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Sensitivity of long periodic orbits of chaotic systems
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The properties of long, numerically determined periodic orbits of two low-dimensional chaotic systems, the
Lorenz equations and the Kuramoto-Sivashinsky system in a minimal-domain configuration, are examined. The
primary question is to establish whether the sensitivity of period averaged quantities with respect to parameter
perturbations computed over long orbits can be used as a sufficiently good proxy for the response of the chaotic
state to finite-amplitude parameter perturbations. To address this question, an inventory of thousands of orbits
at least two orders of magnitude longer than the shortest admissible cycles is constructed. The expectation of
period averages, Floquet exponents, and sensitivities over such set is then obtained. It is shown that all these
quantities converge to a limiting value as the orbit period is increased. However, while period averages and
Floquet exponents appear to converge to analogous quantities computed from chaotic trajectories, the limiting
value of the sensitivity is not necessarily consistent with the response of the chaotic state, similar to observations
made with other shadowing algorithms.
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I. INTRODUCTION

Evidence has been offered in recent years [1–4] that tem-
porally recurrent invariant solutions of the Navier-Stokes
equations, unstable periodic orbits, may provide a constitu-
tive skeleton organizing spatiotemporal dynamics of turbulent
shear flows in canonical geometries. Motivated by these ad-
vances, we have recently suggested [5] how unstable periodic
orbits may be used to design control strategies for shear flows,
rather than serving as a tool to rationalize turbulence dy-
namics. In particular, in Ref. [5], we have specialized adjoint
methods for time-periodic systems [6–9] to unstable periodic
orbits. We have shown that enforcing periodicity conditions
on the adjoint problem, justified by the peculiar topology of
these trajectories, prevents the growth of exponential instabil-
ities that would otherwise feature prominently in the solution
of the adjoint equations [10,11].

Operationally, the approach provides the sensitivity of pe-
riod averaged quantities with respect to small perturbations
of variables parametrizing the equations of motion. Geo-
metrically, small parameter perturbations can be pictured as
producing smooth, global state-space deformations of the un-
stable periodic orbits supporting and shaping the attractor, as
opposed to causing exponential divergence. The approach is
a special case of shadowing theory ideas [12–14], recently
introduced in the context of sensitivity analysis of chaotic
systems [15–18].

In principle, complete knowledge of the short, fundamental
cycles should suffice to compute ergodic averages using cycle
averaging formulas [19–21]. Of relevance for our original
motivation is that a formalism that relies on the sensitivity
of such cycles to compute the sensitivity of ergodic averages
was proposed in Refs. [22,23]. Obtaining all short cycles up
to a given topological length, i.e., low-period orbits identified

by a short symbol sequence [20,24], may be practical for
low-dimensional systems (see e.g. Ref. [25]). However, this
step has proven more challenging for turbulent shear flows
[2,26], given well-documented difficulties in locating invari-
ant solutions [27,28]. This issue is particularly relevant since
the quality of cycle averaging predictions using incomplete
hierarchies is as good as the most important orbit that one
fails to locate [29].

In light of such issues, we explore in this paper a heuris-
tic approach whereby available computational resources are
spent to locate one or a few periodic orbits, with sufficiently
long period for them to span a good fraction of the attractor.
The open question is whether sensitivities of period averaged
quantities computed over a long orbit can be useful approx-
imations for the response of ergodic averages to parameter
perturbations. Like period averages, sensitivities computed
over different periodic orbits vary from cycle to cycle. How-
ever, it is known that period averaged quantities calculated
from long periodic orbits converge to a defined value when
the period increases [30]. Evidence showing a similar con-
vergence for sensitivities of period averages is currently not
available in the literature and would provide initial support for
the above heuristic. This approach is, admittedly, guided more
by empiricism rather than by a solid theoretical basis. Hence,
the aim of this paper is to make a first step in exploring its
viability. We resort, by necessity, to low-dimensional systems,
where obtaining a sizable inventory of long periodic orbits
is feasible. We consider the Lorenz equations at standard
parameters [31] and a small-domain Kuramoto-Sivashinsky
system in the antisymmetric subspace [32,33].

One remark is in order. It is true that some long periodic
orbits might not provide good approximations, for instance,
orbits close to bifurcation or orbits visiting certain areas of
the attractor where the response is particularly large. As an
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illustrative example, in Ref. [5], long periodic orbits of the
Lorenz equations passing close to the origin were found that
have extremal value of the sensitivity. Hence, to develop a
quantitative understanding of the potential impact of such
extremal orbits, we locate thousands of long periodic orbits
by converging near recurrences explored by the chaotic flow
and report sensitivity predictions of these periodic orbits in
a statistical manner. The analysis of this ensemble is clearly
bound to suffer of some form of survivor bias. For instance,
Newton-Raphson techniques often fail to converge when the
orbit shadowed by the near recurrence event possesses mul-
tipliers close to the unit circle [34]. Nevertheless, this bias
does not prevent us to complete the original task, which is
to analyze the properties of typical periodic orbits that may be
found numerically rather than the properties of all admissible
cycles.

The rest of this paper is organized as follows. In Sec. II
we present the general notation. This is followed by Sec. III,
where we recall fundamental elements of Floquet theory for
the linear stability of periodic orbits [35,36]. In Sec. IV we
recall the sensitivity technique for unstable periodic orbits
originally introduced in Ref. [5]. With this introductory ma-
terial, in Sec. V we establish the connection between Floquet
stability and sensitivity of periodic orbits. This analysis illus-
trates more clearly the inevitable effects of bifurcations that
periodic orbits undergo as parameters are varied and supports
the interpretation of numerical results, reported in Sec. VI.

II. PRELIMINARIES

We consider dissipative dynamical systems of the form

du(t )

dt
= f (u(t ), α), (1)

governing the evolution of the state vector u(t ) ∈ Rn, with
t being time. We restrict the attention to problems where
the nonlinear vector field f depends only on one parameter
α ∈ R, in regimes for which chaotic solutions are observed for
typical initial conditions. For systems that depend on multiple
parameters, the sensitivity of time averaged quantities can
be analyzed over each parameter independently, or with an
adjoint approach. We denote with fu(t ) ∈ Rn×n the stability
matrix

fu(t ) = fu(u(t ), α) = ∂f (u(t ), α)
∂u

(2)

and define the Jacobian matrices M(t, τ ) ∈ Rn×n, t � τ , sat-
isfying the initial value problem

dM(t, τ )

dt
= fu(t )M(t, τ ), M(τ, τ ) = I, (3)

with I the identity matrix. The dot product of two vectors is
denoted with a� · b, with the script � indicating transposition
of vectors and matrices.

We focus on periodic solutions of (1), satisfying u(t +
T ) = u(t ) for an unknown period T that is not set a priori, but
depends implicitly on the parameter α. We shall thus consider
the space of smooth periodic functions

PT = { f (t ) : R �→ R, f (t ) = f (t + T )}, (4)

parametrized by T , and extend this space to vector-valued
functions, denoted with Pn

T . We will make use of the norm
‖ · ‖Pn

T
induced by the inner product

�v(t ), w(t )� = 1

T

∫ T

0
v(t )� · w(t ) dt, (5)

for any two vector-valued functions v(t ) and w(t ) in Pn
T .

III. ELEMENTS OF FLOQUET THEORY

In this section, we briefly recall some elements of Floquet
theory [36,37] and define the direct and adjoint Floquet eigen-
functions. These functions are used in Sec. III as invariant
subspaces in which the solution of the sensitivity problem
can be conveniently expanded, shedding light on the relation
between stability and sensitivity of period averages.

For an arbitrary point on a periodic orbit, the eigenvalue
decomposition of the monodromy matrix

M(T, 0)ek (0) = μkek (0), k = 1, . . . , n (6)

produces the Floquet multipliers μk and the associated right
eigenvectors ek (0). To simplify the notation and the analy-
sis of Sec. V, we consider here the special case in which
multipliers are real and positive. In more general cases, new
function spaces in addition to Pn

T are required (see Ref. [36]).
Assuming the multipliers are distinct, the eigenvectors form
collectively a basis of Rn. From the multipliers, the Floquet
exponents λk = log(μk )/T can be calculated, defining the
period averaged growth and decay of tangent perturbations
initially aligned to the invariant subspaces ek (0).

We introduce the Floquet eigenfunctions wk (t ) ∈ Pn
T , gen-

erated by the eigenvectors ek (0) as

wk (t ) = exp (−λkt )M(t, 0)ek (0), (7)

and satisfying the differential eigenvalue problem

Lwk (t ) ≡ dwk (t )

dt
− fu(t )wk (t ) = −λkwk (t ), (8)

with unit ‖ · ‖Pn
T

norm. Sorting the Floquet exponents in de-
scending order, we denote by χ − 1 the number of positive
exponents. It is well known that wχ (t ) = f (t )/‖f (t )‖Pn

T
is

a marginal direction, with exponent λχ = 0 and multiplier
μχ = 1. In other words, the linear differential operator L is
singular, with null space

Null{L} = span{wχ (t )}. (9)

The other useful element of Floquet theory for our pur-
poses, perhaps considered less extensively in the literature
[38], are the adjoint Floquet eigenfunctions w+

k (t ). These are
elements of Pn

T defined as

w+
k (t ) = exp[−λk (T − t )]M(t, T )�e+

k (T ), (10)

where the vectors e+
k (T ) are the left eigenvectors of the mon-

odromy matrix, satisfying

e+
k (T )�M(0, T ) = μke+

k (T )� (11)

for the same multipliers and exponents of the direct prob-
lem. The adjoint eigenfunctions satisfy the adjoint differential
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eigenproblem

L+w+
k (t ) ≡ −dw+

k (t )

dt
− f�

u (t )w+
k (t ) = −λkw+

k (t ), (12)

where the operator L+ is the adjoint of L according to the in-
ner product (5). These two operators share the same spectrum
and the adjoint operator L+ is thus singular with null space

Null{L+} = span{w+
χ (t )}. (13)

A final remark is that, at any time t , the direct or adjoint
eigenfunctions do not form individually an orthogonal set of
vectors but instead satisfy the biorthogonality relation

w+
k (t )� · w j (t ) = δk jCk ∀ t, (14)

with δk j the Kronecker symbol and with constants Ck 	= 0 ∈
R.

IV. SENSITIVITY ANALYSIS

We now briefly recall the tangent approach to compute
the sensitivity of period averaged quantities [5]. Consider an
observable of interest, denoted by a function

J (t ) = J (u(t )) : Rn �→ R, (15)

that, for the sake of simplicity, is assumed here not to depend
explicitly on the parameter α. Let also denote the partial
derivative of the observable with respect to its argument as
Ju(t ) = Ju(u(t )), mapping Rn to Rn. Consider one periodic
orbit u(t ) ∈ Pn

T and define the function J (α) : R �→ R:

J (α) = 1

T

∫ T

0
J (u(t ))dt (16)

as the period average of the observable over the periodic orbit.
This is a function of the parameter α since both u(t ) and T
depend, implicitly, on it. The goal is to compute the sensitivity
of the period average with respect to α, the gradient dJ /dα

(also shortened to Jα in the following sections).
Linearization of (16) as reported in Ref. [39] shows that the

gradient of the period average is given by the inner product

dJ /dα = �Ju(t ), v(t )�, (17)

where the perturbation v(t ) ∈ Pn
T satisfies the tangent equa-

tion

Lv(t ) = fα (t ) − τ f (t ). (18)

The perturbation v(t ) is the first order state-space deforma-
tion of the periodic orbit u(t ) when α is varied. The scalar
τ = (dT/dα)/T is the (unknown) relative period gradient,
producing an algebraically growing mode along f (t ), allowing
v(t ) to be time periodic. The introduction of this term is
akin to classical approaches in perturbation and continuation
analyses of periodic problems [35,40], where time is rescaled
by the period. The forcing term fα (t ) ∈ Pn

T is the derivative of
the right-hand side of (1) with respect to the parameter

fα (t ) = fα (u(t ), α) = ∂f (u(t ), α)
∂α

. (19)

For a hyperbolic orbit, the differential operator L is sin-
gular with null space given by (9) and Eq. (18) has a one
parameter family of solutions. Physically speaking, this is a

reflection of the translational invariance along a periodic orbit:
if v(t ) is a solution, then v(t ) + σ f (t ) is a solution too, for any
σ ∈ R, with same gradient dJ /dα, since

�Ju(t ), f (t )� = 0 (20)

for all possible cost functions when u(t ) ∈ Pn
T . Hence, for

(18) to have a solution, the scalar τ must have the unique value
that shifts the right-hand side fα (t ) − τ f (t ) in the range of the
operator L or by Fredholm’s alternative (cf. [41], Lemma 1.1,
p. 146) makes it orthogonal to the null space of its adjoint L+,
i.e., by satisfying

�w+
χ (t ), fα (t ) − τ f (t )� = 0. (21)

Hence, the scalar τ could be in principle determined as

τ = �w+
χ (t ), fα (t )�

Cχ‖f (t )‖Pn
T

(22)

if w+
χ (t ) was known, with Cχ from (14). Numerically, it is

more convenient to drop the singularity by adding the con-
straint

�v(t ), f (t )� = 0, (23)

which fixes the component of v(t ) along the null space and
leads to the solution of (18) with minimum norm [36]. In
matrix form, the tangent problem reads as[

L f (t )
�·, f (t )� 0

]
·
[

v(t )
τ

]
=

[
fα (t )

0

]
(24)

and its solution provides the perturbation v(t ) and the period
gradient τ . Note that the left-hand side of (24) has the same
structure of the Newton-Raphson linear problems arising in
the search of periodic solutions [5,42], and similar discretiza-
tion techniques can be employed.

Constraining v(t ) to remain in Pn
T by using an appropriate

numerical method [5] is the key to avoid exponential insta-
bilities intrinsic to the tangent dynamics around an unstable
periodic orbit [10]. The solution v(t ) will thus not grow ex-
ponentially along the most unstable subspace w1(t ), but will
remain bounded, with magnitude and structure that depend on
the complete stability spectrum, as we shall see in Sec. V.
With a bounded v(t ), the gradient (17) is effectively the slope
of the function J (α) obtained from continuation.

V. STABILITY AND SENSITIVITY

In this section, we explain the relation between the linear
stability of periodic orbits and the sensitivity of period av-
erages. We do not make use of the following results for our
numerical calculations in Sec. VI, but aim to develop tools to
facilitate their interpretation.

Fundamentally, the approach consists in projecting the tan-
gent problem (18) onto the invariant subspaces formed by the
Floquet eigenfunctions. With the same assumptions on the
multipliers as in Sec. III, the solution v(t ) is expanded in the
Floquet eigenfunctions

v(t ) =
n∑

k=1

wk (t )ak (t ), (25)
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with unknown expansion coefficients ak (t ) ∈ PT . The forcing
term in (18) is also similarly expanded

fα (t ) =
n∑

k=1

wk (t )bk (t ), (26)

where the functions bk (t ) ∈ PT can be determined by dotting
(26) with the kth adjoint eigenfunction

bk (t ) = w+
k (t )� · fα (t )

Ck
, k = 1, . . . , n (27)

where the biorthogonality relation (14) is used.
Substituting the expansion (25) into the tangent equation

(18) and using (8) produces
n∑

k=1

wk (t )

[
dak (t )

dt
− λkak (t ) − bk (t ) + τ‖f (t )‖Pn

T
δk,χ

]
= 0.

(28)
Since the Floquet eigenfunctions form a basis of Rn for all t
by assumption, the term in the square brackets in (28) must
be zero. We thus obtain a set of decoupled linear ordinary
differential equations (ODEs) with constant coefficients

dak (t )

dt
= λkak (t ) + bk (t ) − τ‖f (t)‖Pn

T
δk,χ , (29)

k = 1 . . . , n, the tangent sensitivity problem expressed in the
basis of the Floquet eigenfunctions. Along the neutral sub-
space f (t ) the equation reads as

daχ (t )

dt
= w+

χ (t )� · fα (t )

Cχ

− τ‖f (t )‖Pn
T
. (30)

In order for aχ (t ) to remain in PT , the right-hand side must
have zero integral over the period by Fredholm’s alternative
since the equation is self-adjoint and a+

χ (t ) = 1 is a nontrivial
solution of the homogeneous adjoint equation. This constraint
fixes the relative period gradient τ to a value that is the same
as Eq. (22).

A particularly insightful expression can be derived for the
expanding and contracting directions. The solution of the
scalar ODEs dak (t )/dt = λkak (t ) + bk (t ) can be expressed
with a Green’s function approach (cf. [41], p. 148) as

ak (t ) =
∫ T

0

μk

1 − μk
e−λk sbk (t + s) ds, (31)

with μk the Floquet multipliers, and the upper bounds

sup
t

|ak (t )| � sup
t

|bk (t )|/|λk| = Bk/|λk| (32)

the key result of this section, can be derived.
This bound suggests several remarks. First, without further

details on the coefficients bk (t ), generic parameter perturba-
tions induce relatively small state-space changes along the
highly contracting or expanding directions, while most of the
“yield” occurs along the Floquet invariant subspace associated
to Floquet exponents with small magnitude. This is in stark
contrast with classical sensitivity analysis methods for chaotic
trajectories [10,43], where only the most unstable covariant
Lyapunov vector [44,45] dominates asymptotically the solu-
tion of the tangent equations [10]. When varying the system
parameter α toward a bifurcation, one (or a pair of) Floquet

exponent crosses the imaginary axis and the tangent solution
displays a large amplitude along the corresponding direction,
resulting in large gradients of time averaged quantities.

Second, the bound (32) shows that the amplitude of the tan-
gent solution along a particular Floquet eigenfunction wk (t )
depends directly on the strength of the projection of the forc-
ing fα (t ) on the associated adjoint Floquet eigenfunctions, the
coefficients bk . Hence, for spatially extended systems, knowl-
edge of the spatiotemporal dynamics of the adjoint Floquet
eigenfunctions and not just the direct ones [46–48], might pro-
vide an understanding of how physically relevant features of
the solutions are influenced by problem parameters [38]. One
can then interpret the adjoint Floquet eigenfunctions as special
directions where the forcing fα (t ) can be particularly effective
in modifying dynamical behavior [49], which is useful, for
instance, for control design [9].

Third, and most importantly, the boundedness of the forc-
ing term fα (t ) and of the Floquet eigenfunctions implies that
the coefficients bk (t ), and thus the expansion coefficients ak (t )
and the tangent solution v(t ), have, on average, similar magni-
tude for long periodic orbits if the exponents of long periodic
orbits converge as T → ∞. At this stage, it is convenient to
note that the Floquet exponents are the period averages of the
“local exponents” [50,51]

λk (t ) = wk (t )�[f�
u (t ) + fu(t )]wk (t )

‖wk (t )‖2
, (33)

uniquely defined functions of state space [52] expressing the
local growth rate of tangent perturbations along the invariant
subspaces (here ‖ · ‖ indicates the Euclidean norm).

By the central limit theorem, the distribution of the kth
Floquet exponent across distinct orbits of similar period T ,
must converge in law to a Dirac delta function [53] with
standard deviation decaying as T −1/2, assuming that the auto-
correlation of time histories of (33) decays sufficiently quickly
[53]. Hence, the bound (32) indicates that the distribution of
the sensitivity of period averages dJ /dα will also converge
to a delta function as T increases. In other words, while some
scatter might be observed for short cycles, long periodic orbits
will asymptotically provide the same sensitivity to parameter
perturbations.

VI. NUMERICAL RESULTS

To answer the question posed in the Introduction, we now
turn to numerical experiments and consider periodic orbits
of two well-known chaotic systems. The first is given by the
Lorenz equations [31,54]

du1/dt = σ (u2 − u1),
du2/dt = ρu1 − u2 − u1u3,

du3/dt = u1u2 − βu3,

(34)

where standard parameters σ = 10, β = 8
3 , and ρ = 28 are

used throughout. As in other sensitivity studies on the Lorenz
equations [10,15,39,43,55,56], we consider the sensitivity of
the period average of the observable J (t ) = u3(t ) with respect
to perturbations of ρ. Numerical integration of chaotic trajec-
tories is performed using a classical fourth-order Runge-Kutta
method with �t = 0.005.
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The second system is a finite-dimensional truncation of a
spatially extended system, the Kuramoto-Sivashinky equation

∂u

∂t
+ u

∂u

∂x
+ ∂2u

∂x2
+ ν

∂4u

∂x4
= 0, (35)

defining the evolution of zero-mean, spatially periodic fields
u ≡ u(x, t ) over the domain x ∈ [0, 2π ] with dynamics re-
stricted to the invariant subspace of odd solutions [33].
Here, we consider a relatively high diffusivity constant ν =
(2π/L)2, with L = 39, the same value we considered in pre-
vious work [5]. The spectral expansion

u(x, t ) =
n∑

k=−n

iuk (t ) exp(ikx), (36)

with uk = −u−k , u0 = 0, is truncated at n = 28, leading to
a system of ODEs approximating solutions of the original
partial differential equation. Some of the numerical results
reported in the next sections have been checked in a statis-
tical sense at finer resolutions, with negligible quantitative
changes. We take the energy density

J[u(x, t )] = 1

4π

∫ 2π

0
u2(x, t ) dx (37)

as the functional of interest and examine the sensitivity of its
average with respect to the diffusivity ν. Numerical integra-
tion of chaotic trajectories is performed using the fourth-order
accurate implicit-explicit method IMEXRKCB4 [57], with time
step �t = 0.125ν.

A. Search of long periodic orbits

We use a global Newton-Raphson search algorithm de-
veloped in previous work [5], based on the original method
of Ref. [42] and classical techniques for nonlinear boundary
value problems [58]. Briefly, at iteration k, this method solves
a Newton-Raphson update equation to adjust a trial solution
composed of a state-space loop uk ∈ Pn

Tk
and a period Tk . The

loop is not, at least initially, a solution of the equations, i.e.,
the residual

rk (t ) = duk (t )/dt − f (uk (t ), α) ∈ Pn
Tk

(38)

is generally different from zero along the loop. The only
significant modification that we have implemented is that
the loop derivative operator d/dt is approximated using
an eight-order accurate finite-difference stencil (instead of
fourth order), enhancing the overall accuracy to cost ratio
and allowing longer orbits to be found. The same high-order
discretization is used for the solution of the tangent problem
(24). Initial guesses are obtained from near recurrences of the
chaotic flow.

In previous work [5], we attempted to locate exhaustively
all short periodic orbits and examined their sensitivity as a
function of the topological length. In this work, we adopt a
different strategy, motivated by the objective of examining the
properties of typical long periodic orbits found by Newton-
Raphson searches. To this end, rather than considering the
topological length, we select a number of arbitrary reference
periods, denoted as T̂ , and locate up to 5000 periodic orbits
with actual period falling within ±5% of the reference period.

TABLE I. Reference temporal grid spacing for the finite-
difference approximation of the derivative involved in the search
of periodic orbits, period of the shortest admissible orbit, and ratio
between the largest reference period and Tmin.

Reference �t Tmin T̂max/Tmin

Lorenz 0.01 1.5586 ∼645
KS 0.125ν 24.9080ν ∼201

Periodic orbits do have inherent timescales (the period of
the shortest cycle), but for long reference periods we have
observed that the actual period of converged solutions is uni-
formly distributed in the ±5% range. Hence, the reference
periods can be selected arbitrarily and are chosen here such
that the maximum reference period T̂max is about two orders
of magnitude larger than the period of the shortest admissible
cycle, as indicated in Table I. This range is sufficiently wide
to reveal the asymptotic convergence of properties of long
periodic orbits as the period increases.

Search results are reported in Fig. 1. For short reference
periods, we locate as many orbits as it is feasible and the
number of periodic orbits found grows exponentially with the
period. The number of periodic orbits found quickly satu-
rates the set threshold of 5000 orbits. We stress the fact that
our focus is not to provide a description of the statistical
distribution of the complete set of periodic orbits of high
topological lengths, nor to use such quantities to approximate
the measure using cycle averaging theory. Such calculations
would be biased by the sampling. Rather, we aim to develop
an understanding of what to expect from long orbits that might
be typically found numerically by converging near recurrence
events. Hence, the threshold is chosen so that statistics over
the ensemble are sufficiently robust.

We report in Fig. 2 the shortest and longest periodic orbits
found for the Lorenz equations [Fig. 2(a)] and KS system
[Fig. 2(b)]. While the short cycles are topologically simple,
longer orbits wind around the attractor in a complicated fash-
ion and are thus indistinguishable to the eye from long chaotic
trajectories. We build an inventory of unique solutions by
ensuring that all periodic orbits found have period average

FIG. 1. Number of unique periodic orbits found as a function of
the reference period T̂ , for the Lorenz equations (a) and KS system
(b). The red line is at 5000. For the KS system, the reference period
is scaled by the diffusivity.
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FIG. 2. Projections of the shortest (solid red) and longest (thin
black) periodic orbits found in this study for the Lorenz (a) and KS
equations (b).

(16) differing to at least eight decimal places. This is a few
orders of magnitude larger than the accuracy at which this
quantity is determined in the search, with the temporal dis-
cretization settings reported in Table I. Because of the high
number of orbits existing at such high topological lengths,
very few duplicates have been found. For both systems, we
have observed that relatively few Newton-Raphson iterations
are required and that the convergence history is independent
of the period T . However, the success rate appears to de-
cline slightly for longer periods, arguably as a result of the
increasing condition number of the Newton-Raphson update
problem. This is illustrated in Fig. 3, where we show the
history of the norm of the residual (38) for about 100 long
period searches for the Lorenz and KS equations, in Figs. 3(a)
and 3(b), respectively. Figures 3(c) and 3(d) show how the
success rate, estimated from these test searches, varies with

FIG. 3. Convergence of the norm of the residual (38) during the
Newton-Raphson search of long periodic solutions of the Lorenz
equation (a) and KS equations (b) for 100 test searches with reference
period T̂ = 1000 and 5000ν, respectively. Only converged searches
are reported. The horizontal red line indicates the stopping tolerance.
(c), (d) Success rate of the search of periodic orbits estimated from
the same test searches, as a function of the reference period.

FIG. 4. Ensemble mean (a), (b) and standard deviation (c), (d) of
the time averaged observable as a function of the reference period
T̂ , for chaotic trajectories (filled diamonds) and periodic orbits (open
circles). Left panels; Lorenz equations; right panels: KS system.

the period. We have observed these trends to be independent
of the temporal discretization and, for the KS equations, of
the spatial resolution. This gives us enough confidence that
these orbits are numerically reliable approximations of exact
solutions of the equations and not an artifact of the search
method.

In the next sections, we examine properties of these or-
bits. We first focus on period averages and Floquet exponents
in Secs. VI B and VI C, respectively. To characterize how
properties vary across the ensemble of orbits at each refer-
ence period, we compute the ensemble mean and standard
deviations and denote these quantities by mean[·] and std[·],
respectively. We do not consider these moments as substitutes
of cycle averaging formulas but we use them to characterize
in statistical terms the properties of typical orbits obtained
numerically. Probability distributions of these quantities are
also shown, with the caveat that they only represent typical
orbits, and not the complete set of admissible periodic orbits.
The sensitivity of period averages is then finally considered in
Sec. VI D. We also compare averages, exponents, and sensitiv-
ities to analogous quantities computed on chaotic trajectories
to address the original question whether long periodic orbits
can be considered as accurate proxies for the chaotic state.

B. Statistics of time averages

The statistics of period averages over typical long periodic
orbits are compared to statistics of time averages of chaotic
trajectories of same reference length T̂ in Fig. 4. Here and in
subsequent figures, error bars denote plus or minus three times
the standard error [59]. The notation J T̂ emphasizes the de-
pendence of averages on the reference period. Figures 4(a) and
4(b) show the mean period average of typical periodic orbits,
for the Lorenz and KS systems, compared to the long-time
average from chaotic simulations. For chaotic trajectories, the
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time average does not depend on T̂ since the average is a lin-
ear operation, and the ensemble mean of short-time averages
coincides with the long-time mean. For periodic orbits, we
observe a small positive (negative) distortion at low periods
for the KS (Lorenz) equations, in agreement with previous
work [30]. This distortion decays as T̂ increases. More im-
portantly, in statistical terms, the period average of typical
long periodic orbits spanning increasingly larger fractions of
the attractor appears to converge, with the limitations of the
present setup, to the long-time average of chaotic trajectories.
The asymptotic difference between predictions from periodic
orbits and chaotic trajectories is small in relative terms (about
0.0126%) and may be attributed to the finite observation time
(T̂ = 1000) used for periodic orbits.

The standard deviation of the finite-time average over
chaotic trajectories [Figs. 4(c) and 4(d)] decays asymptoti-
cally as T̂ −1/2. This is the trend predicted for an ensemble
of averages by the central limit theorem [53] if correlations
decay sufficiently fast. In fact, both systems considered here
display “typical” chaos (in the terminology of Ref. [60]),
with correlations dying out exponentially. Asymptotically, the
standard deviation of the period average decays in the same
manner, i.e., longer periodic orbits provide more accurate
descriptions of the long-time mean. On the other hand, for
short periods, the standard deviation of chaotic trajectories
decays at a faster rate for both systems considered. We argue
that this is an effect of correlations affecting the asymptotic
behavior. For short periodic orbits, increasing T̂ does not
necessarily result in a lower variance, in agreement with pre-
vious observations [30,61]. In addition, the standard deviation
of period averaged quantities over the ensemble of periodic
orbits is lower than that of chaotic trajectories. This is likely
a result of the fact that chaotic trajectories are permitted to
visit low-probability regions of the attractor with extreme
values of the function under average, while periodic orbits
with short period are highly constrained and their exploration
of the attractor is less pronounced. Overall, the data in Fig. 4
suggest that typical long periodic orbits found in computations
have, in statistical terms, similar properties to those of chaotic
trajectories.

Probability distributions of time averages over periodic and
chaotic trajectories are reported in Fig. 5 for two different
T̂ . Data for periodic and chaotic trajectories are reported
in Figs. 5(a), 5(b) and 5(c), 5(d), respectively. Data for the
Lorenz equations and the KS system are reported in the left
and right panels, respectively. Before computing the distribu-
tions, samples are normalized such as to have zero mean and
unit variance, and the empirical distributions are compared to
the normal distribution, indicated in gray in the figure. The
distributions are skewed to positive values for short refer-
ence time spans. For the Lorenz equations this was observed
in previous work [61]. The probability density function in
Fig. 5(c) for T̂ = 1000 is characterized by many small peaks.
These can be attributed to the oscillatory nature of solutions
of the Lorenz equations, producing an interaction between the
oscillation period and the averaging time T̂ . In fact, the width
and spacing of these peaks decrease with the period T̂ . Even-
tually, however, the distributions of averages over chaotic and
periodic trajectories appear to collapse to the normal distribu-
tion, although less pronouncedly for periodic orbits. Similar

FIG. 5. Probability distributions of time averages over periodic
trajectories (a), (b) and chaotic trajectories (c), (d) for two different
reference time spans T̂ . Left panels: Lorenz equations; right panels:
KS system.

to the trends of the standard deviations in Fig. 4, this is the
behavior dictated by the central limit theorem [53], for which
the probability distribution of time averaged quantities can
asymptotically be approximated near its peak and within a few
standard deviations by a Gaussian probability distribution.
These results support the observations reported in Ref. [30],
in which the distributions of period averages converge to delta
functions as T̂ → ∞.

C. Statistics of Floquet exponents

We now compare statistics of Floquet exponents of typical
periodic orbits with finite-time Lyapunov exponents (FTLE)
calculated over chaotic trajectories with the same reference
period. We calculate the FTLEs using classical methods
[62,63], involving propagating a set of vectors in tangent
space and occasionally performing a reorthogonalization us-
ing the Gram-Schmidt procedure to counter the inevitable
alignment to the most unstable subspace.

Computing the spectrum of Floquet exponents is, how-
ever, a notoriously challenging problem [64,65], even for
orbits of moderate period. The exponential growth of the
entries of the monodromy matrix (6) makes its eigenvalue
decomposition inaccurate in finite-precision arithmetic. In this
work, where the focus is on long periodic solutions, we have
used a more robust algorithm recently discussed in Ref. [65].
With this algorithm we have been able to compute accurately
Floquet exponents for arbitrarily long orbits, corresponding
to multipliers spanning thousands of orders of magnitude.
Our implementation does not make use of iterative QR-based
eigenvalue algorithms, but works in a matrix-free fashion and
only requires an existing time-stepper code for the lineariszd
equations. The algorithm and a small addition to Ref. [65] are
presented in the Appendix for completeness.

052220-7



D. LASAGNA PHYSICAL REVIEW E 102, 052220 (2020)

FIG. 6. The real part of the 15 leading Floquet exponents of a
long and a short orbit of the KS system. The inset shows the eight
leading exponents. The ninth exponent has a much lower value, at
around −82.

For the KS system, all periodic orbits found have only one
unstable Floquet eigendirection, and with the present spatial
resolution 26 contracting directions. For illustrative purposes,
the leading part of the Floquet spectrum of one long and
one short periodic orbit is shown in Fig. 6. The first eight
exponents fall in the range (−30, 5), while the ninth exponent
is sharply more negative and is followed by a long tail of
negative exponents. These correspond to contracting “spuri-
ous” modes [51,66], with a value that is closely determined
by the linear term of the governing equations. All orbits in our
database have a similar spectrum.

We report in Fig. 7 data for the two nontrivial exponents
of the Lorenz equations [Figs. 7(a)–7(d)] and the first three
nontrivial exponents for the KS system [Figs. 7(e)–7(l)]. The
evolution of the mean (top five panels) and standard deviation
(bottom five panels) of selected Floquet exponents (open cir-
cles) and FTLEs (filled diamonds) is reported as a function
of the reference period T̂ . Similar to Fig. 4, error bars define
plus or minus three times the standard error. These are shown
only for Floquet exponents since statistics of the FTLEs are

computed over a sufficiently large collection of independent
orbits to make the bars smaller than the symbols in the figure.
As the reference period increases, the average Floquet expo-
nents of typical orbits generally converge, within the statistical
relevance of our ensemble, to the corresponding infinite-time
Lyapunov exponents. In other words, typical long periodic
orbits found using Newton-Raphson searches have the same
stability properties of long ergodic trajectories. Similar to
period averages in Fig. 4, a small bias between long periodic
orbits and long chaotic trajectories can be observed, likely due
to the finite reference periods T̂ used in these calculations.
In addition, we also observe a distortion over short periodic
trajectories. The standard deviation of exponents of periodic
and chaotic trajectories decays asymptotically as T̂ −1/2. For
short periods, the standard deviation of FTLEs of the Lorenz
equations decreases more rapidly, as T̂ −1. This is induced
by exponential tails characterizing the distribution of short-
time FTLEs, often observed for intermittent systems [60].
On the other hand, the standard deviation of Floquet expo-
nents for short orbits can be lower than asymptotic trends,
for the same mechanism outlined for period averages in
Sec. VI B.

Probability distributions of the exponents are reported in
Fig. 8, where we present data for the longest reference period
considered to illustrate the asymptotic behavior. Normal dis-
tributions with mean and variance equal to the sample mean
and variance of the numerical data are reported in gray. Since
Floquet exponents and FTLEs are averages of local quanti-
ties (33), their distributions follow the same trend as that of
the quantity J T̂ . Hence, for asymptotically long periods, the
distributions collapse to the same normal behavior, at least
within plus or minus five standard deviations shown in the
figure.

In summary, the distributions of the Floquet exponents
of typical periodic orbits found in our computations localize
around the Lyapunov exponents of the chaotic flow. Based on
the discussion of Sec. V and the bound (32), this suggests that
the distribution of the sensitivity of period averages of typical
long orbits will also localize around an asymptotic value. This
localization is examined in the next section.

FIG. 7. Evolution of mean (top panels) and standard deviation (bottom panels) of few selected Floquet (open circles) exponent and FTLEs
(filled diamonds) as a function of the reference period for the Lorenz equations (a)–(d), and for KS system (e)–(l).
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FIG. 8. Probability distributions of the two nontrivial Floquet exponents and FTLE for the Lorenz equations at T̂ = 1000 (a), (b), and the
first three nontrivial exponents of the KS system at T̂ = 5000 (c)–(e). The parabolas denote Gaussian distributions with mean and standard
deviation equal to the sample mean and variance of the numerical data.

D. Statistics of sensitivities

The probability distribution of gradients J T̂
ρ from periodic

orbits of the Lorenz equations is reported in Fig. 9(a), for
three reference periods. For short periods, the probability
distributions are not normal, but have a heavier left tail that
decays fast enough for the first and second central moments
to be finite. Extremal periodic orbits with low sensitivity in
the left tails feature close passes to the unstable equilibrium at
the origin [19]. Continuation in ρ of the extremal orbit found
for T̂ = 10 (with symbol sequence A14B in the notation of
Ref. [25]), reported in Fig. 9(b), shows that points near the
origin of state space move toward the origin, thus causing
a lower sensitivity of the u3 variable. For the longer orbits
found in our computations from near recurrences, we observe
that the fraction of the period spent in the neighborhood of
the origin diminishes in relative terms and approaches that
of long chaotic trajectories. As a result, the left tail of the
distributions in Fig. 9(a) shows a progressively faster decay
as T̂ increases and the distribution ultimately converges to a
Gaussian law (denoted with a dashed line), localized around
J T̂

ρ � 1.017.

Probability distributions of the gradient J T̂
ν for typical

periodic orbits of the KS system are reported in Fig. 10(a).

FIG. 9. (a) Probability distributions of the gradient J T̂
ρ for

typical long periodic orbits of the Lorenz equations. (b) (u1, u3) pro-
jection of the orbit A14B with period T = 10.4965 . . . and extremal
gradient Jρ = 0.9988 . . ., for two values of ρ.

Near the peak, the distributions can be approximated
reasonably well by a Gaussian law. However, much higher
and lower sensitivities are observed for a few orbits, resulting
in a significant departure from normality and heavy tails.
To characterize these tails more precisely, we find 15 000
more periodic orbits for T̂ = 500 and show in Fig. 10(b) the
probability distribution of the deviation from the mean of the
distribution in Fig. 10(a), for this reference period. The tails
are well described by a power-law distribution of the form
p(x) = x−n with exponent n = 3. This structure is an inherent
feature of the problem and not a numerical artifact depending,
for instance, on the resolution.

As illustrated in Sec. V, large sensitivities can be directly
associated to bifurcations. This is illustrated in Fig. 11, where
we report the continuation analysis of an orbit at T̂ = 500
with large gradient Jν � 1572.27. The average energy density
J (ν) and its gradient Jν (ν) are reported as a function of the
bifurcation parameter ν in Figs. 11(a) and 11(b), respectively.
Near the bifurcation point, denoted by νb, the period average
is well described by the functional form

J (ν) � C0 + C1
√

ν − νb + C2(ν − νb), ν > νb (39)

FIG. 10. (a) Probability distributions of the gradient J T̂
ν for peri-

odic orbits of the KS system. (b) Distributions of the deviation from
mean[J T̂

ρ ] for T̂ = 500. The gray parabola is a Gaussian fit to the
distribution for T̂ = 5000ν.
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FIG. 11. (a) Period average of an orbit with T̂ = 500 with large
positive gradient Jν � 1572.27, continued over the parameter ν.
(b) Sensitivity of the period average for the same orbit. Open circles
denote data from the continuation. The red curve is the model (40)
fitted to the data. The smaller inset shows the same quantity on
shifted coordinates, in a bilogarithmic plot.

where the square root term is typical in normal forms of
bifurcations for periodic orbits [37]. The gradient is then

Jν (ν) � C1

2
√

ν − νb
+ C2 (40)

and approaches infinity at νb as 1/
√

ν. Fitting the data in
Fig. 11(b) to the model (40) shows that the constant C2, the
gradient measured sufficiently far away from the bifurcation
point, is about −246.65, in line with the high probability
region of the distributions in Fig. 10(a).

The functional form (39) is sufficient to explain the struc-
ture of the tails in Fig. 10. To this end, assume that periodic
orbits appear in bifurcations at critical values νb as ν is in-
creased, as expressed by (39). Focusing at a given T̂ , assume
also that the number of periodic orbits is large, so that J (ν)
can be thought of as a random variable, with the coefficients
C0,C1,C2 and the bifurcation point νb being random variables
with values differing from orbit to orbit. The gradient Jν (ν)
is then also a random variable that can take arbitrarily large
values if ν − νb is small. Now, the probability that the gradi-
ent Jν (ν) is less than some large positive constant x can be
expressed by introducing the cumulative distribution function
PJν

(x), defined as

PJν
(x) = prob[Jν (ν) < x]

= 1 − prob[Jν (ν) > x]

= 1 − prob[ν − νb < (C1/2x)2], (41)

where we have used the definition (40) and neglected C2, since
x � 1, to develop the algebra in the last step. The proba-
bility in the third line can be equivalently interpreted as the
probability that bifurcation points are closer to the reference
value than a distance (C1/2x)2. Assuming the points νb not
to be preferentially distributed on the real line near ν, this
probability is then cx−2 for some constant c. In other words,
the larger x, the less likely is that a periodic orbit bifurcates
near ν. Hence, the cumulative distribution of PJν

(x) must,
asymptotically for large x, obey

PJν
(x) = 1 − cx−2. (42)

FIG. 12. Dependence of the average (a), (b) and standard devia-
tion (c), (d) of the gradient J T̂

ρ for the Lorenz equations (left panels),

and J T̂
ν for the KS system (right panel), on the reference period T̂ .

For the KS equations, the median and interquartile ranges are used,
denoted as median[·] and iqr[·]. Error bars for the KS system are
estimated using a bootstrapping technique.

The probability distribution of the gradient Jν can then be
obtained by differentiating the cumulative distribution with
respect to its argument, leading to the power law

p(x) = cx−3, x � 1 (43)

the behavior observed in Fig 9. More generally, sampling
functions that have poles of the form (ν − νb)γ produce prob-
ability distributions with power-law tails of the form p(x) �
x−n, x � 1, with exponent n = (γ − 1)/γ , leading to n = 3
for the present case with γ = − 1

2 of Eq. (40).
We now come to the central result of this paper and exam-

ine the sensitivity of typical periodic orbits as a function of the
reference period. For distributions with power-law tails of the
form p(x) � x−n, central moments of order m are undefined
for m � n − 1. For the KS system, with n = 3, while the
mean sensitivity across periodic orbits is defined (although
convergence is weak), the standard deviation is not. Hence,
for this system, we use the median and interquartile ranges,
as measures for the localization and variability of gradients,
respectively. Results are shown in Fig. 12. Figures 12(a) and
12(b) show the mean and median gradients for the Lorenz
and KS systems, respectively. Figures 12(c) and 12(d) show
the standard deviation and interquartile ranges of the gra-
dient. We observe that, as T̂ → ∞, the mean and median
converge to a value that is approximately Jρ = 1.017 and
Jν = −155, for the Lorenz and KS systems, respectively.
Given the bound (32), the convergence of sensitivities is
consistent with the convergence of the Floquet exponents of
Fig. 7. However, for short cycles, the sensitivity of periodic
orbits can be, in average terms over the inventory of avail-
able orbits, remarkably different to that of long cycles. This
behavior is more pronounced for the KS system. The stan-
dard deviation and interquartile range of the sensitivity follow
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the same asymptotic behavior of the period averages and
decay asymptotically as T̂ −1/2, indicating that the correspond-
ing probability distributions localize around the averages of
Figs. 12(a) and 12(b). An important remark is that sensi-
tivity computations using periodic orbits do not suffer from
shadowing errors displayed by shadowing methods applied
to chaotic trajectories, e.g., the least-squares shadowing [67]
and periodic shadowing algorithms [39]. For such algorithms,
convergence proofs have been offered that suggest that the
standard deviation of sensitivity calculations on hyperbolic
systems should first decay as T̂ −1 as a result of the approx-
imations of the exact shadowing direction involved in these
algorithms.

Overall, these results show that the sensitivity computed
from typical long periodic orbits found in computations con-
verges to a well-defined value as the period increases. This
is not to say that all long orbits can be considered good
proxies, as the tails of Fig. 10 demonstrate, but rather that
sensitivities computed from longer orbits found in compu-
tation are likely to be closer to the asymptotic value. This
asymptotic value of the sensitivity is now compared with the
response of long-time averages to finite-amplitude parame-
ter perturbations using long chaotic simulations. Carefully
conducted numerical approximations of the gradient using a
finite-difference formula (see Ref. [39] for details) show that
the response of the average of u3 to perturbation of ρ in the
Lorenz equations is approximately Jν � 1.002, well below
the asymptotic value from long periodic orbits. We remark
that this difference is likely not a bias arising from using pe-
riodic orbits. In fact, the same difference has been previously
observed using other shadowing algorithms applied to chaotic
trajectories [39]. Numerical evidence has been provided [68],
suggesting that the Lorenz equations have a linear response to
perturbations of the parameter ρ, despite not being hyperbolic
(it is a singularly hyperbolic system in the terminology of Ref.
[69]). For this system, it has also been speculated [70] that
some observables might vary continuously with parameters
and that the bifurcating orbits have very long period and their
effect of the invariant measure is negligible. How to reconcile
the existence of a linear response with the difference we
observe between the prediction of shadowing methods and
the actual response of the system is a question that deserves
further analysis.

For the KS system, we show in Fig. 13 how the long-
time averaged energy density varies with the diffusivity. The
data points are obtained by first computing averages over
tens of thousands of long independent segments of length
T = 5000ν, and then reporting the median value, which is
more robust to outliers arising from initial conditions lead-
ing to a nonchaotic state. Using a bootstrapping technique
we have also computed the standard error on the median,
which is typically smaller than the symbol size in the figure,
and it is thus not shown. We use this approach, instead of
reporting the time average of one long chaotic computation,
as it provides a measure of the accuracy of long-time average
estimate. Figures 13(b) and 13(c) focus near the reference
diffusivity ν = (2π/39)2 in the area spanned by the vertical
lines in Figs. 13(a) and 13(b), respectively. The dashed line
represents the asymptotic gradient Jν from periodic orbits.
The system clearly lacks a linear response, in the sense that

FIG. 13. Long-time mean of the energy density as a function
of ν. Data points denote the median time average across thou-
sands of simulations from different initial conditions, with averaging
time T = 5000ν. The dashed line represents the slope predicted by
periodic orbits with reference period T̂ = 5000ν at the reference
diffusivity ν = (2π/39)2. (b), (c) Focus on the area between the two
red vertical lines in (a) and (b), respectively.

the limit

lim
δν→0

J ∞(ν + δν) − J ∞(ν)

δν
(44)

is not defined, as the response of the system is not pro-
portional to the perturbation in the parameter [70–72], at
any scale. As the distributions of sensitivities in Fig. 10
suggest, some orbits are always infinitesimally close to
bifurcation and small parameter perturbations might in-
duce abrupt changes in the structure of the attractor,
making chaotic averages nondifferentiable. In such con-
ditions, the meaning of gradients obtained from linear
methods, either on periodic or chaotic trajectories, is un-
clear.

VII. CONCLUSIONS

In this paper we set out to address the question of whether
typical long periodic orbits found numerically may be used
as accurate proxies for the sensitivity of the chaotic state
to parameter perturbations. Our motivation to address this
question arises from well-known challenges in locating pe-
riodic orbits in fluid systems governed by the Navier-Stokes
equations, and the consequential possibility that predictions
of cycle averaging formulas using an incomplete set might be
inaccurate. If the answer to the above question is affirmative,
a heuristic strategy would be to spend available computational
resources to locate one or few orbits, of sufficiently long
period. Accurate sensitivity information from these orbits may
then facilitate control and optimization tasks.

Here, we have considered long periodic orbits of two low-
dimensional chaotic systems, the Lorenz equations at standard
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parameters and a minimal-domain Kuramoto-Sivashinky sys-
tem with dynamics restricted to the antisymmetric subspace.
We have built an inventory of thousands of periodic orbits
with period up to two orders of magnitude larger than the
shortest admissible cycle. This approach was not guided by
the idea of obtaining an exhaustive hierarchy of cycles and a
complete understanding of their properties. Rather, we aimed
to examine in statistical terms the properties of typical long
orbits. This analysis is naturally biased by the search process,
but the bias leans precisely toward the direction required to
answer our original question, i.e., it favors orbits that can be
found in practical computations.

One conclusion from this study is that period averages of
long orbits appear to converge to the long-time average of
chaotic trajectories. Floquet exponents, being the period aver-
ages of the local rate of growth of infinitesimal perturbations,
also exhibit the same behavior. Hence, Floquet exponents
of long orbits converge to the Lyapunov exponents calcu-
lated using standard methods. These results are interesting,
but perhaps not so important from an operational point of
view, since these quantities can be calculated directly from
chaotic trajectories at a lower cost. The important result is
that the sensitivity of period averages of typical periodic orbits
also converges to a defined value as the period increases.
This result is consistent with the convergence of the Floquet
exponents, based on the relation between stability and sen-
sitivity of orbit, established in this paper. Interestingly, the
probability distribution of sensitivities from typical orbits can
display power-law tails of the form p(x) � x−3. This result
can be explained by using a statistical argument and classical
normal forms of bifurcations of periodic orbits. In practice,
this suggests that sensitivity information from orbits found
numerically may occasionally be quite inaccurate.

Some open challenges are now considered. First, as also
observed elsewhere with other shadowing algorithms [39,73],
the sensitivity of most typical long periodic orbits is not
necessarily consistent with the response of the system to
finite-amplitude parameter perturbations. In absence of dif-
ferentiability, the meaning and value of sensitivities from
periodic orbits (or other shadowing algorithms) is unclear
and deserves further analysis. The conjecture is that for high-
dimensional systems, where statistics behave as if a linear
response existed [13,74], the “thermodynamic limit” of Ru-
elle [13], may be invoked and a better consistency between
sensitivities from shadowing methods and the response of
the system might be observed [39,73]. However, evidence in
support of this conjecture is currently lacking.

A second challenge is that the applicability of the ideas
discussed in this paper to fluid systems governed by the
Navier-Stokes remains unclear (see Ref. [2]). One major issue
is that the increase of system dimension inevitably implies
a decrease of good near recurrence events. As advocated in
Ref. [27], more robust search methods are required. A third
potential issue is that the size of the linear systems aris-
ing in the Newton-Raphson search iterations grows linearly
with the period T , regardless of the numerical method uti-
lized, i.e., either for global search methods [5,42] or with
multiple-shooting techniques [58,75]. The condition number
of these problems grows with T , introducing errors in the
Newton-Raphson corrections that might eventually prevent

convergence. Hence, finding long periodic orbits might, even-
tually, prove too challenging.

APPENDIX: FLOQUET EXPONENTS OF LONG PERIODIC
ORBITS

The algorithm used to compute Floquet exponents of long
periodic orbits follows closely the approach originally intro-
duced in Ref. [65]. For completeness, we describe in this
Appendix this algorithm and outline our contribution.

The algorithm exploits two fundamental facts. The first is
that the Jacobian matrices (3) obey the multiplicative property

M(t2, t0) = M(t2, t1)M(t1, t0), (A1)

for any times t2 � t1 � t0. Hence, the monodromy matrix
M(T, 0) can be equivalently expressed as the product of M
short-time Jacobian matrices Mi = M(ti, ti−1), i = 1, . . . , M,
as

M(T, 0) = MMMM−1 . . . M1, (A2)

for a partitioning of the interval [0, T ] into M subinter-
vals specified by times 0 ≡ t0 > t1 > · · · > tM−1 > tM ≡ T .
Note that the Jacobian matrices Mi obey the cyclic property
MM+1 = M1.

The second fact is that a well-conditioned eigenvalue re-
vealing decomposition exists for products of matrices such as
(A2). This is the periodic real Schur decomposition [76,77],
initially introduced in the context of Floquet analysis in Ref.
[64] for the computation of the multipliers and more recently
extended [51,65] to compute the eigenfunctions. This de-
composition consists in factorizing the short-time Jacobian
matrices using a set of orthogonal matrices Qi, i = 1, . . . , M,
satisfying the cyclic property Q0 = QM , as

Mi = QiRiQ�
i−1, (A3)

where the factors Ri, i = 1, . . . , M − 1, are upper triangular
matrices and RM is in real Schur form, a block upper-
triangular matrix with either 1 × 1 and 2 × 2 blocks on the
diagonal, in case the monodromy matrix possesses pairs of
complex conjugate multipliers.

Using these two facts, the monodromy matrix can be ex-
pressed in real Schur form as

M(T, 0) = Q0RM . . . R2R1Q�
0 . (A4)

The product RM . . . R2R1 and the monodromy matrix are uni-
tarily similar and thus share the same spectrum of eigenvalues.
However, because of the structure of the factors Ri, obtaining
the spectrum is a straightforward computation, since the spec-
trum of a block triangular matrix is the union of the spectra of
the blocks. The structure of the block upper triangular factor
RM determines whether exponents are real or form complex
conjugate pairs (see Ref. [78], Theorem 7.4.1). For a 1 × 1
block at location (i, i), a real Floquet exponent can be obtained
as

λi = log(μi )/T = 1

T
log

M∏
j=1

[R j]ii = 1

T

M∑
j=1

log[R j]ii. (A5)

Computing the sum of the logarithms is recommended, as
multiplication can quickly overflow or underflow before the
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logarithm is taken. For a 2 × 2 block, a pair of complex
conjugate exponents can be obtained with a bit more work
by recursively multiplying all 2 × 2 blocks of the factors R j

at location (i, i + 1), and accumulating the sum of the loga-
rithms of scaling factors required to set the largest element
in the partial products to have unitary magnitude. Overall,
this algorithm only operates on well-conditioned short-time
Jacobian matrices, instead of forming the monodromy matrix,
and it is numerically robust.

The numerical algorithm required to obtain the factors Ri

and Qi in Eq. (A3) from the short-time Jacobian matrices is
based on classical QR-based eigenvalue algorithms [78,79].
Developing a robust implementation is a lengthy and delicate
task. In this paper, we have adopted a matrix-free algorithm
introduced in Ref. [65], which is a specialization to periodic
orbits of classical methods to compute Lyapunov exponents
[62]. The approach only requires the action of these matrices
on a set of tangent vectors and is thus computationally more
efficient when only a handful of the leading Floquet exponents
are required. The algorithm is simpler to implement, does not
require advanced linear algebra technique, and only requires
minor modifications to an existing time-stepper code for the
linearized equations.

The algorithm is iterative and we denote quantities at it-
eration k, with a superscript (k). First, a set of m linearly
independent tangent vectors is defined, where m is the number
of desired exponents. For notational convenience, we arrange
them as the columns of matrix Q̂k

0 ∈ Rn,m, where we use a hat
to denote a matrix with reduced dimensions. The period is di-
vided into M subintervals, which need not have the same size.
In each sub-interval, the columns of Q̂k

0 are (1) propagated
forward in time using a linearized time-stepping solver and (2)
re-orthogonalized in place using a Gram-Schmidt procedure.
These two steps are formally equivalent to computing

MiQ̂k
i−1 = Q̂k

i R̂k
i , i = 1, . . . , M (A6)

which is akin to (A3). Note that forming Mi is not necessary,
only its action on the columns of Q̂k

i−1 is required, making the
approach suitable for PDE problems. The triangular factors
R̂k

i ∈ Rm×m from the orthogonalization are stored for later
processing. The time between subsequent reorthogonaliza-
tions depends on the expanding and contracting characteristics
of the tangent space and should be chosen such that the
columns of Q̂k

i remain numerically linearly independent.

After the last subinterval, the iterations are restarted by set-
ting Q̂k+1

0 = Q̂k
M and after k iterations the monodromy matrix

is formally equivalent to

M(T, 0) = Q̂k+1
0 R̂k

M . . . R̂k
2R̂k

1Q̂k�
0 . (A7)

If the first m Floquet multipliers are all real and distinct,
the columns of Q̂k+1

0 converge geometrically to a basis for
the subspace spanned by the leading m Floquet eigenvectors.
Hence, the difference ‖Q̂k+1

0 − Q̂k
0‖ converges to zero in any

norm and (A7) is the real Schur form of the monodromy
matrix, as in Eq. (A4). In fact, this iteration procedure is a
form of subspace iteration [80] (also known as orthogonal
iteration [78], and referred to as simultaneous iteration in Ref.
[65]). The leading m Floquet exponents can then be obtained
from the diagonals of the factors R̂i, as discussed.

A simple adjustment of this approach can be introduced
when some of the multipliers form complex conjugate pairs.
The iterations still converge, in the sense that the subspace
spanned by Q̂k

0 converges, but only the columns associated
to real exponents converge individually [65]. The subspace
spanned by a pair of columns of Q̂k+1

0 corresponding by
the space spanned by the Floquet eigenvector associated to
complex conjugate multipliers also converges, but at every
iteration the two columns are rotated by an angle in the sub-
space they span. Hence, we introduce a rotation matrix D̂k

such that

Q̂k+1
0 = Q̂k

0D̂k . (A8)

For large k, this rotation converges to a matrix that has the
structure of the product of Givens rotation matrices, each
rotating one pair of columns of Q̂k

0 to the corresponding pair of
Q̂k+1

0 . With this modification, the product D̂kR̂k
M converges to

a block upper triangular matrix and (A7) with (A8) is formally
equivalent to (A4).

To the best of the author’s understanding, a procedure to
compute this rotation matrix was not proposed Ref. [65],
which focused instead on using iterative QR-based algo-
rithms. The contribution of this Appendix is a simple strategy
to obtain it. The rotation D̂k can be found as the solution of
the orthogonal Procrustes problem [78]

argmin
Dk

∥∥Q̂k+1
0 − Q̂k

0Dk
∥∥

F = UkVk�, (A9)

where ‖ · ‖F is the Frobenius norm and where the two matrices
at the right-hand side are obtained from the singular value

FIG. 14. The base 10 logarithm of the entries of the rotation matrix D̂k at iterations k = 1, 3, 10, and 33 (a)–(d). Convergence of error on
the estimate of a few selected Floquet exponents (e).
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decomposition

Q̂k�
0 Q̂k+1

0 = Uk�kVk�. (A10)

In our implementation, we compute the rotation D̂k along
the iterations and use a simple heuristic to detect pairs of com-
plex conjugate eigenvectors, or inverse hyperbolic directions,
when a diagonal entry is close to −1. We then monitor the
maximum absolute difference between estimates of the Flo-
quet exponents and stop the iterations when such difference is
lower than a user-defined tolerance. Figures 14(a)–14(d) show
the progressive convergence of the rotation matrix D̂k for a
calculation on the shortest periodic orbit of the KS system
reported in Fig. 2. Iteration k = 1, 3, 10, and 33 are shown.
Except for the fifth and sixth columns, the columns of Q̂k+1

0

converge to the columns of Q̂k
0 and all Floquet multipliers are

real and positive. Figure 14(e) shows the convergence of the
error on the estimate of a few Floquet exponents.

In practice, we have found this method to be quite robust
for the systems used in this paper, where Floquet exponents
are typically well separated. We have observed that the num-
ber of iterations required for convergence decreases with the
period, with exponents of the longest periodic orbits of the
KS system requiring only three or four iterations to converge
to machine accuracy. This can be attributed to the faster con-
vergence of the columns of Q̂k

i to the subspace spanned by
the leading Floquet eigenmodes, as the integration time is
proportionally longer, following the same pattern of conver-
gence of algorithms to compute Lyapunov exponents from
chaotic trajectories [81]. We have therefore made no attempt
at improving the convergence rate and computational cost by
using shift and deflation techniques that are customarily used
in state-of-the-art implementations of eigenvalue algorithms
[78,79].
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