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Dynamical systems with long-delay feedback can exhibit complicated temporal phenomena, which once
reorganized in a two-dimensional space are reminiscent of spatiotemporal behavior. In this framework, a normal
forms description has been developed to reproduce the dynamics, and the opportunity to treat the corresponding
variables as true space and time has since been established. However, recently, an alternative approach has been
proposed [F. Marino and G. Giacomelli, Phys. Rev. E 98, 060201(R) (2018)] with a different interpretation of the
variables involved, which better takes into account their physical character and allows for an easier determination
of the normal forms. In this paper, we extend such idea and apply it to a number of paradigmatic examples, paving
the way to a rethinking of the concept of spatiotemporal representation of long-delayed systems.
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I. INTRODUCTION

A long-delayed dynamical system is characterized by a
feedback action, which acts by reinjecting far-in-the-past in-
formation from the system itself. Notably, the time interval
between the “present” and the “past” is assumed to be much
longer than any other characteristic timescale of the sys-
tem without feedback (long-delay limit). Such a condition,
apparently quite specific, appears naturally in disparate phe-
nomena and the topic has attracted considerable attention in
recent years (for a review, see, e.g., [1]). Dynamical sys-
tems with long-delayed feedback can display a rich variety
of complex phenomena [2]. Such richness derives from the
high-dimensional phase space, and it is witnessed by scaling
relations for extensive quantities analogous to those found in
one-dimensional (1D) setups [3].

The standard approach to spatiotemporal modeling of
long-delayed systems stems from the proposal introduced in
Ref. [4]. There, a two-dimensional (2D) coordinate system
was used where a continuous variable σ ranged in a de-
lay interval played the role of a pseudospace variable. The
corresponding pseudotime variable was the discrete index θ ,
numbering the sequence of consecutive, disjoint delay inter-
vals in the time series. This procedure, called spatiotemporal
representation (STR), amounts to expressing the time variable
t as

t = σ + θT, (1)

where T is the delay time. While this mapping is always
feasible independently of the delay value, it is under specific
circumstances that it shows its usefulness. One of the most
important is that the system is actually operating in the long-
delay limit: it is indeed in this case that the system evolves on
two well-separated timescales, σ and θ , which thus effectively
act as mutually independent variables [1].

The above representation was quite successful and allowed
disclosure of many relevant features, common to the delayed
and spatially extended systems [5]. From the 1990s up to
now, a number of experiments have been realized, in partic-
ular in the field of optics, demonstrating different kinds of
equivalent spatiotemporal phenomena hidden in the temporal
dynamics. These include, e.g., defect propagation [6], domain
coarsening and nucleation [7–9], front pinning and localized
structures [10–13], chimera states [14], and critical phase
transitions [15]. Recently, even generalizations involving two,
hierarchically long delays have been considered, leading to
the evidence of spiral defects and defects turbulence [16], 2D
chimeras and dissipative solitons [17], and excitable waves
[18]. The emergence of such a wealth of pattern structures
confirms the role played by the multiple timescales in the
long-delayed dynamics, supporting their natural identification
as the main independent variables of the system.

However, recently, a critical analysis of this approach
has been reported [19], introducing an alternative represen-
tation for the data generated from long-delayed systems and
suggesting a different spatiotemporal interpretation. In this
framework, the bulk dynamics is described in terms of a
different rule, the so-called dynamical representation (DR),
employing the opposite definition of pseudospace and pseu-
dotime variables with respect to the STR. The analysis in [19]
has suggested that while the two representations are equally
effective in evidencing pattern structures, a physical descrip-
tion in terms of a spatiotemporal model is more properly
obtained in the DR.

In this work, we extend these results and compare the two
representations in several respects, both on the basis of general
arguments and with the help of a few paradigmatic examples.

The plan of the paper is the following. In Sec. II, we
recall the main features of the representations, restating the
conditions in which they are valid. In Sec. III, DR and STR
are compared with respect to causality, first in terms of the
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validity of Kramers-Krönig relations and then evaluating the
comoving Lyapunov exponents. In the subsequent sections
we analyze the two representations in the framework of two
specific examples. In Sec. IV, we focus on the delayed Adler
equation, describing the phase dynamics of an optically in-
jected laser system with feedback [11,20,21]. In Sec. V,
we will treat a model of a passively mode-locked external-
cavity surface-emitting laser recently introduced in [22,23].
In Sec. VI, we will discuss how to move between the repre-
sentations on the basis of parity arguments. We will draw our
conclusions and present some perspectives in the final section.

II. DEFINITION OF THE REPRESENTATIONS

In this section, we start by recalling the concepts at the
basis of STR and DR. Without any loss of generality, we
consider the scalar system

ut = F (u, ud ), (2)

where ud (t ) = u(t − T ) is the delayed variable and T is the
delay time. The model (2) has to be accompanied by an initial
condition specified on an interval of length T , e.g.,

u(t ) = u0(t ), t ∈ [−T, 0]. (3)

As mentioned before, for a meaningful spatiotemporal rep-
resentation of (2) and (3), the delay time T should be longer
than any other timescale of (2) without delay. Such condition
is necessary but not sufficient: we should also consider an
observation time tTOT � T for an appropriate definition of the
thermodynamic limit,

T → ∞, (4)

S =
[

tTOT

T

]
→ ∞, (5)

where [·] stands for the integer part.
For the sake of clarity, we introduce different sets of names

for the variables involved in the two representations. We write
(1) in the form

t = x + yT, (6)

where we refer to x as the fast time and to y as the slow time,
and we define the field �(x, y) = u(t ).

In the limit T → ∞, the time derivative can be expressed
as

d

dt
= ∂x + 1

T
∂y → ∂x. (7)

This condition holds in the absence of the so-called anomalous
Lyapunov exponent [24] or, equivalently, in the weak-chaos
regime [25], and amounts to the variations of �(x, y) along
the y direction being asymptotically negligible. In simple
terms, �(x, y) should exhibit small variations between two
successive delay units. Accordingly, the integer variable y will
be embedded into a real domain. Such an assertion implies
that there exists a correlation length Ly of the pattern along
the slow time such that Ly > 1. The field �(x, y) does not
vary significantly on a scale �y = 1 along y, which results
in a smooth pattern since several discrete points fall within a
correlation length Ly.

Notably, the above requirements stay at the basis of both
representations. They indicate whether the two timescales be-
have as mutually independent variables and thus can be used
to parametrize a 2D smooth pattern.

On the basis of these considerations, it is clear that the
above reorganization of data in itself does not provide any
constraint on the physical role of the variables in generating
the dynamics. These are actually introduced in the framework
of the two representations, where the original model (2) is
rewritten in terms of the new variables x and y, in order to
build a suitable two-dimensional rule.

Setting x = σ and y = θ , and defining U (σ, θ ) = u(t ), the
model (2) reads

∂σU = F (U,U (σ, θ − 1)), σ ∈ [0, T ], (8)

together with the boundary conditions

U (σ,−1) = u0(σ ), σ ∈ [0, T ],

U (σ + T, θ ) = U (σ, θ + 1). (9)

Equations (8) and (9) correspond to the standard spa-
tiotemporal description of the delay model in the STR: the
variable σ is interpreted as the pseudospace and θ as the
pseudotime. In particular, the smoothness of the pattern along
θ allows one to approximate U (σ, θ + 1) ≈ U (σ, θ ), leading
to U (σ + T, θ ) ≈ U (σ, θ ), similarly to the periodic boundary
conditions for a 1D spatially extended system.

In order to provide an effective mapping of the delayed dy-
namics, the next step is to employ Eq. (8) to derive an explicit
rule for the pseudotime evolution (i.e., along the θ direction).
This can be achieved by means of different methods. As we
have seen, the pseudospatial and pseudotemporal variables are
related the multiple timescales of the system, i.e., the fast time
and slow time. A multiscale approach separating such scales
into different perturbation orders is often very convenient,
and allows one to derive a partial-differential equation (PDE)
able to reproduce the delayed dynamics in the (σ, θ ) domain,
obviously within some degree of approximation [5,16,26–29].

The DR is an alternative approach to the STR, proposed
in [19]. It considers the opposite dynamical role for the two
variables. In this scheme, we name x = τ as the pseudotime
and y = ξ as the pseudospace, defining a new field variable
Z (ξ, τ ) = u(t ). The evolution rule derived from Eq. (2) is now
written as

∂τ Z = F (Z, ZNL ), (10)

where the delayed term translates into the nonlocal
asymmetric spatial coupling ZNL(ξ, τ ) = Z (ξ − 1, τ ) and
the temporal evolution is along the former pseudospace.
Equation (10) should also be complemented with suitable
boundary conditions. Here we consider spatially periodic
boundaries conditions,

Z (ξ, 0) = z0(ξ ), ξ ∈ [0, S],

Z (ξ + S, τ ) = Z (ξ, τ ), (11)

in the thermodynamic limit. We remark that from a strict
mathematical point of view, the correct solution of the orig-
inal delay problem would be obtained only for one choice
of the initial and boundary conditions (generally different
from the periodic ones used here). We expect, however, that
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FIG. 1. Pictorial view of the long-delay pattern embedded into
the STR (left) and DR (right) manifolds. The dashed circular lines
mark the initial conditions. The curved and straight arrows indicate,
respectively, the periodic boundary conditions and the direction of
evolution.

in the thermodynamic limit, even an arbitrary choice would
produce patterns well approximating the delayed dynamics.
In particular, we will see that this is indeed the case whenever
conditions (11) hold.

The topology of the variable domains associated with the
two representations is illustrated in Fig. 1, evidencing differ-
ent global manifolds. The dashed circular lines mark the initial
conditions, the cylinder axis defines the direction of evolution
(pseudotime axis), and the cross-sectional circumference cor-
responds to the size of the spatial cell. The patterns produced
in either one of the two representations can be readily iden-
tified looking at the location of the initial conditions and/or
spatial boundaries. On the other hand, in the bulk region,
we will observe essentially the same dynamics since the rule
generating the pattern far from space-time boundaries remains
the same.

Interestingly, the representation (10) also allows for a
straightforward expansion of the nonlocal coupling in terms
of spatial derivatives, leading eventually to a normal form
description through standard PDEs,

Z (ξ − 1, τ ) ≈ Z (ξ, τ ) − Zξ (ξ, τ ) + 1
2 Zξξ (ξ, τ ) − · · · ,

(12)
where Zξ = ∂ξ Z, Zξξ = ∂2

ξξ Z, . . ., obtaining the PDE

Zτ = F(Z, Zξ , Zξξ , . . .). (13)

As discussed before, the validity of the formal expansion
(12) relies on the assumption that the pattern exhibits small
variations along ξ , i.e., that the correlation along ξ decays over
a length Lξ � 1. In this case, a PDE model (PDEM), where
the time derivative is explicitly written in terms of the spatial
derivatives, can be obtained directly, expanding the nonlocal
term up to a given order and approximating the delayed dy-
namics with arbitrary precision. A minimal requirement is that
the normal form obtained at this order of expansion must have
bounded solutions in the domain of interest. This represents an
advantage with respect to the STR, in which the derivation of a
PDE model often requires long calculations and the vicinity to
a bifurcation. In the specific case of a linear delay term, each
order of the expansion can be associated to a specific physical
effect: the zero order is a renormalization of the local force,
the first provides the advection (that can be removed with a
suitable choice of a comoving reference frame), the second
is diffusion, the third corresponds to dispersion, etc. Notably,

in the case of a generic feedback term, the expansion at the
advection level can stabilize an otherwise unstable steady
state and thus control spatiotemporal chaos under particu-
lar boundary conditions [30,31]. However, the full nonlocal
model is richer and higher orders of the expansion could lead
to different scenarios.

We conclude this section by remarking that any different
choice of the reference frame in the plane (x, y) can be chosen
to accordingly rewrite the bulk rule (2) and reproduce the
pattern �. Such models will be mathematically equivalent, all
sharing a nonlocal coupling arising from the delayed feedback
and a fairly good independence on the boundary conditions
in their correspondent thermodynamic limit. However, they
might give rise to physical inconsistencies. In the next section,
we will compare the STR and DR with respect to causality.

III. REPRESENTATIONS AND CAUSALITY

The core point at the basis of a dynamically correct,
spatiotemporal representation is whether the resulting math-
ematical model not only is capable to produce the embedding
pattern �(x, y), but its variables can play the role of well-
behaving space and time coordinates. While no special
constraints can be assumed on the spatial variable, the tempo-
ral one must satisfy causality, i.e., the evolution along it must
depend on its previous values only (the past). Our aim here is
to investigate the causal structure of the two representations
and thus of their associated spatiotemporal PDE models.

A. Susceptibility

For a general linear system, the notion of causality is equiv-
alent to satisfy Kramers-Krönig relations relating the real and
imaginary parts of the complex susceptibility function [32].
We thus consider the linear long-delayed equation

Ẋ = AX + BXd , (14)

where X is a vectorial variable, A and B are the matrices of the
coefficients, and Xd = X (t − T ) is the delayed vector.

We begin our analysis by writing the above equation in one
of the two representations, say the STR, and evaluating the
system response to an external spatiotemporal perturbation Y ,

Xσ = AX + BX (σ, θ − 1) + Y. (15)

We then look for solutions in the Laplace domain for both
variables after the transient related to the initial conditions.

Denoting with (sσ , sθ ) the Laplace-conjugate variables of
(σ, θ ) and with X̃ and Ỹ the transformed variables, we find

(sσ I − A − e−sθ I B)X̃ = Ỹ , (16)

where I is the identity matrix. We thus obtain the response of
the system to the stimulus Y in Laplace space,

X̃ = χ (sσ , sθ )Ỹ , (17)

where we have defined the susceptibility matrix as

χ (sσ , θ̄ ) = (sσ I − A − e−sθ I B)−1. (18)

Since the function (18) represents the system response to a
unit impulse, it must satisfy Kramers-Krönig relations to obey
causality (no response before the impulse is applied) [32].
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The Kramers-Krönig relations are valid for any function
which is analytic in the upper-half complex plane and vanishes
as 1/|s| or faster as |s| → ∞, where s is the Laplace-conjugate
variable relative to the direction under consideration. One can
readily verify that this is actually the case when considering
the variable σ : indeed, for |sσ | → ∞ and sθ = const, i.e.,
along the σ direction, the susceptibility displays the asymp-
totic behavior

χ � s−1
σ I. (19)

On the other hand, along the θ direction, i.e., for |sθ | → ∞
and sσ = const, we find

χ � (sσ I − A)−1. (20)

A finite susceptibility (for each spatial frequency sσ ) at
infinity along the sθ axis has a precise physical meaning:
the system equally responds at all temporal frequencies up to
infinity. In the time domain, this would imply an unphysical
instantaneous coupling (i.e., at the same σ point) between a
delay and the successive unit.

We can thus conclude that in the susceptibility of the full
problem (i.e., without any approximation), there exists a for-
bidden direction along the θ variable where the causality falls.
As a consequence, one should consider the opportunity to use
such a variable as equivalent to the physical time. In the next
section, we support this interpretation by the analysis of the
comoving Lyapunov exponent.

B. Comoving Lyapunov exponent

The (maximum) comoving Lyapunov exponent (CLE) is
an useful tool to characterize how a localized spatiotemporal
disturbance propagates in different directions [33]. In particu-
lar, it allows one to determine how information is transmitted
along lines in the domain of a pattern, clarifying their possible
physical interpretation as causal routes.

In the following, we calculate it explicitly for the linear
delay model,

ż(t ) = −z(t ) + ηz(t − T ), (21)

using the method of chronotopic Lyapunov analysis [34].
To this aim, we rewrite Eq. (21) in the STR,

∂σ Z (σ, θ ) = −Z (σ, θ ) + ηZ (σ, θ − 1), (22)

and in the DR,

∂τY (ξ, τ ) = −Y (ξ, τ ) + ηY (ξ − 1, τ ), (23)

and we look for solutions of the type

Y (ξ, τ ) = Y0 exp(μ̄ξ + λ̄τ ), (24)

where λ̄ = λ + iω, μ̄ = μ + iκ (a similar ansatz can be used
for the STR). Substituting the above solution into (23) and
separating the real and imaginary parts, we obtain

λ = −1 + ηe−μ cos(κ ), (25)

ω = −ηe−μ sin(κ ). (26)

The maximum LE for both the STR and DR is found at
ω = 0 or, equivalently, κ = 0. In the STR, the propagation

FIG. 2. Geometric representation of the propagation angles in the
STR and DR reference frame.

velocity of the disturbance is

VSTR = −dμ

dλ
= 1

1 + λ
, (27)

and the corresponding CLE is

�STR(VSTR) = μ + λVSTR = 1 − VSTR + ln(ηVSTR), (28)

as reported in [5].
In the case of the DR, the velocity is given by

VDR = − dλ

dμ
= ηe−μ, (29)

and the CLE by

�DR(VDR) = λ + μVDR = −1 + VDR − VDR ln

(
VDR

η

)
.

(30)

The velocities in the two representations are thus related by

VDR = ηe−μ = 1 + λ = 1

VSTR
, (31)

which can be interpreted geometrically (see Fig. 2) in terms of
the relation between the complementary propagation angles,

VDR = tan β = 1

tan α
= 1

VSTR
. (32)

The CLE are related as well by

�STR(VSTR) = 1

VDR
�DR(VDR) (33)

or, equivalently,

�DR(VDR) = 1

VSTR
�STR(VSTR). (34)

The above formulas relate the rates for a perturbation mea-
sured in the tangent space of the two representations for an
arbitrary velocity, i.e., for a certain propagation direction of
the perturbation.

For instance, a spatiotemporal perturbation with character-
istic width �ξ in the DR space-time (ξ, τ ) propagates in an
interval �τ = �ξ/VDR. Writing

VSTR = �σ/�θ = �τ/�ξ = 1/VDR, (35)

we get

�STR�θ = �DR�τ. (36)

Equation (36) expresses the absolute spreading (or shrinking)
of a perturbation as measured in the two representations along
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FIG. 3. CLE for the DR and STR models in the stable (η = 0.8)
and unstable (η = 1.2) regimes. At the bifurcation η = 1, the expo-
nent for the AD model as a function of VDR (see text) is also shown.

the vertical and horizontal directions, which results in an
invariant.

We plot the CLE for the DR and STR in Fig. 3 for dif-
ferent values of the feedback gain η as a function of their
velocities. The macroscopic observables represented by the
correlation directions, defined by zeros of the CLE [35], are
the same. Indeed, if �STR(V̄STR) = 0 for VSTR = V̄STR, then
�DR(VDR = 1/V̄STR) = 0, and vice versa. In both representa-
tions, the negative velocities are not allowed, indicating the
presence of a causality boundary. As already discussed in
[5], the STR curves display a logarithmic divergence in zero,
while the nonlocal coupling of the DR is mapped to infin-
ity (thus removing the logarithmic divergence). In the STR,
this, in fact, corresponds to instantaneous coupling between
consecutive delays related to the nonanalytic (i.e., noncausal)
susceptibility in the θ domain (20).

As discussed in Sec. II, a PDEM can be obtained that
expands the nonlocal term up to a given order to approximate
the delayed dynamics. We can thus evaluate the CLE for the
various orders of a spatiotemporal approximation.

We start defining ψ (μ) = e−μ and rewrite

λψ = −1 + ηψ (μ), (37)

leading to the velocity

Vψ = −dλψ

dμ
= −ηψ ′(μ). (38)

The CLE is then

�ψ (Vψ ) = λψ + μVψ = −1 + ηψ (μ) − μVψ. (39)

One can therefore use Eqs. (37) and (38) to eliminate
the auxiliary variables {λψ,μ} to eventually obtain �ψ =
�ψ (Vψ ) for the chosen function ψ . In particular, we can treat,
in this way, different orders of expansion of the nonlocal term.

For a second-order expansion of the DR model, which
corresponds to an advection-diffusion (AD) term, ψ (μ) =
e−μ ≈ 1 − μ + 1

2μ2. As a consequence, the velocity is given
by

VAD = − dλ

dμ
= η(1 − μ), (40)

and the CLE reads

�AD(VAD) = λ + μVAD

= −1 + VAD + η

2

(
VAD

η
− 1

)2

− VAD

(
VAD

η
− 1

)
.

(41)

In Fig. 3 (left panel), we compare the above exponent at
the bifurcation point η = 1 with the CLE in the DR. The
horizontal variable is evaluated by VAD = η(1 + ln |VDR

η
|). As

seen from the plot, the advection-diffusion model is already
a good approximation of the system around the maximum in
terms of the CLE.

We conclude this section by noting that as indicated both
by the susceptibility and the comoving Lyapunov analysis,
only considering the full nonlocal (or delayed) feedback might
induce problems with causality. Indeed, every finite-order
PDE model allows propagation along all possible directions
and is increasingly correct at higher orders around the comov-
ing direction (i.e., the location of maximum of the CLE).

IV. THE DELAYED ADLER EQUATION

We now investigate and discuss the two representations in
the framework of the so-called delayed Adler’s equation. The
model describes the evolution of the phase of the optical field
in optically injected laser systems with time-delay feedback
and accounts for the formation and interaction of topological
localized states [11] (homoclinic 2π -kink solutions) very sim-
ilar to those found in the Sine-Gordon equation. The model
reads

φ̇ = � − sin φ + χ sin(φd − φ − ψ ), (42)

where φ is the phase of the optical field, � is proportional to
the detuning between the injection and the laser frequency,
χ is the normalized feedback strength, and ψ is related to
the feedback phase. For the purposes of this work, Eq. (42)
just provide a nontrivial scalar system where the delayed
feedback is nonlinear, thus leading to significant differences
in the spatiotemporal representation with respect to models
considered in [19].

According to the DR, we obtain

φτ = � − sin φ + χ sin(φNL − φ − ψ ), (43)

which together with suitable boundary conditions for φ along
the ξ domain, which we take periodic, represents the essence
of our approach.

A normal form approximation of (43) can be readily ob-
tained by expanding the nonlocal term up to a given order. At
the second order, we obtain

φτ + φξχ cos ψ = � − χ sin ψ − sin φ

+ 1
2χ sin ψφ2

ξ + 1
2χ cos ψφξξ . (44)

The comparison between the models (42), (43), and (44) is
reported in Fig. 4. Starting from a rectangular initial condi-
tion, we identify two propagating regimes as the feedback
strength is varied: at low values of χ , a single localized state
propagating with constant velocity and, for higher values of
the parameter, two pulses propagating at different speeds. The
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(a)

(b)

FIG. 4. The delayed Adler model and its spatiotemporal descrip-
tions. (a) Pulse propagation velocities in the (σ, θ ) plane for the
delayed (red) and the nonlocal (black dots) model together with
its second-order (green) and third-order (blue) approximations in
the DR. In the insets, the one-pulse and two-pulse solutions of the
delayed Adler model are plotted in the DR for χ = 2 and χ = 4,
respectively (here we plot the sinus of φ). (b) Transverse cuts along
the spatial ξ direction for the different models: the color code is the
same used for (a). Other parameters are � = 0.95, T = 2×103, and
ψ = 0.

corresponding spatiotemporal patterns are shown in the insets
of Fig. 4(a), where we plot the sinus of the phase variable φ.
These coexisting localized states correspond to coarsening of
kink-antikink solutions, while the single pulse regime at low
values of χ corresponds to the propagation of a single kink
(phase slip).

In Fig. 4(a), we plot the velocities of the kinks for a decade
range of the feedback gain parameter χ . We observe an ex-
cellent agreement between the delayed (42) and the nonlocal
(43) model, not only at the level of propagation speeds, but
also in the transverse profiles of the solutions, as reported
in Fig. 4(b). Although this could appear somehow expected
as the two models share the same bulk rule, we remark that
they strongly differ at the boundaries. This supports our initial
hypothesis that in the thermodynamic limit (i.e., in the bulk
region), the nonlocal model well approximates the delayed
dynamics, independently from the choice of the boundary
conditions.

The second-order normal form (44) captures most of the
phenomenology of the delayed and nonlocal models, repro-
ducing the qualitative behavior of the velocities as a function
of χ [see Fig. 4(a)] and also providing a good approximation
of the profiles of the kinks [Fig. 4(b)]. On the other hand, it

does not display the transition to the single-kink regime at low
values of χ , and a noticeable difference in the magnitude of
the velocities is observed.

As a peculiar benefit of the DR, we can improve the quality
of the normal form approximation by simply increasing the
order of the expansion of the nonlocal term. We report in
Fig. 4 the results obtained by integrating a third-order expan-
sion normal form, obtained by adding to the right-hand side
of (44) the terms

1
6

[(
χ cos ψφ3

ξ − φξξξ

) − 3χ sin ψφξφξξ

]
. (45)

Even in this case, the model is unable to reproduce the tran-
sition from the double to the single pulse regime, indicating
that higher orders are needed to grasp this feature. However,
the agreement between both the velocities and the spatial
profiles is substantially improved and barely distinguishable
from those obtained from the full models given by Eqs. (42)
and (43). Here, the introduction of higher orders in the normal
form breaks the parity symmetry of the solutions around the
comoving direction, witnessed by the presence of only even
terms in (44) besides the drift term, thus leading to a better
approximation of the original, asymmetric profiles.

We finally observe that writing Eq. (44) in the comoving
reference frame corresponding to the velocity v = χ cos ψ to
remove the advection term in the left-hand side, and rescaling
the space by

ξ → ξ

√
1

2
χ cos ψ, (46)

we eventually get

φτ = sin φ̄ − sin φ + φξξ + φ2
ξ tan ψ, (47)

where sin φ̄ = � − χ sin ψ .
The model (47) is now formally identical to the second-

order normal form equation obtained in Ref. [11] in the STR
[cf. their Eq. (3)], and represents an alternative mathematical
description of the system. However, in (47), the role of time
and space is exchanged: indeed, for the advection velocity
associated to the feedback term, we find the value χ cos ψ that
is the inverse of what is reported in [11]. We will turn back to
this issue in Sec. VI, where we will discuss the connection
between the two representations based on general arguments.

V. AN OPTICAL DELAYED MODEL WITH DISPERSION

In this section, we deal with a rather interesting framework,
formalized by a delayed differential equation with an alge-
braic constraint, which is thus intermediate between a scalar
and a vectorial case. The model has been first introduced in
[22] for the study of dispersive instabilities of pulse trains in
mode-locked semiconductor lasers. Here, we specifically refer
to the single-mode version in [23] [see, also, our Eq. (62)],
from which an equivalent PDE in the STR has been derived
by means of multiple-scale analysis.

A. The linear case

Before discussing the full model (62), we first examine a
linear prototype system, in which most of the topic can already
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be elucidated,

Ė = −E + hY, Y = η(Ed − Yd ). (48)

Here, we are interested in studying the above model in itself,
regardless of its physical meaning; notice, however, that it
could be obtained from (62) by eliminating the carrier dynam-
ics (i.e., neglecting all nonlinear terms).

Setting u = E and w = E − Y , the model can be rewritten
as

u̇ = (h − 1)u − hw, (49)

w = u − ηwd . (50)

In the framework of the DR, the above equation takes the form

∂τ u = (h − 1)u − hw, (51)

u = u − ηwNL. (52)

By Fourier transforming, we can derive the exact disper-
sion relation

p(q) = h − 1 − h

1 + ηe−iq
, (53)

where we associate the frequency p(q) and the wave vector q
to the time derivative and spatial shift operator, respectively,
i.e., ∂τ → p(q) and S1 → e−iq.

Expanding the exponential term for small wave vectors,
e.g., up to the second order, we get

p(q) = (η − 1)h − 1

η + 1
− ηh

(η + 1)2
iq − η(η − 1)h

2(η + 1)3
(iq)2,

(54)

which corresponds in the direct space-time (ξ, τ ) to the nor-
mal form,

Zτ = (η − 1)h − 1

η + 1
Z − ηh

(η + 1)2
Zξ − η(η − 1)h

2(η + 1)3
Zξξ . (55)

Most of the interest for this model comes from the observa-
tion that for high reflectivities (η → 1−), the coefficient of the
second-order spatial derivative, i.e., the diffusion, vanishes. In
this limit, we are left with a dominant role of the dispersive
effects related to the third-order term. To study this regime, we
set h = 2 (corresponding to the Gires-Tournois interferometer
regime [22,36]) and η = 1 − ε with ε = o(1), to obtain

p(q) = − 1
2ε − 1

2 iq + 1
8ε(iq)2 + 1

24 (iq)3 + · · · . (56)

Truncating the expansion at the third order, the correspond-
ing normal form is written as

Uτ = − 1
2εU − 1

2Uξ + 1
8εUξ 2 + 1

24Uξ 3 . (57)

In the limit ε = 0, we get the dispersive-advection equation

Uτ + 1
2Uξ = 1

24Uξ 3 . (58)

Equation (58) has the form of the linear Korteweg–de Vries
(KdV) equation [37], although with a positive third-order
coefficient. In optics, this corresponds to an anomalous dis-
persion term implying that the higher spatial-frequency waves
travel faster than the lower-frequency waves. The integration
of model (58) is in good agreement with the original de-
layed system (49). The spatiotemporal plots also highlight

FIG. 5. Numerical integration (a), (b) of the delayed model (49)
and (c), (d) of the spatially extended system (58) for h = 2 and
T = 200. In (a), (c), the spatiotemporal patterns are shown in the DR
space-time (ξ, τ ). In (b), (d), the profiles are transverse cuts along
ξ evaluated at fixed τ , as indicated by the dashed lines. The vertical
arrows indicate the pseudospace positions of the profiles’ maxima.

the different boundary conditions of the two models. This is
also evidenced looking at the maxima of the profiles that are
found at different pseudospatial positions. Both the delay and
the spatially extended model display anomalous dispersion
effects with high-frequency components of the wave packet
propagating faster than the lower ones (see Fig. 5).

On the other hand, the KdV is often written with a nega-
tive third-order coefficient, leading to the normal dispersion
phenomena with lower-frequency waves traveling faster. This
is what we find in the STR description. Reversing spatial and
temporal variables

q(p) = − ln

[
1 + ip

η(h − 1 − ip)

]
, (59)

and expanding for small p up to the third order, we get the
normal form for h = 2,

Uθ = ln(η)U − 2Uσ − 2
3Uσ 3 . (60)

Equation (60) corresponds to the normal form obtained in [22]
by means of the functional mapping method [38]. By rescaling
θ → θ/2 and σ → 2σ and in the limit ε = 0, we obtain

Uθ = − 1
2Uσ − 1

24Uσ 3 , (61)

which is the same PDEM found for the DR, but with the
opposite sign for the dispersion term.

Remarkably, we have found that the same pattern can
be generated with normal or anomalous dispersion when
observed in the STR and in the DR, respectively. As a conse-
quence, the very same bulk phenomena are expected to arise
in the two PDEMs well approximating the original ones, but
with opposite symmetry with respect to the diagonal axis. In
the next section, we will analyze these dispersive phenomena
in the fully nonlinear problem.

B. The nonlinear dispersive model

We now consider the full model discussed in Ref. [23],
which describes the dynamics of the intracavity field E and
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of the population inversions Ni (i = 1, 2) of a passively mode-
locked integrated external-cavity surface-emitting laser,

Ė = [(1 − iα1)N1 + (1 − iα2)N2 − 1]E + hY,

Y = η[E (t − T ) − Y (t − T )],

Ṅ1 = γ1(J1 − N1) − |E |2N1,

Ṅ2 = γ2(J2 − N2) − s|E |2N2. (62)

Here, Y is the field in the external cavity, αi, Ji, and γi are
the linewidth enhancement factors, the bias, and recovery
time relative to the gain (i = 1) and absorber section (i = 2),
respectively, and s is ratio of the gain and absorber saturation
intensities.

We rewrite (62) in the DR, where, as usual, the de-
layed term becomes nonlocal in space and the standard time
derivatives transform into derivatives with respect to the DR
time τ :

∂τ E = [(1 − iα1)N1 + (1 − iα2)N2 − 1]E + hY,

Y = η
(
ENL − YNL

)
,

∂τ N1 = γ1(J1 − N1) − |E |2N1,

∂τ N2 = γ2(J2 − N2) − s|E |2N2. (63)

The Y variable can be eliminated using the second equation in
the Fourier domain,

Ȳ = Ē
ηe−iq

1 + ηe−iq
, (64)

where the bar indicates the Fourier transform and q the spatial
wave vector.

By expanding up to the third order and reverting to spatial
variables, we get

Y =
[

η

1 + η
− η

(1 + η)2
∂ξ + η(1 − η)

2(1 + η)3
∂2
ξ

+ η(4η − 1 − η2)

6(1 + η)4
∂3
ξ + · · ·

]
E . (65)

Substituting into the full model, we obtain

∂τ E = [(1 − iα1)N1 + (1 − iα2)N2]E +
(

hη

1 + η
− 1

)
E

− hη

(1 + η)2
∂ξ E + hη(1 − η)

2(1 + η)3
∂ξ 2 E

+ hη(4η − 1 − η2)

6(1 + η)4
∂ξ 3 E ,

∂τ N1 = γ1(J1 − N1) − |E |2N1,

∂τ N2 = γ2(J2 − N2) − s|E |2N2. (66)

In Fig. 6, we compare the results obtained by numerical
integration of the delay system (62), the corresponding non-
local DR model (63), and the third-order PDEM (66). The
spatiotemporal plot shows the propagation of a single pulse in
the DR, the dynamics of which have been analyzed in detail
in Ref. [23]. The agreement between the delayed and DR
models is excellent. On the other hand, while well reproducing
the phenomenology, the third-order approximation exhibits

|E|2 

(a) 

(b) 

FIG. 6. (a) Spatiotemporal plot in the DR for a single prop-
agating pulse obtained by numerical integration of the full delay
model (62) (yellow pattern), the nonlocal DR model (63) (green
solid line), and its third-order approximation (66) (black solid line).
(b) Transverse cuts of the above patterns at fixed ξ indicated by
the vertical dashed lines. Parameters: α1,2 = 0, J1 = 0.65, J2 = −0.5
and γ1 = 3×10−3, γ2 = 0.1, η = 0.7, h = 2, and s = 1. In the delay
model, T = 2000.

quantitative differences, both in the propagation velocity and
in the transverse profiles [see Fig. 6(b)].

We now compare our PDEM with the results of [23], where
a third-order model in the STR has been derived. Rescaling
the pseudospace ξ by (1 + η)2/hη and the pseudotime τ by
hη/(1 + η)2, we have

∂ξ n → (1 + η)2n

(hη)n
∂ξ n , n = 1, 2, 3, (67)

∂τ → hη/(1 + η)2∂τ , (68)

and we eventually obtain

∂τ E =
[
(1 − iα1)N1 + (1 − iα2)N2 + hη

1 + η
− 1

]
hη

(1 + η)2
E

− (1 + η)2

hη
∂ξ E + (1 − η2)

2

(
1 + η

hη

)2

∂ξ 2 E

+ 4η − 1 − η2

6(1 + η)2

(1 + η)6

(hη)3
∂ξ 3 E ,

∂τ N1 = γ1(J1 − N1) − |E |2N1,

∂τ N2 = γ2(J2 − N2) − s|E |2N2. (69)

It is interesting to note that apart from the usual exchange
between space and time, the drift (first-order) and diffusion
(second-order) terms are equal to those found in the STR
model in [23] [see their Eq. (11) for the model and Eqs. (14)
and (15) for the drift and diffusion coefficients, respectively].
On the other hand, the coefficient of the third-order derivative
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is

dDR = 4η − 1 − η2

6(1 + η)2

(1 + η)6

(hη)3

= (4η − 1 − η2)(1 + η)

2(1 + η3)

(1 + η3)

3

(
1 + η

hη

)3

= Q(η)
(1 + η3)

3

(
1 + η

hη

)3

= −Q(η)d3, (70)

where d3 is the dispersion constant in [23] [cf. their Eq. (16)].
The two dispersions thus differ both in sign and absolute
value. Interestingly, however, since η = 1 − ε in the high
reflectivity limit ε 	 1 for which the diffusion vanishes, we
have

Q(η) ≈ 1 − 3
2ε2. (71)

Hence, up to second-order corrections or for the ideal case of
perfect reflectivity ε = 0, the two coefficients will only differ
in sign as found in the case of the linear model. We also
notice that when η = 2 − √

3 ≈ 0.268, dDR = 0 while d3 is
finite. As such, for this value of the reflectivity, the DR model
(69) is dispersionless, while the STR model in [23] remains
dispersive. We remark that at the nonlocal level, including,
i.e., all infinite orders of the expansion, both the STR and DR
models must coincide and reproduce the delayed dynamics
in the thermodynamic limit. On the other hand, the rate at
which the two representations converge towards the solution
of the nonlocal problem is generally different and depends
on the specific details of the system under consideration. By
convergence here we mean that any finite-order expansion is
expected to approximate the original Eq. (62) with better and
better precision as the order of expansion is increased. In the
above example and for this value of reflectivity, higher-order
derivatives are necessary for the DR model to capture disper-
sive effects.

VI. SWAPPING SPACE AND TIME:
FROM STR TO DR AND BACK

As we have seen in the previous sections, an effective
approach to describe a long-delayed systems is to derive PDEs
from the two representations. The task is to explicitly rule the
evolution of the field variable along the temporal-like direc-
tion in terms of the spacelike derivatives of it. Such a scheme
can be very convenient, both from a conceptual and a practical
point of view. Indeed, whenever the model is obtained by
means of a suitable expansion, a few terms could be sufficient
to well approximate the dynamics.

Since the role of pseudospace and pseudotime is exchanged
in the two representations, the function expressing the time
derivative in terms of the space derivatives can be different in
the two cases. As a consequence, the related PDEMs would
differ as well, at least from a certain order on.

In the following, we will consider a specific class of
PDEMs allowing one to easily switch between the represen-
tations. In particular, we will find the conditions in which it is
possible to obtain the same reduced PDEM, obviously limited
to some order in the space derivatives.

y = y 

x 

x 

FIG. 7. Representation of the original and comoving reference
systems related by transformation (73).

We start from the n-order description obtained from the
delay system in one of the two representations,

�(n)
y = F (n)

(
�(n),�(n)

x ,�
(n)
x2 , . . . , �

(n)
xn

)
. (72)

We now move to the comoving reference frame corre-
sponding to the diagonal of the 2D domain of the (suitably
rescaled) variables (a pictorial view of these two reference
frames is illustrated in Fig. 7),

x̄ = x − y, ȳ = y. (73)

Accordingly, Eq. (72) rewrites as

�
(n)
ȳ = �

(n)
x̄ + F (n)

(
�(n),�

(n)
x̄ ,�

(n)
x̄2 , . . . , �

(n)
x̄n

)
. (74)

The parity symmetry transformation x̄ ↔ −x̄, which
leaves the above equation invariant, corresponds to x → y as
seen by the comoving reference frame (73) and represents the
commuting rule between the two representations.

We now consider the class of model for which the co-
moving term, expressed by the linear first-order derivative,
disappears from the equation: in the very common case of
n = 2, Eq. (74) is thus invariant under Eq. (73). Therefore,
the transformed equation, which corresponds to the PDEM in
the other representation, is formally the same and admits the
same solutions. In this case, the parity transformation maps
one representation, and its related solutions, into the other.

As a paradigmatic example in this class of second-order
systems, we mention the delayed complex Landau (DCL)
model,

u̇ = μu − (1 + iβ )|u|2u + ηud , (75)

where u is complex. Once rewritten in the DR and expanded
up to the second order, it yields

Zτ = (μ + η)Z − ηZξ + η

2
Zξξ − (1 + iβ )|Z|2Z, (76)

i.e., a complex Ginzburg-Landau (CGL) equation with drift η

and diffusion η/2.
The corresponding second-order normal form for (75) in

the STR was obtained in [5] and can be written as

ηZθ = μ1Z − Zσ + 1

2η
Zσσ − (1 + iβ )|Z|2Z, (77)

[see their Eq. (17) when reported in the original coordi-
nate system]. Equations (76) and (77) are identical, setting
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μ + η = μ1 and

∂τ → η∂θ , ∂ξ → 1

η
∂σ . (78)

As seen, Eq. (78) corresponds to swapping space and time
between the two models and thus passing from STR to DR,
with the proper units assured by the presence of the “velocity”
1/η.

We remark how as long as the normal forms (76) and
(77) derived from the two representations can be exchanged
making use of (78), the patterns obtained from the integration
of the two are expected to be analogous and close to the one
produced by the DCL model. This is true close to the Hopf
bifurcation, but, moving away from that, this is no longer
the case, as shown in [19]. Indeed, the inclusion of a further
term in the expansion (76) allows one to better approximate
the original dynamics, including deviations from the parity
symmetry observed moving away from the Hopf bifurcation.

The bistable system with delay [7,9], with, e.g., a quartic
potential with asymmetry a,

u̇ = −u(u − 1)(u + 1 + a) + gud = −U ′(u) + gud , (79)

also belongs to this class of models. Again, it is straightfor-
ward to write the expansion in the DR at any order. At the
second order, we have the reaction-diffusion system,

Zτ = −U ′(Z ) + gZ − gZξ + 1
2 gZξξ , (80)

and thus we set a correspondent STR model by using the
rescaling (78) adopted for the DCL (with η = g),

gZθ = −U ′(Z ) + gZ − Zσ + 1

2g
Zσσ . (81)

At the same order, the simplest nonlinear case occurs when
the first-order derivatives appear at second-order power. This
is indeed what we have found for the Adler model discussed
in Sec. IV, where a term �2

x is present and, again, the same
PDEM is obtained in the two representations.

More complicated situations can arise for higher orders.
For n = 3, for example, we can associate different functions
for the two representations only differing by the sign of the
third-order derivative,

�(3)
x = F (3)

(
�(3),�(3)

x ,�
(3)
x2 ,�

(3)
x3

)
, (82)

for the first representation, and

�(3)
y = F (3)

(
�(3),�(3)

y ,�
(3)
y2 ,−�

(3)
y3

)
(83)

:= F̄ (3)
(
�(3),�(3)

y ,�
(3)
y2 ,�

(3)
y3

)
, (84)

for the second representation. In this way, the switch x → y
has to be accompanied by F → F̄ . This is what we have found
in Sec. V, where the two PDEMs only differ for the third-order
coefficient sign.

We, finally, remark that the PDEMs for the two represen-
tations are also generally different in the very simple cases.
For instance, we again consider the linear equation (21). Once
written according to the DR in the Laplace domain, we obtain

sτ = −1 + exp(−sξ ), (85)

10-1 

10-2 

10-3 

10-5 

10-4 

10-1 

10-2 

10-3 

10-5 

10-4 

0                     200                    400                   600 0                     200                    400                   600 
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(c) (d) 

FIG. 8. Spatiotemporal plots of the linear models (a) (90) and
(b) (87) for a Gaussian initial condition of unitary amplitude and
width. (c) Profiles along the σ (black line) and θ (red line) directions
as obtained from model (90). (d) Comparison between the profile
along θ as obtained from (90) (red line), the profile along ξ as
obtained from (87) (black dots), and the solution of the delay model
(21) (green line). The profiles are displayed for the same value of
σ ↔ τ . The spatially extended models have been integrated using
periodic boundary conditions.

where (sξ , sτ ) are the Laplace-conjugate variables of (ξ, τ ).
Expanding up to the third order, we have

sτ ≈ −sξ + 1
2 s2

ξ − 1
6 s3

ξ , (86)

which leads to the normal form

�τ = −�ξ + 1
2�ξξ − 1

6�ξξξ . (87)

In the STR, we instead obtain, for the corresponding con-
jugate variables,

sσ = −1 + exp(−sθ ), (88)

and expanding

sθ = − ln(1 + sσ ) ≈ −sσ + 1
2 s2

σ − 1
3 s3

σ , (89)

we eventually get the normal form,

�θ = −�σ + 1
2�σσ − 1

3�σσσ . (90)

We report in Fig. 8 the numerical integration of the two
models (87) and (90), in both cases using periodic bound-
ary conditions and a Gaussian initial function. As seen in
Figs. 8(a) and 8(b), the spatiotemporal patterns plotted in
their respective spatiotemporal domains are quite similar. In
Fig. 8(c), we compare the temporal and spatial profiles of
system (90). Due to dispersion, the two profiles are clearly
asymmetric and different from each other. A similar situation
is found in model (87), although with a weaker asymmetry
owing to the lower dispersion coefficient. On the other hand, a
remarkable agreement, up to almost three decades, is observed
when we compare the two models along the corresponding
directions, (θ → ξ ) and (σ → τ ), thus demonstrating the
equivalence of the two representations. As an example, we
plot in Fig. 8(d) the profile along θ shown in Fig. 8(c), and a
transverse cut along ξ of the pattern in Fig. 8(b). The residual
deviations can be associated to the order of the expansion
used in the two PDEs. Indeed, the two representations do
not uniformly converge towards the solution of the delayed
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model and the inclusion of suitably different orders would
be necessary to compensate the discrepancy in the profiles.
In Fig. 8(d), we also plot the solution of the delayed system
(21) for comparison. Incidentally, in this specific case, the DR
model (87) already shows at the third order an excellent agree-
ment with the original delay equation. However, deviations
are eventually expected, as any finite-order expansion cannot
capture the intrinsically nonlocal nature of the delay problem.

VII. CONCLUSIONS

The study of long-delayed dynamical systems strongly
benefits from a spatiotemporal description whenever it is pos-
sible. Such a mapping, besides realizing a bridge between
different high-dimensional systems, allows for a simple con-
ceptual interpretation of complicated phenomena otherwise
hidden in the temporal series of a delayed system. As such, the
success of the now widespread STR is explained and justified.
However, some practical difficulties arise in the derivation of
normal forms in the STR, as the implicit nonlocality in time
leads to involved mathematical derivations often requiring
vicinity to a bifurcation. Moreover, both the evaluation of the
comoving Lyapunov exponent and analytical considerations
in linear models indicate that the choice of the slow-time
variable as the pseudotime in the representation may not be
the most appropriate. In the spirit to better understand and de-

scribe the spatiotemporal equivalence, recently an alternative
DR was introduced. According to this approach, the role of
space and time is reversed in the mapping, aiming to describe
a far from boundaries (bulk) evolution. While, mathematically
speaking, the DR admits the very same solution of the original
delay problem only for a specific choice of the boundary
conditions, in the thermodynamic limit it is shown that the
DR provides a very good approximation of the dynamics.

In this work, we have supported the preliminary arguments
and evidences of the validity of DR over the STR by the
analysis of new systems (with a nontrivial structure of the
delayed feedback) and discussed in detail the peculiarities of
this alternative approach. In particular, the easy derivation of
PDEM at any order allows for a straightforward application of
the method to describe the bulk dynamics of any long-delayed
systems.

We believe that with the examples and enlightenment
carried out in this work, our approach could represent a signif-
icant advance in the area of long-delayed dynamical systems.
In particular, one can expect this to happen in the relevant
cases of the conceptual description and quantitative evalua-
tion of bulk behaviors and quantities analogous to those of
spatiotemporal systems.

Further investigations remain to be carried out to precisely
determine the limit of application and the a priori degree of
approximation that one could expect for a specific expansion.
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