each sample size N , we proceed
the same experiment as the above of computing the averaged
RMSEs. For simple evaluation, the averaged norm of the
RMSE vectors {Ri}1�i�100 is used, each of which is defined
by Ri = (RMSE(x1), . . . , RMSE(∂2

2 f )) for each ith experi-
ment. Then, the averaged norm is defined by the average of

FIG. 1. State estimation of the Linear model by the PF method: Panels (a)–(h) show the estimated states of
x1, x2, f , ∂1 f , ∂2 f , ∂2

1 f , ∂1∂2 f , ∂2
2 f in this order. The curves in red display the true and the curves in blue the estimates.
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FIG. 2. State estimation of the Linear model by the NPF method: Panels (a)–(h) show the estimated states of
x1, x2, f , ∂1 f , ∂2 f , ∂2

1 f , ∂1∂2 f , ∂2
2 f in this order. The curves in red display the true and the curves in blue the estimates.

FIG. 3. State estimation of Van der Pol model by the PF method: Panels (a) to (h) show the estimated states of
x1, x2, f , ∂1 f , ∂2 f , ∂2

1 f , ∂1∂2 f , ∂2
2 f in this order. The curves in red display the true and the curves in blue the estimates.
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FIG. 4. State estimation of Van der Pol model by the NPF method: Panels (a)–(h) show the estimated states of
x1, x2, f , ∂1 f , ∂2 f , ∂2

1 f , ∂1∂2 f , ∂2
2 f in this order. The curves in red display the true and the curves in blue the estimates.

FIG. 5. State estimation of the cubic model by the PF method: Panels (a)–(h) show the estimated states of
x1, x2, f , ∂1 f , ∂2 f , ∂2

1 f , ∂1∂2 f , ∂2
2 f in this order. The curves in red display the true and the curves in blue the estimates.
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FIG. 6. State estimation of the cubic model by the NPF method: Panels (a)–(h) show the estimated states of
x1, x2, f , ∂1 f , ∂2 f , ∂2

1 f , ∂1∂2 f , ∂2
2 f in this order. The curves in red display the true and the curves in blue the estimates.

FIG. 7. State estimation of unforced Duffing model by the PF method: Panels (a)–(h) show the estimated states of
x1, x2, f , ∂1 f , ∂2 f , ∂2

1 f , ∂1∂2 f , ∂2
2 f in this order. The curves in red display the true and the curves in blue the estimates.
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FIG. 8. State estimation of unforced Duffing model by the NPF method: Panels (a)–(h) show the estimated states of
x1, x2, f , ∂1 f , ∂2 f , ∂2

1 f , ∂1∂2 f , ∂2
2 f in this order. The curves in red display the true and the curves in blue the estimates.

{|Ri|}1�i�100, or
∑100

i=1 |Ri|/100. The results are presented in
Table III. Similarly to the previous experiment, the estimation
performance of the NPF method is comparable to that of the
PF method for the linear model, but the NPF method shows
considerably better performance than the PF method for the
nonlinear models. However, the difference of the performance
between the two methods is somewhat affected by the sample
size.

Hence, while showing a comparable performance with the
PF method for the linear model, the NPF method can produce
considerably more accurate estimates than the PF method,
especially in the estimation of derivatives of the nonlinear
models.

IV. CONCLUSION

This paper proposes a nonparametric method of filtering
for stochastic oscillations modeled by two-variate stochastic
differential equation, where one variable is observable but not
the other. Under this setting, we have particular interest in the
estimation of derivatives of the drift function of the stochastic
differential equation without specifying its function form.

In addition to the two variables of the stochastic differen-
tial equation, making the values of the drift function and its
derivatives the additional components of a state vector, we
construct a state space model with the updating formula of
the Kalman filtering, and thereby the unobservable values of

TABLE II. The average of the RMSE of each state by each method is presented. The average is computed from 100 experiments.

Method x1 x2 f ∂1 f ∂2 f ∂2
1 f ∂1∂2 f ∂2

2 f

Linear
PF 0.0007 0.0402 1.5109 1.9987 1.0074 0.0027 0.0030 0.0204
NPF 0.0008 0.0606 0.7719 1.0662 1.4754 2.0101 1.7766 0.0645
Van der Pol
PF 0.0008 0.0549 2.3221 2.1790 1.7767 2.3046 1.9628 0.8359
NPF 0.0007 0.0260 0.6426 0.6138 0.8409 0.7200 0.7018 0.9909
Cubic
PF 0.0008 0.0496 0.6728 0.7679 0.9400 1.6781 0.1608 0.4046
NPF 0.0006 0.0081 0.0252 0.0414 0.0670 0.0720 0.0325 0.1402
Duffing
PF 0.0004 0.0068 0.0585 0.3140 0.2091 1.2063 1.2110 0.8396
NPF 0.0002 0.0027 0.0146 0.0193 0.0127 0.1326 0.0169 0.0546
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TABLE III. The average norm of the RMSE vector is computed from 100 experiments, where the RMSE vector Ri of ith experiment is
defined by Ri = (RMSE(x1), . . . , RMSE(∂2

2 f )). The averaged norm is defined by the average of {|Ri|}1�i�100.

Linear Van der Pol Cubic Duffing

N NPF PF NPF PF NPF PF NPF PF

500 5.1575 4.2999 3.4682 4.5616 2.0373 2.3177 0.9829 1.4559
1000 1.8701 2.7247 2.1036 4.8127 0.5179 2.2321 0.2175 1.2794
2000 1.8555 2.7214 1.8807 5.8269 0.2296 1.9858 0.2332 0.9245
4000 3.3338 2.7008 1.8932 6.1614 0.1880 1.6567 0.1471 0.7726

the function and its derivatives can be estimated from discrete
time series of the observable variable.

We conducted numerical experiments to evaluate estima-
tion accuracy of the proposed method by comparing with a
parametric method in which the drift function is expressed
as a cubic polynomial function containing the true function
form as a subset. Four examples of stochastic oscillations were
considered; one is a linear model and the others are nonlinear
ones. Then, we tried to estimate the values of the derivatives
up to second order including the values of the drift function
and the unobservable variable.

The results of the comparison on the basis of one sample
path showed that the proposed method considerably outper-
forms the parametric one in the estimation of the nonlinear
models, particularly in the estimation of the second-order
partial derivatives, while estimation accuracy of the proposed

method is comparable with that of the parametric one in the
case of the linear model. The additional experiments based on
one hundred sample paths revealed almost the same results
as on one sample path, suggesting that the estimation by the
proposed method is more accurate, particularly for nonlinear
models, regardless of sample paths. Moreover, due to the ex-
periment to see the influence of sample size on the estimation
accuracy, while the difference is somewhat affected by the
sample size, the dominance of the proposed method over the
parametric one in the estimation of the nonlinear models does
not change.
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APPENDIX

1. Outline of derivation for NPF method

This Appendix presents an outline of derivation for the NPF method. More detail discussion can be seen in Ref. [24].
First suppose the truncated Taylor’s expansion of f around x0 = (x0, y0) up to mth order. Then we get

f (x) ≈ f̃ (x),

= f (x0) + ∂ f

∂x
(x0)(x − x0) + ∂ f

∂y
(x0)(y − y0)

...

+ 1

m!

∂m f

∂xm
(x0)(x − x0)m + · · · + 1

m!

∂m f

∂ym
(x0)(y − y0)m.

Let Xt = (X1,t , X2,t )T and define Yt = f̃ (Xt ) by putting Xs into x0 where s < t . Because f̃ is a polynomial function of degree
m, repeated application of the Ito’s formula over time interval u ∈ [s, t ) gives

Y (0,0)
t − Y (0,0)

s =
∫ t

s
Y (1,0)

u dX1,u +
∫ t

s
Y (0,1)

u dX2,u + σ 2

2

∫ t

s
Y (0,2)

u du,

Y (1,0)
t − Y (1,0)

s =
∫ t

s
Y (2,0)

u dX1,u +
∫ t

s
Y (1,1)

u dX2,u + σ 2

2

∫ t

s
Y (1,2)

u du,

Y (0,1)
t − Y (0,1)

s =
∫ t

s
Y (1,1)

u dX1,u +
∫ t

s
Y (0,2)

u dX2,u + σ 2

2

∫ t

s
Y (0,3)

u du,

...

Y (0,m)
t − Y (0,m)

s = 0.

where

Y (i, j)
t = ∂ i+ j f̃

∂xi∂y j
(Xt ).
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To discretize the process at discrete times {tk}1�k�n (�t = tk − tk−1), we use a usual assumption that each integrand is a
constant over the time interval [tk, tk+1). However, because of no knowledge about a function form of f , we must estimate Y (i, j)

t

from discrete observation {Ztk }1�k�n. To this end we replace Y (i, j)
tk with Y (i, j)

tk |tk = E [Y (i, j)
tk |{Ztl }1�l�k]. This replacement is used for

the formulation of the extended Kalman filter algorithm; see Refs. [28,29]. Furthermore the last (m + 1) equalities imply that
Y (i, j)

tk (i + j = m) are constant. Denoting them by θ j (0 � j � m), we estimate θ j as nuisance parameters from data. Under the
above setting, the following linear discrete time model is obtained:

Y (0,0)
tk+1

− Y (0,0)
tk = Y (1,0)

tk |tk
(
X1,tk+1 − X1,tk

) + Y (0,1)
tk |tk

(
X2,tk+1 − X2,tk

) + σ 2

2
Y (0,2)

tk |tk �t,

Y (1,0)
tk+1

− Y (1,0)
tk = Y (2,0)

tk |tk
(
X1,tk+1 − X1,tk

) + Y (1,1)
tk |tk

(
X2,tk+1 − X2,tk

) + σ 2

2
Y (1,2)

tk |tk �t,

Y (0,1)
tk+1

− Y (0,1)
tk = Y (1,1)

tk |tk
(
X1,tk+1 − X1,tk

) + Y (0,2)
tk |tk

(
X2,tk+1 − X2,tk

) + σ 2

2
Y (0,3)

tk |tk �t,

...

Y (0,m−1)
t − Y (0,m−1)

s = θm−1(X1,tk+1 − X1,tk ) + θm(X2,tk+1 − X2,tk ).

Meanwhile, let the SDE be expressed as

dXt = μ(Xt )dt + SdBt ,

where μ(x) = (x2, f (x))T with x = (x1, x2). Here consider the local linearization (LL) method in which the drift function of the
SDE is approximated by the second-order Taylor’s expansion around each filtered state; its detail explanation can be seen in
Refs. [25,26,30,31]. Applying the LL method,

Xtk+1 = Xtk + Dμ
(
Xtk

)−1[
exp(Dμ(Xtk )�t ) − I2

]
μ

(
Xtk

) + (
Dμ(Xtk )−1

)2{
exp

(
Jtk �t

) − I2 − Jtk �t
}
Mo

tk

+
∫ tk+1

tk

exp
{
Dμ

(
Xtk

)
(tk+1 − u)

}
SdBu,

where Dμ is a Jacobi matrix of μ. Approximate Dμ(Xtk ) ≈ Dμ(Xtk |tk ) and f ≈ f̃ , then

Dμ(Xtk ) ≈
[

0 1
Y (1,0)

tk |tk Y (1,0)
tk |tk

]
= Jtk

Similarly,

μ(Xtk ) = (
X2,tk , f (Xtk )

)
T

≈ (
X2,tk , f̃ (Xtk )

)
T = (

X2,tk ,Y (0,0)
tk

)
, T

and

Mo
tk = (

0,
(
σ 2/2

)
∂2

2 f
(
Xtk

))
T

≈ (
0,

(
σ 2/2

)
Y (0,2)

tk |tk )
)

T = Mtk .

We get

Xtk+1 = Xtk + J−1
tk

{
exp

(
Jtk �t

) − I2
}(

X2,tk ,Y (0,0)
tk

)
T + (

J−1
tk

)2{
exp

(
Jtk �t

) − I2 − Jtk �t
}
Mtk +

∫ tk+1

tk

exp
{
Jtk (tk+1 − u)

}
SdBu.

In this equation and the equations of Y (i, j)
tk+1

− Y (i, j)
tk , putting the processes at time tk+1 in the left-hand side and those at time tk in

the right-hand side, we get

G−1
k ξk+1 = (

G−1
k + Ak

)
ξk + bk + εk+1.

Multiplying both hand sides by Gk , the formula of the NPF method is obtained.

2. PF method

The PF method is a continuous-discrete filtering method derived from a discretization of an SDE by applying the LL method.
The extended Kalman filter (EKF) is a special version of the PF method because the first-order Taylor’s expansion is used in
EKF. For the sampling time interval �t , denote the discrete state by ξk = Xtk = (X1,tk , X2,tk )T at discrete time tk . After applying
the LL method to the SDE where its drift function f is a two-variate cubic polynomial one, the discrete state space model is

052221-10



NONPARAMETRIC FILTERING FOR STOCHASTIC … PHYSICAL REVIEW E 102, 052221 (2020)

given by

ξk+1 = Fkξk + ck + ek+1,

Ztk = Hξk + εtk ,

where

Fk = exp(Jtk �t ),

ck = [
I2 − exp

(
Jtk �t

)]
ξk|k + J−1

tk

[
exp

(
Jtk �t

) − I2
]
μtk + (

J−1
tk

)2[
exp

(
Jtk �t

) − I2 − Jtk �t
]
Mtk ,

ek+1 =
∫ tk+1

tk

exp
[
Jtk (tk+1 − u)

]
SdBu,

H = (1 0),

with

μ(x) = (μ1(x), μ2(x))T ,

μ1(x) = x2,

μ2(x) = a0 + a1,0x1 + a0,1x2 + · · ·
+a3,0x3

1 + · · · + a0,3x3
2,

x = (x1, x2)T ,

Jt = Dμ(Xt |t ), μt = μ(Xt |t ),

Mt =
(

1

2
tr(SST H1,t ),

1

2
tr(SST H2,t )

)
T ,

Hi,t =
(

∂2μi

∂x j∂xk

)
1� j,k�2

(Xt |t ),

S = (0 σ )T .

In addition, the covariance matrix Qk of ek is given by

Qk =
∫ �t

0
exp

(
Jtk u

)
SST exp

(
Jtk u

)
T du.

The EKF is given by simply putting Mt = 0.
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