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Nonlinear modulation of periodic waves in the cylindrical Gardner equation
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The propagation of dispersive shock waves (DSWs) is investigated in the cylindrical Gardner (cG) equation,
which is obtained by employing a similarity reduction to the two-space one-time (2+1) dimensional Gardner-
Kadomtsev-Petviashvili (Gardner-KP) equation. We consider the steplike initial condition along a parabolic
front. Then, the cG-Whitham modulation system, which is a description of DSW evolution in the cG equation,
in terms of appropriate Riemann-type variables is derived. Our study is supported by numerical simulations. The
comparison is given between the direct numerical solution of the cG equation and the DSW solution obtained
from the numerical solution of the Whitham system. According to this comparison, a good agreement is found
between the solutions.
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I. INTRODUCTION

The Gardner equation

ut + 6uux ± 6αu2ux + uxxx = 0 (1)

is a well-known model which describes internal solitary waves
in shallow water and it is called the focusing or defocusing
Gardner equation depending on the plus or minus sign of the
cubic nonlinear term, respectively. This equation is first de-
rived to obtain the infinite set of local conservation laws of the
Korteweg–de Vries (KdV) equation [1]. The Gardner equation
has importance in modeling large-amplitude inner waves in
the ocean (see [2–4]). It also describes a variety of wave
phenomena in solid-state and plasma physics [5,6], dynamics
of a Bose-Einstein condensate (BEC) [7], and quantum field
theory [8].

The Gardner equation is extended to the Gardner-KP equa-
tion by using the sense of Kadomtsev and Petviashvili [9],
who relaxed the restriction that the waves be absolutely one-
dimensional.

In this study, we are interested in a defocusing-type
Gardner-KP equation in the following form:

(ut + 6uux − 6αu2ux + ε2uxxx )x + λuyy = 0, (2)

where 0 < ε � 1, α > 0, and λ = ±1 are constants. This
equation has two nonlinear terms in the quadratic and cubic
forms and the dispersive term is of third order.

Even though the coefficients of u2ux in the Gardner and
the Gardner-KP equations cannot be scaled to a fixed value,
all derivations and calculations are done by taking α = 1 for
simplicity through the study. For the general α, similar results
can be obtained by applying the procedure which is given in
this study.
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The Gardner-KP equation describes strong nonlinear inter-
nal waves on an ocean shelf in the two-dimensional case. The
propagation of interfacial waves in a two-layer fluid system
is considered in [10]. In the study, the fluids in both layers
are assumed to be inviscid and incompressible. The evolution
equation has been derived for weakly nonlinear and dispersive
interfacial waves, propagating near the critical depth level and
traveling in a slowly rotating channel with gradually varying
topography and sidewalls. Under the assumption that there
is no rotation and the variation of topography is weak and
behaves like a linear function in the transverse direction,
it is shown that weakly nonlinear and dispersive interfacial
waves, propagating near the critical depth level, are governed
by a Gardner-KP equation which is also called a modified
Kadomtsev-Petviashvili (mKP) equation. A similar problem
is considered in [11] and two-dimensional interaction of inter-
nal solitary waves in a two-layer fluid system is described by a
Gardner-KP equation (the authors termed it the extended KP
equation), provided the propagation directions of the waves
were close to each other. The Gardner-KP equation has been
investigated numerically in [11] and [12].

In this study, we consider the formation and the propa-
gation of dispersive shock waves in the cylindrical Gardner
(cG) equation [see Eq. (12)], which is obtained by using a
similarity reduction to the Gardner-KP equation (2). Disper-
sive shock waves (DSWs), also termed undular bores in fluid
mechanics, are slowly modulated nonstationary wave trains
that develop spontaneously in weakly dispersive nonlinear
media. In this wave form, the nonlinearity induces front steep-
ening and thus induces the tendency to develop an unphysical
hydrodynamic singularity, named the gradient catastrophe. A
weak dispersion takes the second place until steep gradients
are eventually formed. At this stage dispersion becomes ef-
fective. The result is the expanding front characterized by
oscillations. These oscillations spread in a characteristic fan
in the space-time plane and the borders of this fan repre-
sent the leading and the trailing edge of the DSW, where
the amplitude of the oscillations is largest and vanishingly
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small, respectively. These two edges propagate with different
speeds.

The investigation of DSWs has a long history that begins
with Whitham’s pioneering invention of modulation theory
[13,14] and continues with the construction of the DSW so-
lution for the KdV equation, which physically describes an
undular bore by Gurevich and Pitaevskii [15]. It was then
verified numerically by Fornberg and Whitham [16]. The
modulation theory for the Gardner equation was developed
in [17], where the complete classification of the solutions for
the Riemann-type problem was constructed.

In this study, a multiple-scale method [18] is used to in-
vestigate DSWs in the cylindrical Gardner equation. By using
this method, a system of quasilinear modulation equations
describing slow evolution of parameters in the periodic trav-
eling wave solution, such as amplitude, wave number, and
mean height, is obtained. These equations are called Whitham
modulation equations. For hyperbolic systems, a DSW solu-
tion occurs as a stable wave train and for elliptic systems it
corresponds to an unstable wave train. When the connection
between DSW solutions and hyperbolic modulation equations
was realized, the DSW solutions of other integrable nonlinear,
dispersive wave equations, such as the nonlinear Schrödinger
(NLS) equation [19,20], the modified KdV (mKdV) equation
[21], the KdV-Burgers equation [22], the Benjamin-Ono equa-
tion [23], and the Gardner equation [17], were found.

The key feature to find the DSW solution from modulation
equations is the ability to set them in the appropriate Riemann
variable form, which is guaranteed if the underlying equa-
tion is integrable. However, most equations governing DSWs
in physical applications are not integrable. Then, based on
Whitham’s and Gurevich and Pitaevskii’s research, El pro-
posed the framework of a DSW fitting method which enables
the analysis of DSWs governed by nonintegrable equations
[24,25]. This method was used to find the leading (solitary
wave) and trailing (linear wave) edges. In [26], Kamchatnov
also investigated DSWs in nonintegrable equations.

All of these studies were restricted to (1+1)-dimensional
PDEs and much less information was known about DSWs
in multidimensional PDEs until recently. In the last decade,
DSWs in two-space one-time (2+1) dimensional systems
have been the subject of few studies. In [27], by using similar-
ity variable, (1+1)-dimensional cylindrical reductions of the
Kadomtsev-Petviashvili and two-dimensional Benjamin-Ono
equations, their associated DSW solutions were investigated.
We note that the method used in [27] works only under the
special choice of parabolic front. Later, a generalization of
Whitham theory for DSWs in the KP-type equations with a
general class of initial conditions was developed [28]. The
main result of this work was the derivation of the system
of (2+1)-dimensional hydrodynamic-type equations, which
describes the slow modulations of the periodic solutions of
the corresponding KP-type equation. The method presented
in [28] can be applied to DSW investigation in integrable
and nonintegrable (2+1)-dimensional PDEs. Actually, the
Gardner-KP equation (2) belongs to the equation class stud-
ied in [28]. However, quantitative results obtained from our
present study about DSWs in the Gardner-KP equation will
be very important to verify the theoretical results of the study
in [28].

In this study, we employ a parabolic similarity reduction to
the integrable (2+1)-dimensional Gardner-KP equation and
then this equation reduces to the (1+1)-dimensional equation
called the cylindrical Gardner (cG) equation. After that, we
apply the Whitham modulation theory to the cG equation.
We obtain two secularity (compatibility) conditions associ-
ated with the Whitham modulation theory for the cG equation
by using a perturbation method. Then, these two secular-
ity conditions with consistency requirement (conservation of
waves) are used to derive a system of three quasilinear first-
order partial differential equations. This system is called the
Whitham modulation system and describes the modulations of
the traveling wave solutions of the cG equation. By introduc-
ing appropriate Riemann-type variables, the corresponding
modulation equations are transformed into simpler form. This
simpler form is important to understand the dispersive shock
wave phenomena in the cG equation. Next, we obtain the
direct numerical solution of the cG equation and compare this
solution with the DSW solution. The analytical results from
the modulation theory are shown to be in good agreement with
direct numerical solution of the cG equation.

The paper is organized as follows. In Sec. II, we consider
the Gardner-KP equation. A special ansatz is used for Eq. (2),
then the (2+1)-dimensional equation reduces to the cylindri-
cal Gardner equation. In Sec. III, we derive the modulation
equations in terms of three Riemann-type variables. The mod-
ulation equations have the form of a hyperbolic system of
PDEs for the slowly varying parameters of the traveling wave
solution. Section IV deals with the direct numerical solution
of the cG equation. In Sec. V, the formation of DSW in the
cG equation is considered, based on the results obtained in
Sec. III. Also, both the direct numerical solution of the cG
equation and the DSW solution obtained from the numerical
solution of the corresponding Whitham system are compared.
In addition, to observe the effect of the cylindrical term, the
same examinations were carried out for the Gardner equation,
inspired by the study [17]. Finally, all results are summarized
in Sec. VI.

II. THE CYLINDRICAL GARDNER EQUATION

In this section, the cG equation is presented by reducing the
(2+1)-dimensional Gardner-KP equation (2) with a parabolic
similarity reduction [27]. We are interested in a class of initial
conditions for the Gardner-KP equation describing almost
steplike initial data as follows:

u(x, y, 0)

= 1

2

(
( f −+ f +) + ( f + − f −) tanh

{
A

[
x+1

2
φ(y, 0)

]})
,

(3)

where f −, f +, and A are real constants. φ(y, t ) describes the
front shape of the solution of Eq. (2). In this study, we choose
a parabolic front φ(y, 0) = c̃y2 where c̃ is a real constant.

Ablowitz et al. have used a reduction method for the above
initial data type to describe the dispersive shock waves in the
Kadomtsev-Petviashvili and two-dimensional Benjamin-Ono
equations [27]. The method used in [27] works under the spe-
cial choice of a parabolic front or a planar front. However, the
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only way to obtain the cylindrical equation from the reduction
of the (2+1) equation is to take the parabolic front.

We use the following ansatz,

u = f

(
x + φ(y, t )

2
, t, y

)
, (4)

for the Gardner-KP equation (2), where the front is then de-
scribed by x + φ(y, t )/2 = constant. When we substitute the
ansatz (4) into Eq. (2) we obtain(

1
2φt fη + ft + 6 f fη − 6 f 2 fη + ε2 fηηη

)
η

+ λ
[

1
4 (φy)2 fηη + 1

2φyy fη + φy fηy + fyy
] = 0,

(5)

where η = x + φ(y, t )/2. Also, we assume that f satisfies
the following boundary conditions at the infinities with f − >

f + � 0 for nonincreasing-type initial conditions:

f → R(t ) f − as η → −∞ and f → R(t ) f + as η → ∞.

(6)
The function R(t ) will be determined at the end of this

section with the initial condition R(0) = 1.
Assuming that φyy is independent of y, due to the as-

sumption of the parabolic front, and the ansatz is used as

u = f (x + φ(y, t )

2
, t ), then the system of equations in the

following form is obtained:

φt + λ

2
(φy)2 = 0, (7)

ft + 6 f fη − 6 f 2 fη + λ

2
φyy f + ε2 fηηη = 0. (8)

We call Eq. (7) the front shape equation which describes
the evolution of the curvature of the parabolic front. However,
Eq. (8) characterizes dispersive shock wave propagation of
the wave front. Equation (7) can be transformed to the Hopf
equation by using the transformation v = φy:

vt + λvvy = 0. (9)

The solution of Eq. (9) with the initial condition v(y, 0) = 2c̃y
is

v(y, t ) = 2c̃y

1 + 2c̃λt
. (10)

Thus the front shape function φ(y, t ) is obtained as

φ(y, t ) = c̃y2

1 + 2c̃λt
. (11)

The substitution of (11) into Eq. (8) gives the following cG
equation:

ft + 6 f fη − 6 f 2 fη + λc̃

1 + 2c̃λt
f + ε2 fηηη = 0. (12)

Denoting t0 = 1/λc̃, the term λc̃/(1 + 2c̃λt ) transforms to
1/(2t + t0).

The cG equation (8) with different coefficients of the cylin-
drical term describes a variety of wave phenomena in plasma
physics [29]. It is obtained for the nonlinear propagation of
Gardner solitons (GSs) in a nonplanar four-component dusty
plasma in [29].

We will consider λ = 1. The other sign can be obtained
by changing the c̃ to −c̃, i.e., changing the direction of the
parabolic front.

Note that there is another possibility of the choice for the
initial front. When the front is chosen planar as φ(y, 0) = c̃y,
then φyy is independent of y and the form of Eq. (8) becomes
the classical Gardner equation. DSWs in the Gardner equation
were studied in [17].

We construct the DSW solution of the cG equation (12)
with the step-type initial condition in the following form:

f (η, 0) =
{

f −, η < 0,

f +, η > 0.
(13)

The structure of the waves modeled by Gardner and cylin-
drical Gardner equations depends on the values of the initial
step parameters f −, f +. We require that f − > f + � 0 in
order for the generation of a DSW in the cG equation. In this
study, we examine the equation (12) by considering the re-
quired condition for DSW formation in the Gardner equation
[17].

Now to find the function R(t ) in the boundary conditions
(6), first we neglect η-dependent terms in Eq. (12) and get
an ordinary differential equation (ODE). The solution of this
ODE with the initial condition R(0) = 1 determines the func-
tion R(t ) in the boundary conditions (6) as

R(t ) = 1√
1 + 2c̃t

. (14)

III. DERIVATION OF THE MODULATION EQUATIONS

The key to obtaining DSW solutions is the usage of the
Whitham modulation theory [13,14]. We construct a DSW so-
lution of the cG equation by using the multiple-scale method
for analyzing slowly varying, nonlinear dispersive waves. The
multiple-scale method used in this study was initially intro-
duced by Luke [18]. By using this method, the Whitham
modulation equations describing a system of PDEs for the
slowly varying parameters of a periodic traveling wave so-
lution, such as amplitude, wave number and mean height, are
constructed. These equations are important to understand the
dispersive shock wave phenomena in the cG equation.

A DSW consists of two edges, the trailing edge and leading
edge, with a modulated dispersive wave train between these
edges. These two edges move with different speeds. Also, the
trailing edge corresponds to the small-amplitude sinusoidal
wave train, while the leading edge corresponds to the large-
amplitude solitary waves.

According to the modulation theory, wave parameters
change slowly over fast oscillations within the DSW. This re-
quirement can be formalized by introducing a rapidly varying
phase variable, where

θη = k

ε
, θt = −ω

ε
= −kV

ε
. (15)

Here η, t are slow space-time variables and k(η, t ), ω(η, t ),
and V (η, t ) are the wave number, frequency, and the phase
velocity, respectively. We assume that 0 < ε � 1.

Since (θη )t = (θt )η we obtain the compatibility condition
(conservation of waves) as follows:

kt + (kV )η = 0. (16)
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By the following relations,

∂

∂η
→ k

ε

∂

∂θ
+ ∂

∂η
,

∂

∂t
→ −ω

ε

∂

∂θ
+ ∂

∂t
, (17)

Eq. (12) is transformed to(
−ω

ε

∂

∂θ
+ ∂

∂t

)
f + 6 f

(
k

ε

∂

∂θ
+ ∂

∂η

)
f + λc̃

1 + 2c̃λt
f

− 6 f 2

(
k

ε

∂

∂θ
+ ∂

∂η

)
f + ε2

(
k

ε

∂

∂θ
+ ∂

∂η

)3

f = 0.

(18)

Grouping the terms in like powers of ε, we rewrite Eq. (18) as
seen below:

1

ε

(−ω fθ + 6k f fθ − 6k f 2 fθ + k3 fθθθ

)

+
(

ft+6 f fη − 6 f 2 fη + 13k2 fηθθ+3kkη fθθ+ λc̃

1 + 2c̃λt
f

)

+ε(3k fθηη + 3kη fηθ + kηη fθ ) + ε2 fηηη = 0. (19)

When we expand the function f in powers of ε as

f (θ, η, t ) = f0(θ, η, t ) + ε f1(θ, η, t ) + · · · , (20)

the leading and the next order perturbation equations are ob-
tained as

O

(
1

ε

)
: −ω f0,θ + 6k f0 f0,θ − 6k f 2

0 f0,θ + k3 f0,θθθ = 0,

(21)

O(1) : − ω f1,θ + 6k( f0 f1)θ − 6k f 2
0 f1,θ − 12k f0 f1 f0,θ

+ k3 f1,θθθ = U,
(22)

where

U = −
(

f0,t + 6 f0 f0,η − 6 f 2
0 f0,η + 3k2 f0,ηθθ

+ 3kkη f0,θθ + f0

2t + t0

)
.

(23)

We can proceed to higher order terms, but doing so is outside
the scope of this paper.

In order to solve the leading order problem, the traveling
wave solution of the defocusing Gardner equation is exam-
ined due to the similarity in the structure of this equation
with Eq. (21). We consider the traveling wave ansatz f =
f (ξ ), ξ = x − V t in Eq. (1) with the minus sign by taking
f instead of u and integrate this equation twice with respect to
ξ to obtain

f 2
ξ = f 4 − 2 f 3 + V f 2 + A f + B, (24)

where A and B are the constants of integration. The solution
of this equation can be expressed in terms of the Jacobian
elliptic functions cn and sn. A cnoidal wave solution of the
Gardner equation is stable if all roots of the right-hand-side
polynomial of Eq. (24) are all real, and unstable if two roots
are real, two are complex [17]. Supposing that all real roots
of the corresponding right-hand-side polynomial a1, a2, a3, a4

are ordered as

a1 < a2 < a3 < a4, (25)

then a traveling wave solution exists for a2 < f < a3. In this
case, the right-hand side of Eq. (24) is written as

f 4 − 2 f 3 + V f 2 + A f + B

= ( f − a1)( f − a2)(a3 − f )(a4 − f ), (26)

where

a1 + a2 + a3 + a4 = 2,

a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4 = V,

−a1a2a3 − a1a2a4 − a1a3a4 − a2a3a4 = A,

a1a2a3a4 = B.

(27)

Therefore, three of the a j’s are independent. In a modulated
wave, which we are interested in, they are slowly varying
functions of space coordinate η and time t , ai = ai(η, t ). Their
evolution is governed by the Whitham modulation equations,
which will describe dispersive shock wave formation of the
cG equation.

Provided that a2 < f < a3, Eq. (24) can be rewritten for-
mally as

df√
( f − a1)( f − a2)(a3 − f )(a4 − f )

= dξ . (28)

If we integrate Eq. (28), the solution of Eq. (24), which is
also the solution of the leading order problem (21), in terms
of Jacobi elliptic functions is obtained as

f0 = a2 + (a3 − a2)cn2(2(θ − θ0)K, m)

1 − a3−a2
a4−a2

sn2(2(θ − θ0)K, m)
. (29)

Here K = K (m) is the complete elliptic integral of the first
kind and m is the modulus of the elliptic function cn, where

m2 = (a3 − a2)(a4 − a1)

(a3 − a1)(a4 − a2)
. (30)

Note that there is a free constant θ0 in Eq. (29). It is possible
to find θ0 by constructing Whitham equations to higher order
in much the same way as one can develop for higher order
KdV or nonlinear Schrödinger type equations in physical
applications. Modulation of the phase shift in KdV-type equa-
tions was investigated in [30,31] by considering the higher
order Whitham theory. Such higher order analysis is outside
the scope of this study, because higher order theory is not
straightforward. We determine the approximated value of θ0

by comparison with direct numerical solutions. For more
precise results, the higher order Whitham theory must be
considered for the Gardner and cylindrical Gardner equations.

As mentioned before our aim is to obtain the three modula-
tion equations for the three independent parameters a2, a3, a4

of the solution (29). k, m, and V will be expressed in terms of
these independent variables. One of these modulation equa-
tion is Eq. (16), which is the conservation of waves. To obtain
the other two equations, the problem O(1) given in Eq. (22)
should be examined. If the leading order solution (29) is used
in Eq. (22), secular terms, arbitrarily large growing terms with
respect to θ , occur. To eliminate these terms, we enforce the
periodicity of f0 in θ and obtain the secularity conditions as∫ 1

0
Udθ = 0 and

∫ 1

0
f0Udθ = 0. (31)
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Replacing U given in (23) into the Eqs. (31), we obtain

∂

∂t

∫ 1

0
f0dθ+ ∂

∂η

∫ 1

0
(3 f 2

0 − 2 f 3
0 )dθ + 1

2t + t0

∫ 1

0
f0dθ = 0

(32)
and

∂

∂t

∫ 1

0
f 2
0 dθ + ∂

∂η

∫ 1

0
(4 f 3

0 − 3 f 4
0 − 3k2 f 2

0,θ )dθ

+ 2

2t + t0

∫ 1

0
f 2
0 dθ = 0. (33)

Equations (16), (32), and (33) are the required modula-
tion equations. If we calculate the functions f 2

0 , f 3
0 , f 4

0 , f 2
0,θ

and their integrals by using the properties of elliptic func-
tions [32], we can obtain modulation equations in terms of
a2, a3, a4 variables [a1 is eliminated with the help of the first
equation in (27)].

Note that we need to use the derivative formulas (A5)–(A8)
of the elliptic integrals in the first, second, and third types
(see Appendix) to obtain the system of modulation equations
which is a first-order quasilinear PDE system with the follow-
ing form,

ut + A(u)uη + B(u)
1

2t + t0
= 0, (34)

where u(η, t ) = (a2, a3, a4), A(u) is a 3 × 3 matrix, and B(u)
is a 3 × 1 vector.

The modulation equations can be simplified by replacing
the variables a2, a3, a4 with r1, r2, r3 (r1 � r2 � r3), where
ri, i = 1, 2, 3, are the Riemann variables. For the cG equation
we can take Riemann variables as given below [17]:

r1 = 1

4
(a1 + a2)(a3 + a4),

r2 = 1

4
(a1 + a3)(a2 + a4),

r3 = 1

4
(a2 + a3)(a1 + a4). (35)

Thus, the Whitham modulation system in Eq. (34) can be
transformed to the simpler form:

∂ri

∂t
+ vi(r1, r2, r3)

∂ri

∂η
+ hi(r1, r2, r3)

2t + t0
= 0, i = 1, 2, 3,

(36)
where

v1 = 2(r1 + r2 + r3) + 4(r2 − r1)K (m)

E (m) − K (m)
,

v2 = 2(r1 + r2 + r3) − 4(r2 − r1)(1 − m2)K (m)

E (m) − (1 − m2)K (m)
,

v3 = 2(r1 + r2 + r3) + 4(r3 − r2)K (m)

E (m)
, (37)

and the cylindrical terms can be expressed in the form below,
with the assumption Si = 1 − 4ri, i = 1, 2, 3, for simplicity

in processes,

h1 = − S1E

E − K
−

√
S1(

√
S2 + √

S3)(
√

S1 + √
S2

√
S3)�

(E − K )(S1 − S3)

+ K
√

S1
[
S1 + √

S1 + S2 + √
S2 + (

√
S2 − √

S1)
√

S3
]

2(E − K )(
√

S1 − √
S3)

,

h2 = −
√

S2(
√

S2 + √
S3)(

√
S2 + √

S1
√

S3)�

E (S1 − S3) + K (S3 − S2)

+ E (S3 − S1)S2

E (S1 − S3) + K (S3 − S2)
+ K

√
S2(

√
S2 + √

S3)

×
[
S1 + S2 − √

S2(−1 + √
S3) + √

S1(1 + √
S3)

]
2[E (S1 − S3) + K (S3 − S2)]

,

h3 = −S3 +
√

S3(
√

S2 + √
S3)(

√
S1

√
S2 + √

S3)�

E (S3 − S1)

+
√

S3(
√

S2 + √
S3)(1 + √

S1 + √
S2 − √

S3)K

2(
√

S1 − √
S3)E

. (38)

In Eq. (37), vi’s are the Whitham characteristic velocities
for the defocusing Gardner equation [17]. Also, K = K (m),
E = E (m), and � = �(n, m) denote the complete elliptic
integrals of the first, second, and the third kinds, respectively.
Here n denotes the parameter of the elliptic integral of the
third kind. Properties of these complete elliptic integrals are
listed in the Appendix.

The expressions of the module, the parameter of the third
elliptic integral, the phase speed, and the wave number in
terms of Riemann variables are as follows:

m =
√

r2 − r1√
r3 − r1

, n =
√

1 − 4r1 − √
1 − 4r2√

1 − 4r1 + √
1 − 4r3

,

V = 2(r1 + r2 + r3), k =
√

r3 − r1

2K (m)
.

(39)

Note that Eq. (36) reduces to a diagonal system in the absence
of cylindrical terms, i.e., t0 → ∞, which agrees with the
Whitham system for the defocusing Gardner equation [17].

IV. NUMERICAL SOLUTION OF THE CYLINDRICAL
GARDNER EQUATION

In this section, the direct numerical solution associated
with the cG equation is examined. Then we will compare this
numerical solution with the corresponding Whitham modula-
tion system in the next section.

The defocusing Gardner equation,

ft + 6 f fη − 6 f 2 fη + ε2 fηηη = 0, (40)

with the initial condition (13) depending on the positions of
the initial step parameters f − and f +, is considered in [17].
According to the analysis, wave structures with different cases
such as dispersive shock waves (undular bores), rarefaction
waves, solibores, and reversed rarefaction waves have been
observed depending on the choice of the initial step param-
eters f − and f +. However, because our study is related to
dispersive shock waves, other cases are outside the scope of
this paper. For the formation of a dispersive shock wave, f +
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and f − must satisfy the inequality

f + < f − � 1/2. (41)

In [17], the full classification of the solutions of the Gardner
equation to the step problem is done. According to this clas-
sification, there is a one-to-one correspondence between the
dispersionless limits of the KdV and the Gardner equations
when f + and f − lie in the region (41), where the function
f (1 − f ) is monotonically increasing and also a quadratic
map from a solution of the dispersionless Gardner equation
to a solution of the dispersionless KdV equation. These re-
sults indicate that in the region (41) there is a qualitative
equivalence between DSW solutions of the KdV equation and
the Gardner equation at the leading and trailing edges (see
the discussion in [17] for details). However, we could not
find a similar map from the dispersionless cG equation to the
dispersionless cKdV equation. So, we do not have any proof
about a qualitative equivalence between DSW solutions of
the cG equation and cKdV equations in the region (41). But,
this equivalence phenomena must be examined in detail as a
classification of the solutions of the cG equation to the step
problem.

In our numerical simulations, we use a numerical pro-
cedure which is useful for problems with fixed boundary
conditions. However, for the cG equation,

ft + 6 f fη − 6 f 2 fη + 1

2t + t0
f + ε2 fηηη = 0, (42)

f satisfies the boundary conditions which are given for
nonincreasing-type initial conditions as

f → R(t ) f − as η → −∞ and f → R(t ) f + as η → ∞,

(43)

where R(t ) =
√

t0
2t + t0

with t0 = 1

c̃
. Since these boundary

conditions are functions of t , we use the transformation

f = R(t )ψ (44)

and transform Eq. (42) into the following Gardner equation
with variable coefficients:

ψt + 6R(t )ψψη − 6[R(t )]2ψ2ψη + ε2ψηηη = 0. (45)

This equation has the constant left boundary condition with
ψ− = f − and the right boundary condition is ψ+ = f +. We
use a modified version of the exponential time differencing
fourth-order Runge-Kutta (ETDRK4) method [33]. For the
required spectral accuracy of the method, the initial condition
must be smooth and periodic. However, the step initial con-
dition (3) for u or equivalently for f is nonperiodic. To deal
with this problem, we differentiate Eq. (45) with respect to η

and define ψη = z. We obtain

zt + 6R(t )(ψz)η − 6[R(t )]2(ψ2z)η + ε2zηηη = 0. (46)

The initial condition is regularized with the analytic function
[34]

z(η, 0) = −Ĉ

2
sech2(Ĉη), (47)
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0.4

0.6

0.8

f

FIG. 1. Numerical solution of Gardner equation at t = 10 with
the initial condition (13) where f − = 0.4 and f + = 0.1. Here t0 =
10 and ε2 = 0.001.

where Ĉ > 0 is a large parameter. Therefore, the initial condi-
tion is now periodic and smooth, which is convenient for the
numerical method.

To work on the Fourier space, we rewrite Eq. (46) as

zt = Lẑ + 6R(t )N1(ẑ, t ) − 6[R(t )]2N2(ẑ, t ), (48)

where ẑ = F (z) is the Fourier transform of z, L is the linear
term, and N1, N2 are the nonlinear terms. The expressions of
linear and nonlinear terms are given as

Lẑ = −iε2k3ẑ,

N1(ẑ, t ) = −ikF
([∫ η

−L
F−1(ẑ)dη′ + ψ−

]
F−1(ẑ)

)
,

N2(ẑ, t ) = −ikF
([∫ η

−L
F−1(ẑ)dη′ + ψ−

]2

F−1(ẑ)

)
.

(49)

Consequently, equation (46) is solved numerically via
Eqs. (49) on a finite spatial domain [−L, L]. For the method
ETDRK4, we take the number of Fourier modes in space as
N = 212, the domain size is L = 40, and the time step is h =
10−3. Furthermore, the parameters c̃−1 = t0 = 10, ε2 = 10−3,
and Ĉ = 10.
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f

FIG. 2. Numerical solution of cG equation at t = 10 with the
initial condition (13) where f − = 0.4 and f + = 0.1. Here t0 = 10
and ε2 = 0.001.
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The numerical solutions of the Gardner equation and the
cG equation at t = 10 are presented in Fig. 1 and Fig. 2, where
the step parameters are chosen as f − = 0.4 and f + = 0.1.

From Figs. 1 and 2, it is observed that the amplitude of the
DSW for the Gardner equation locates to a steady state while
the amplitude of the DSW for the cG equation decreases in
time (see also space-time plots, Fig. 7).

In the next section, DSW solutions obtained by the nu-
merical solutions of the modulation equations and the direct
numerical simulations of the Gardner and the cG equation
will be compared. This allows us to understand the underlying
structure of the DSWs in the cG equation.

V. DISPERSIVE SHOCK WAVES IN THE CYLINDRICAL
GARDNER EQUATION AND COMPARISON WITH

NUMERICAL RESULTS

In this section we obtain the DSW solution of the cG
equation by using the solution of the Whitham modulation
system given in (36). Then we compare this DSW solution
with direct numerical simulation of the cG equation. Since the
Whitham system (36) is not in diagonal form, it is difficult to
get its analytical solution. Therefore we solve the correspond-
ing Whitham system by using a numerical method.

It is clear that without the cylindrical term, the system in
(36) reduces to the Whitham system for the Gardner equation
[17]. To observe the effect of the cylindrical term on the
DSW solution, the numerical solution of the corresponding
modulation equations for the Gardner equation will be also
investigated. For this purpose, we use a first-order hyperbolic
PDE solver based on MATLAB by Shampine [35] and choose
a two-step variant of the Lax-Wendroff method with a nonlin-
ear filter [36].

In order to solve Whitham modulation equations numer-
ically, we must first obtain boundary conditions for the
Whitham system. The boundary conditions for the Gardner
equation and associated Whitham system of this equation
remain constant at both ends of the domain, since they do not
contain time dependency (see Fig. 1). However, the bound-
ary conditions for the cG equation and associated Whitham
system are the functions of time (see Fig. 2). The boundary
conditions for the cG equation can be seen in Eq. (43). In order
to find the boundary conditions for the Whitham system (36),
we solve the ODE system obtained from Eq. (36) analytically
by neglecting the spatial variable. The reduced ODE system is
solved with the initial conditions (50) at both ends separately.
The initial values of Riemann variables for the Whitham sys-
tem are given as follows (see Fig. 3):

r1(η, 0) = 0.09, r3(η, 0) = 0.24,

r2(η, 0) =
{

0.09, η � 0,

0.24, η > 0.

(50)

Since the structures of the analytic solutions are so com-
plicated, the exact forms of these solutions of the reduced
ODE system are not given here. The numerical solutions of
Whitham systems including boundary conditions at t = 10 are
given in Fig. 4 for Gardner and cG equations.
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FIG. 3. Initial values of Riemann variables.

In the numerical solutions of the Whitham systems, we use
N = 212 points for the spatial domain [−40, 40]. Furthermore,
the parameter c̃−1 = t0 = 10 in the cG equation.

From Fig. 4, it should be noted that a difference between
both of the positions of the intersection points of the Riemann
variables r1 and r2 at the trailing edges is observed when the
behavior of Riemann variables of Gardner and cG equations
are compared. A similar difference is observed at the positions
of the intersection points of the Riemann variables r1 and
r2 at the leading edge, too. These differences imply some
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(a)
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FIG. 4. Riemann variables at t = 10 which are found by numeri-
cal solutions of (36) (a) for cG equation and (b) for Gardner equation.
Here we take t0 = 10.
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FIG. 5. Numerical and asymptotic solutions of cG equation at
t = 10 with the initial condition (13) where f − = 0.4 and f + = 0.1.
Here t0 = 10 and ε2 = 0.001.

results about the edge dynamics of DSWs in Gardner and cG
equations. Both the leading edge and trailing edge of the DSW
in the cG equation move slower than both the leading and
trailing edges of the DSW in the Gardner equation. All these
results agree with Figs. 5, 6, and 7 and an animation [37]. In
the animation [37], the propagation of DSWs in both Gardner
and cG equations is between t = 0 and t = 10.

Now, in order to compare the solution of the cG equation
with the direct numerical solution, we first write the periodic
wave solution, f0, in terms of Riemann variables ri,

f0(θ, η, t )

= 1

2

(
1 − √

S1 + √
S2 − √

S3
)

+ (
√

S1 − √
S2)(

√
S1 + √

S3)cn2(2(θ − θ0)K, m)

(
√

S1 + √
S3) + (

√
S2 − √

S1)sn2(2(θ − θ0)K, m)
,

(51)

where Si = 1 − 4ri, i = 1, 2, 3. By integrating (15), the rapid
phase θ is obtained as

θ (η, t ) =
∫ η

−L

k(η′, t )

ε
dη′ −

∫ t

0

k(η, t ′)V (η, t ′)
ε

dt ′. (52)
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FIG. 6. Numerical and asymptotic solutions of Gardner equation
at t = 10 with the initial condition (13) where f − = 0.4 and f + =
0.1. Here t0 = 10 and ε2 = 0.001.

FIG. 7. Space-time plot of the direct numerical solution between
t = 0 and t = 15 (a) for the Gardner equation and (b) for the cylin-
drical Gardner equation. Here, we take t0 = 10 and ε2 = 0.001.

The asymptotic solution of the cG equation, f0, is obtained by
using (51) and the formula (52) of θ .

Thus, the DSW solutions can be generated at any time for
both Gardner and cG equations from the Riemann variables ri

using Eqs. (51) and (52). The direct numerical solution of the
cG equation is plotted and compared with the asymptotic solu-
tion in Fig. 5. Accordingly, it can be observed from Fig. 5 that
the leading edge amplitude and wavelength of oscillations are
compatible in both the asymptotic and numerical solutions.
Thus, Whitham modulation theory enables us to obtain correct
and appropriate approaches for dispersive shock waves in the
cG equation.

In the numerical approach, the phase shift θ0 has been
arbitrarily chosen as it is compatible with direct numerical
simulations. For this adjustment, we find the mean value of
the DSW; that is, we compute the average of the leading hump
(the largest amplitude soliton) and the trailing edge. Then θ0 is
selected as the center of the nearest wave determined from the
asymptotic solution which is identical to the corresponding
hump in the direct numerical simulations. For the cG equation,
the average is approximately (0.4001 + 0.2309)/2 = 0.3155
and the asymptotic solution has a hump in the middle (center)
region with a value of amplitude 0.2958.

A similar analysis can be done for the Whitham system
of the Gardner equation to make a comparison. By using
the same procedure for this equation, the asymptotic solution
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can be obtained by taking the cylindrical term c̃ = 0. The
initial values of the Riemann variables are the same as the
cG equation (Fig. 3). Then, the direct numerical simulation
of the Gardner equation and the asymptotic solution at t = 10
are compared in Fig. 6. For the Gardner equation, the average
of the leading hump and the trailing edge is approximately
(0.6878 + 0.4)/2 = 0.5439 and a hump in the middle region
has an amplitude value 0.5199. As we can see, the direct nu-
merical simulations and asymptotic solutions are compatible
for both Gardner and cG equations. However, one needs to
proceed to higher order terms in the asymptotic expansion
(20) to achieve better results for the phase term θ0. But, this is
outside the scope of this paper.

The space-time plots of the direct numerical solutions of
the Gardner and cG equations are given in Fig. 7, to emphasize
the difference between DSW solutions of these equations. We
observed that the DSW humps in the cG equation move slower
than in the Gardner equation. The spreading behavior of DSW
humps of the Gardner and cG equations are also observed in
an animation [37] between t = 0 and t = 10. In Fig. 7(b),
it is seen that the wave fronts in the cylindrical equation
are curved. This is the result of geometrical spreading. This
phenomenon is reported also for dispersive shock waves in
colloidal media [38]. Since the wave front is spreading in the
cG equation, the amplitude of the wave decreases to conserve
mass and energy.

VI. CONCLUSIONS

We investigate the DSW solution of the cG equation by
using Whitham modulation theory. The cG equation is derived
from the reduction of the (2+1)-dimensional Gardner-KP
equation with steplike initial condition along a parabolic front.
The formation of the DSW depends on the selection of the
initial step parameters f −, f +. We require that 0 � f + <

f − � 1/2 in order to generate the DSW solution in the cG
equation. Then by using the multiple-scale method we ob-
tain a system of quasilinear modulation equations describing
slow evolution of parameters in the periodic solution of a
dispersive nonlinear partial differential equation. We solve the
corresponding Whitham modulation equations numerically
and compare these results with direct numerical solutions of
the cG equation. A good agreement is found between these
numerics except the negligible phase term. The effect of this
phase term can be analyzed by considering higher order terms,
but this is outside the scope of this study. In order to observe
the contribution of the cylindrical term in the cG equation, a
DSW formation of the Gardner equation is also considered in
this study. The conclusion we get from the simulations is that
the amplitude decreases over time for the cylindrical equation
in the trailing and leading edge because of the geometric
spreading effect. Observations can be made similarly for other
t values.

In [17], other wave-type solutions of the Gardner equation
such as rarefaction waves, solibores, and reversed rarefaction
waves were studied depending on the choice of the initial step
parameters f − and f +. A similar analysis can be performed
for the cG equation. We address this investigation for near-
future studies.

The method introduced in this study for the reduction of the
Gardner-KP works only for a special choice of initial front,
e.g., a parabolic front. However, Ablowitz et al. generalized
the Whitham theory to find DSW solutions of the KP-type
equations with a general class of initial conditions [28]. In
this study, a (2+1)-dimensional Whitham modulation system
was derived, which describes the slow modulations of the
periodic solutions of the corresponding KP-type equations.
To our knowledge any quantitative results for the solutions of
derived (2+1)-dimensional Whitham systems have not been
reported yet. The Gardner- KP equation belongs to the KP
class which was investigated in [28]. Our results about the
cG equation can be used as a test subject to verify the DSW
solutions obtained from the solution of the (2+1)-dimensional
Gardner-KP Whitham system.
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APPENDIX: COMPLETE ELLIPTIC INTEGRALS

In this Appendix, some properties of complete elliptic in-
tegrals used in the study will be listed.

The complete elliptic integral of the first kind has the
expansion

K (m) =π

2

[
1 + m

4
+ 9

64
m2 + · · ·

+
(

1 × 3 × · · · × (2n − 1)

2 × 4 × · · · × 2n

)2

mn + · · ·
]
.

(A1)

The series expansion of the second kind of elliptic integral is

E (m) =π

2

[
1 − m

4
− 3

64
m2 − · · ·

− 1

2n − 1

(
1 × 3 × · · · × (2n − 1)

2 × 4 × · · · × 2n

)2

mn − · · ·
]
,

(A2)

for |m| < 1.
The compete elliptic integral of the third kind has the

following behavior:

�(n, m) = π

2
when n = 0, m = 0, (A3)

�(n, m)

K (m)
≈ 1

1 − n
when m is close to 1. (A4)

The following are the derivative formulas:

dK (m)

dm
= E (m) − (1 − m)K (m)

2(1 − m)m
, (A5)
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dE (m)

dm
= E (m) − K (m)

2m
, (A6)

d�(n, m)

dm
= E (m) − (1 − m)�(n, m)

2(1 − m)(m − n)
, (A7)

d�(n, m)

dn
= nE (m) + (m − n)K (m)

2n(1 − n)(n − m)

+ (n2 − m)�(n, m)

2n(1 − n)(n − m)
. (A8)
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