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We present an extensive experimental study of the distributions of the real and imaginary parts of the
off-diagonal elements of the scattering matrix Ŝ and the Wigner’s reaction K̂ matrix for open microwave networks
with broken time (T ) reversal invariance. Microwave Faraday circulators were applied in order to break T
invariance. The experimental distributions of the real and imaginary parts of the off-diagonal entries of the
scattering matrix Ŝ are compared with the theoretical predictions from the supersymmetry random matrix theory
[A. Nock, S. Kumar, H.-J. Sommers, and T. Guhr, Ann. Phys. (NY) 342, 103 (2014)]. Furthermore, we show
that the experimental results are in very good agreement with the recent predictions for the distributions of the
real and imaginary parts of the off-diagonal elements of the Wigner’s reaction K̂ matrix obtained within the
framework of the Gaussian unitary ensemble of random matrix theory [S. B. Fedeli and Y. V. Fyodorov, J. Phys.
A: Math. Theor. 53, 165701 (2020)]. Both theories include losses as tunable parameters and are therefore well
adapted to the experimental verification.
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I. INTRODUCTION

Quantum chaotic scattering was introduced almost 70
years ago to describe properties of large scale complicated
quantum systems [1–3]. The significant role of broken time-
reversal in quantum chaos [4] is undoubtedly one of the most
remarkable discoveries. It is generally acknowledged that
controllable experimental investigations of complex quantum
systems are difficult to perform due to decoherence, there-
fore, the multitude of physical problems from the field of
quantum chaos can be tackled experimentally with the help
of microwave networks simulating quantum graphs [5–7].

This article demonstrates how microwave networks can be
applied to obtain the first experimental results on the distribu-
tions of off-diagonal elements of the scattering matrix Ŝ and
the Wigner’s reaction K̂ matrix for systems with broken time-
reversal invariance. The experimental results are compared to
the recent exact random matrix theory (RMT) solutions of
these problems [8,9].

Quantum graphs consisting of one-dimensional wires con-
nected by vertices were introduced by Pauling [10]. They can
be considered as idealizations of physical networks in the
limit where the widths of the wires are much smaller than
their lengths [11]. Quantum graphs constitute rich tools for
the study of open quantum systems which exhibit chaotic
scattering [12–14]. They have been used to describe a large
variety of systems and models, e.g., quantum circuits in tunnel
junctions [15], superconducting quantum circuits [16], real-
ization of high-dimensional multipartite quantum states [17]
and discrete-time models of quantum gravity [18].

Quantum graphs can be simulated by microwave networks
because there is a direct analogy between the Schrödinger
equation applied to a quantum graph and the telegraph
equation of the corresponding microwave network [5]. Mi-

crowave networks can be specially designed to allow for the
experimental realization of systems corresponding to all three
fundamental ensembles in the random matrix theory: the
Gaussian orthogonal ensemble (GOE, symmetry index β = 1
in RMT) [5,13,19–22] and the Gaussian symplectic ensem-
ble (GSE, symmetry index β = 4) [23–25] which are both
characterized by T invariance, as well as the Gaussian uni-
tary ensemble (GUE, symmetry index β = 2) [6,7,23–27] for
which T invariance is broken.

The prediction of supersymmetry for the distribution of
off-diagonal entries of the scattering matrix Ŝ for systems with
losses was given in Refs. [8,28] and compared with data from
T -invariant microwave cavities [28]. The theoretical predic-
tion for the full statistics of the off-diagonal cross sections for
T -invariant and T -violated systems were calculated exactly
by Kumar et al. [29] but the confrontation to data could only
be done for a microwave cavity and a compound nucleus
that has T invariance obeyed. The first study of off-diagonal
elements of the scattering matrix in open cavities with broken
T invariance was done by Dietz et al. [30], where the distri-
butions of the modulus of the measured off-diagonal Ŝ-matrix
element Sba for a flat superconducting microwave billiard with
weakly broken time-reversal T invariance were compared to
RMT simulations.

II. WIGNER’S REACTION K̂ MATRIX

Although chaotic open systems with T invariance (GOE
systems) have been investigated in most of their aspects,
the theoretical investigations of the Wigner’s reaction K̂ ma-
trix were initially concentrated on the distributions P(v) and
P(u) of the imaginary and the real parts of its diagonal el-
ements [31,32]. The Wigner’s reaction K̂ matrix is a very
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FIG. 1. (a) The experimental setup for measuring the scattering matrix Ŝ of the microwave networks with violated T invariance and
intermediate value of the parameter γ . The network consists of nine microwave joints. Different realizations of the network were obtained using
four phase shifters. The T violation was induced with four Anritsu PE8403 microwave circulators. (b) The experimental setup for measuring
the scattering matrix Ŝ of the hexagon microwave networks with violated T invariance and large parameter γ . Also here, different realizations
of the network were obtained using four phase shifters and T violation was induced with four Anritsu PE8403 microwave circulators. The
matrix Ŝ was measured at the inputs of the six-joint vertices.

important observable operator of an open system because it
links the properties of closed chaotic systems, described by
a Hamiltonian exhibiting quantum chaos, to the properties of
the corresponding open system where irreversible scattering
occurs towards the environment outside. The theoretical find-
ings [31,32] were confirmed with very good precision in
the experiments using microwave networks [13,33] and mi-
crowave cavities [34,35].

Recently the first experimental results were also reported
for the GUE systems [7]. In this case the distributions of
the diagonal elements of the 2 × 2 Wigner’s reaction matrix
K̂ were investigated for the large parameter γ = 2π�/� �
19.4, where � and � are the average width of resonances
caused by both absorption and leaks and the mean level
spacing, respectively. Since � depends on absorption, it is a
parameter that is relatively easy to control experimentally with
microwave networks.

In the recent paper [9] the off-diagonal entries Kab of the
Wigner’s reaction K̂ matrix were theoretically studied for
chaotic systems with T invariance either broken or not, and
for arbitrary losses. The paper [9] generalizes the results of
Ref. [36] where T -invariant and T -violated systems in the
limiting case of zero absorption were studied. The distribution
of the modulus squared of the off-diagonal elements |Kab|2
for chaotic graphs with broken T invariance was derived in
Ref. [37].

Diagonal entries to the Wigner reaction matrix K̂ have
recently been observed for microwave networks with violated
time-reversal invariance in the case of large losses [7]. Con-
trary to the diagonal entries of K̂ , the off-diagonal elements of
K̂ have not been investigated experimentally yet.

The distributions of the off-diagonal elements Kab and Kba

of the 2 × 2 reaction K̂ matrix can be obtained from the two-
port scattering matrix Ŝ of the network after elimination of

direct processes, which are not chaotic [38–40]

K̂ = i
Ŝ − Î

Ŝ + Î
. (1)

The matrix Î denotes the 2 × 2 identity matrix. The matrix K̂
is related to the normalized impedance ẑ [38]: K̂ = −iẑ and is
Hermitian only without absorption.

III. MICROWAVE NETWORKS WITH BROKEN
TIME-REVERSAL INVARIANCE

In this article we consider microwave networks with
broken time-reversal invariance and characterized by inter-
mediate and large width of the resonances γ > 5.39. For
such large values conventional indicators for T violation such
as short- and long-range spectral correlation functions [41],
the nearest neighbor level spacing distribution or the spectral
rigidity are very difficult, if not impossible to use because
individual levels are hardly distinguishable. Therefore, we
will bypass this severe problem using the enhancement factor
W [6] as a probe of broken time-reversal.

Microwave networks consist of vertices (microwave joints)
connected by edges, realized by coaxial SMA-RG402 cables.
The SMA-RG402 coaxial cable contains a center conductor
of radius r1 = 0.05 cm surrounded by a Teflon insulating
layer having a dielectric constant ε � 2.06 [42]. The insu-
lating layer is surrounded by a tubular conductor of radius
r2 = 0.15 cm. Inside a coaxial cable and below the cut-off
frequency of the TE11 mode only the fundamental transverse-
electromagnetic (TEM) mode can propagate. The TE11 mode
cut-off frequency for the SMA-RG402 coaxial cable is νcut �

c
π (r1+r2 )

√
ε

� 33 GHz [43], where c is the speed of light in
the vacuum. Absorption of the networks was controlled by
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changing the total lengths of the networks and adding to the
networks microwave 1 dB and 3 dB attenuators.

The two-port scattering matrix Ŝ of the nine-vertex and
six-vertex microwave networks required for the evaluation
of the Wigner’s matrix K̂ and the enhancement factor W
was measured using the setups shown in Figs. 1(a) and 1(b),
respectively. The T violation was induced by four Anritsu
PE8403 microwave Faraday circulators with low insertion
loss which operate in the frequency range 3–7 GHz. The
microwave circulators are nonreciprocal three-port passive
devices. A wave entering the circulator through port 1, 2, or 3
exits at port 2, 3, or 1, respectively, as shown schematically in
Fig. 1(a).

For Neumann-Kirchhoff boundary conditions [44] in order
to keep a quantum-microwave vertex analogy the microwave
vertex scattering matrices Ŝv (ν) and Ŝv (ν0) at frequencies ν

and ν0 should be related by the equation [45–48]

Ŝv (ν) = (ν + ν0)Ŝv (ν0) + (ν − ν0)Î

(ν + ν0)Î + (ν − ν0)Ŝv (ν0)
. (2)

Here, the matrix Î denotes the identity matrix of the dimension
of the vertex scattering matrices Ŝv (ν) and Ŝv (ν0). It can be
easily checked for example that for the microwave T junctions
used in the construction of the nine-vertex microwave net-
work, which possess three equivalent ports, the matrix Ŝv (ν0)
is unitary and Hermitian

Ŝv (ν0) = 1

3

⎛
⎝

−1 2 2
2 −1 2
2 2 −1

⎞
⎠, (3)

so that Ŝ2(ν0) = Î . Then Eq. (2) is equivalent to Ŝv (ν) =
Ŝv (ν0). Indeed, our T junctions to a very good approximation
are independent on frequency ν.

A microwave circulator in the operating frequency range
ν ∈ [3, 7] GHz defines a vertex which can be described by the
scattering matrix

Ŝv =
⎛
⎝

0 0 1
1 0 0
0 1 0

⎞
⎠. (4)

This matrix is unitary but not Hermitian as is required by
the vertex boundary conditions of a quantum graph specified
by Eq. (2), and therefore Eq. (2) imposes a frequency de-
pendence that does not exist in a microwave circulator. As a
result, a microwave circulator can be considered analogous
to a quantum vertex when the frequency bandwidth enforces
Ŝv (ν) � Ŝv (ν0) = Ŝv . In practice, to preserve quantum analog
properties of the networks with violated T symmetry, the op-
erating frequency range 3–7 GHz was divided into 13 intervals
of width �ν = 307.69 MHz, where Ŝv (ν) � Ŝv (ν0).

The ensembles of different microwave networks realiza-
tions were created by changing the lengths of four edges of the
networks using the phase shifters visible in Figs. 1(a) and 1(b)
in such a way that the total “optical” lengths of the networks
were preserved. The hexagon network shown in Fig. 1(b) was
built to investigate networks with larger parameter γ and with
larger total “optical” length than the nine-vertex network. To
increase even further the internal absorption of the network in
order to verify the theory [9] in the limit of large losses, 1 dB

attenuators were used on its 14 edges. The direct processes on
the edge connecting directly the two six-joint vertices (ports a
and b of the network) were minimized by applying a 3 dB step
attenuator. The total “optical” length of the nine-vertex net-
work including edges, phase shifters, joints, and circulators,
was 361 cm while the total “optical” length of the hexagon,
6-vertex network, including all previous components and 1 dB
and 3 dB attenuators was 662 cm. The scattering matrix Ŝ of
the networks was measured in the frequency range 3–7 GHz
by a vector network analyzer (VNA), Agilent E8364B. The
microwave networks were connected to the VNA through
the leads—flexible microwave cables HP 85133-616 and HP
85133-617. The experimental results were obtained by av-
eraging over 1500 and 983 realizations of the nine-vertex
network without attenuators and the hexagon network con-
taining 1 dB and 3 dB attenuators, respectively.

The analogy between microwave networks with broken
T -invariance and quantum graphs is merely done on random
matrix level [6,24,26,27]. Here, however, in the analysis of
the experimental results, to keep the properties of the net-
works with violated T symmetry as close as possible to their
quantum analogs, taking into account properties of microwave
circulators, the operating frequency range 3–7 GHz was di-
vided further up into 13 intervals of width �ν = 307.69 MHz,
where Ŝv (ν) � Ŝv (ν0). The distributions of the real and imag-
inary parts of the off-diagonal elements of the scattering
matrix Ŝ and the Wigner’s reaction K̂ matrix were separately
calculated in each individual interval and averaged over all
intervals.

The elastic enhancement factor W [6,40,49–51] was used
to monitor T symmetry of the investigated systems. It can
be obtained from the two-port scattering matrix Ŝ using the
following relation:

W =
√

var(Saa)var(Sbb)

var(Sab)
, (5)

where var(Sab) ≡ 〈|Sab|2〉 − |〈Sab〉|2 denotes the variance of
the matrix element Sab. For intermediate and large parameter
γ the enhancement factor W is predicted to depend weakly on
its value but is very sensitive to the ensemble [40], approach-
ing for γ → +∞ the limit of W = 2/β.

IV. EXPERIMENTAL DISTRIBUTIONS OF THE REAL AND
IMAGINARY PARTS OF THE SCATTERING MATRIX Sab

The exact results for the distributions of the real P(x1)
and imaginary P(x2) parts of Sab in the framework of the
supersymmetry RMT were obtained by Nock at al. [8]. In
the β = 2 case the distributions are identical and are given
by the formulas (55-56) in Ref. [8]. These formulas depend
on the antenna transmission coefficients Ta and Tb, where
Tm = 1 − |〈Smm〉|2 for m = a, b [40,49], and the transmission
coefficients of M parasitic absorption and leak channels Tc.
Using the Weisskopf estimate [49] the parameter γ character-
izing the distributions P(xi ) can be found in our case from the
formula γ = Ta + Tb + ∑M

c=1 Tc, where M 
 1.
In Fig. 2(a) the experimental distributions of the real P(x1)

and imaginary P(x2) parts of the off-diagonal element of the
scattering matrix Sab, black full circles and black triangles, re-
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FIG. 2. (a) Experimentally evaluated distributions P(x1) and P(x2) of the real (black full circles) and imaginary (black triangles) parts
of Sab in the β = 2 case at γ = 5.39 ± 0.23. The theoretical fit with marked standard errors is denoted by green broken line. The Gaussian
approximation is marked with small blue circles. (b) depicts the same quantities for γ = 25.77 ± 1.43.

spectively, are shown for the microwave networks with broken
T invariance. The fit of theory to data with γ = 5.39 ± 0.23,
corresponding to weakly overlapping resonances, is shown
as a green broken line. This value of γ was fitted for M =
100 independent identical effective open channels with the
transmission coefficient Tc using the formulas (46-47) and
(55-56) in Ref. [8]. As the input parameters the antenna
transmission coefficients Ta = Tb = 0.89 ± 0.05 were used.
The fit yielded the value Tc = 0.0361 ± 0.013. Then using the
Weisskopf estimate we obtained γ = Ta + Tb + ∑M

c=1 Tc =
Ta + Tb + MTc = 5.39 ± 0.23. As demonstrated in Ref. [52]
the exact number of channels M is not of relevance pro-
vided that M 
 1. Indeed, we checked that already for
M � 50 one obtains the same value of γ = 5.39 ± 0.23.
The antenna transmission coefficients Ta = Tb = 0.89 ± 0.05
were evaluated using the formula Tm = 1 − |〈Smm〉|2 utilizing
experimentally measured scattering matrix elements Smm,
where m = a, b.

We used Matlab compare and NRMSE functions to find
the goodness of fit (GF) between the observed distributions
and the theoretical model [8]. For the distributions of the real
P(x1) and imaginary P(x2) parts the off-diagonal element of
the scattering matrix Sab, GF was 98.6% and 97.8%, respec-
tively. For a value γ = 5.39 ± 0.23 the observed statistics
deviate strongly and with low uncertainty from the Gaussian
approximation (small blue circles).

In Fig. 2(b) we show the measured distributions P(xi ) of
the real (black full circles) and imaginary (black triangles)
parts of Sab compared to the theoretical (green broken line)
obtained for γ = 25.77 ± 1.43, which approaches the Ericson
regime of strongly overlapping resonances. The parameter γ

was fitted for M = 100 channels and Ta = Tb = 0.58 ± 0.05,
yielding Tc = 0.246 ± 0.013. Here, GF was calculated to be
98.6% and 98.3%, respectively. In this case the Gaussian
approximation (small blue circles) is much closer to the theo-
retical and experimental results. For both weakly and strongly
overlapping resonances, the experimental results are in ex-
cellent agreement with the theoretical predictions confirming
accurately the validity of the theory exploiting the Heidelberg
approach [8].

In Table I the enhancement factor W of the scattering
matrix Ŝ of the microwave networks measured for two ex-
perimental values of the parameter γ is compared to the
theoretical prediction Wth. The enhancement factor Wth was
calculated using Eq. (5) by applying the formulas (19) in
Ref. [49] for the variances of the scattering matrix elements
Si j . In the calculations we used the transmission coefficients
Ta = 0.89 ± 0.05 and Tb = 0.89 ± 0.05, and Ta = 0.58 ±
0.05 and Tb = 0.58 ± 0.05 for the networks with interme-
diate and large parameter γ , respectively. Next, the internal
absorption parameter γint of the networks was calculated from
γint = γ − Ta − Tb, which is equivalent to the sum over the
transmission coefficients Tc, γint = ∑M

c=1 Tc. The agreement
of the experimental and theoretical results clearly shows that
both networks have fully developed chaos with broken T
invariance. Such properties of the microwave networks are
not surprising because for the networks with broken T in-
variance and with relatively small absorption, so that the
individual eigenvalues are easily identified, the level spacing
distribution is in good agreement with the GUE prediction
in RMT [6,24,26,27]. Moreover, this agreement also extends
to the case of missing levels. The fluctuation properties in
incomplete spectra of microwave networks are in excellent
agreement with the theoretical GUE predictions in RMT for
missing levels statistics [27]. In addition, a set of two chaotic
microwave networks with broken time reversal symmetry can
be used to construct chaotic microwave networks with GSE
properties [23,24]. In the case of larger absorption other in-
dicators of chaoticity such as the diagonal elements of the

TABLE I. The experimental enhancement factor W of the mi-
crowave networks equipped with Faraday circulators compared to the
theoretical predictions W GUE

th and W GOE
th for GUE and GOE systems,

respectively, for two experimental values of the parameter γ .

γ W W GUE
th W GOE

th

5.39 ± 0.23 1.23 ± 0.22 1.28 2.19
25.77 ± 1.43 1.13 ± 0.12 1.07 2.04
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FIG. 3. (a) Experimentally evaluated distributions P(u1) and P(u2) of the real (black full circles) and imaginary (black triangles) parts of
Kab in the β = 2 case at α = γ /4 = 1.35 ± 0.06. The theoretical results are denoted by red broken line. The error bars mark the errors caused
by the γ = 5.39 ± 0.23 uncertainty. The Gaussian approximation is marked with small blue circles. Panel (b) depicts the same quantities for
α = γ /4 = 6.44 ± 0.36. The error bars mark the errors caused by the γ = 25.77 ± 1.43 uncertainty while the Gaussian approximation is
marked with small blue circles.

Wigner’s reaction matrix [22] or the enhancement factor [6]
were used to demonstrate that microwave networks with mi-
crowave circulators behave as ensembles with violated T
symmetry.

V. EXPERIMENTAL DISTRIBUTIONS OF THE
OFF-DIAGONAL ELEMENTS OF THE WIGNER’S

REACTION K̂ MATRIX

We now turn to the observation of the statistics of the off-
diagonal elements of the Wigner’s K̂ matrix. According to the
work of Fedeli and Fyodorov [9], the joint probability density
function associated with complex Hermitian GUE matrices
ĤN of size N × N , in the limit N → ∞, is given by

P(ReKab, ImKab)

= α2

π
lim

x→2πρ(λ)α
Dx

exp(−
√

x2 + 4α2|Kab|2)√
x2 + 4α2|Kab|2

, (6)

where ReKab and ImKab are the real and imaginary parts of the
off-diagonal element Kab and the operator Dx = sinh(x)(1 +
d2

dx2 ) − 2 cosh(x) d
dx . Equation (6) is parameterized by the

parameter α and the spectral density given by the Wigner’s
semicircular law ρ(λ) = 1

2π

√
4 − λ2.

In the model considered in [9] the losses are taken into
account by allowing the spectral parameter (energy) λ to
achieve an imaginary part by replacing λ → λ + iα/N equal
for all N modes. The correspondence between the parameter α

and the parameter γ can be established using the fact that the
losses in a physical system such as absorption and the effect of
openness can equivalently be taken into account by a purely
imaginary shift of the scattering energy ε → ε + i

2�, where
� is the average width of resonances ε [40].

An estimate for the value for α of our network can be de-
termined by comparison of the rescaled widths of the spectral
parameter α

N�m
and resonances �

2�
, which leads to a simple

relationship between γ and α,

γ = 2π�/� = 4πρ(λ)α, (7)

where �m = 1/(Nρ(λ)) [8] is the mean level spacing of GUE
eigenvalues.

The probability density function for the variables u1 =
ReKab and u2 = ImKab can be numerically evaluated upon
performing the integral

P(ui ) =
∫ +∞

−∞
P(u1, u2)dui. (8)

The distributions P(ui ) as well as Eq. (6) depend on the
parameters ρ(λ) and α. However, in the limit N → ∞ it is
sufficient to stay in the center of the semicircle [53] where the
spectral density of GUE eigenvalues is given by ρ(0) = 1/π .
Hence, using Eq. (7) we can express the parameter α in Eq. (6)
as α = γ /4. In this way the theoretical distributions given by
Eq. (8) can be compared directly to the experimental distribu-
tions P(ui ) of the real and imaginary parts of the off-diagonal
entries of the Wigner’s K̂ matrix.

In Fig. 3(a) the experimental distributions P(u1) and P(u2)
of the real and imaginary parts of the off-diagonal element
Kab of the Wigner’s reaction K̂ matrix, denoted by black full
circles and black triangles, respectively, are shown for the
microwave networks with broken T invariance.

The theoretical distributions of the real and imaginary parts
of the off-diagonal element Kab of the Wigner’s reaction K̂
matrix are marked by red broken line. The error marks indi-
cate the errors arising from the γ = 5.39 ± 0.23 uncertainty.
The experimental and theoretical distributions are in very
good agreement. In this case the GF for the experimental
distributions P(u1) and P(u2) to the theory [9] was 97.9% and
98.3%, respectively. Furthermore, in agreement with theory
[9] the experimental distributions P(ui ) of the real and imag-
inary parts of the off-diagonal element Kab are very close to
each other. Although, it is easily seen from Eq. (6) that the
theory predicts both distributions to be identical, the exper-
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imental confirmation of this property gives us an important
validation of the experimental procedures. Figure 3(a) shows
that for weakly overlapping resonances the distributions P(ui )
are significantly different from the Gaussian approximation
(blue solid line).

The observations for larger parameter γ = 25.77 ± 1.43
are shown in Fig. 3(b). The experimental distributions P(u1)
and P(u2) of the real and imaginary parts of the off-diagonal
element Kab of the Wigner’s reaction K̂ matrix are denoted
by black full circles and black triangles, respectively. The
theoretical distribution is marked in Fig. 3(b) by a red bro-
ken line. The error bars estimate the error caused by the
γ = 25.77 ± 1.43 uncertainty. It is clearly seen that the ex-
perimental distributions P(u1) and P(u2) are in very good
agreement with GUE predictions, with a high GF equal to
98.1% and 98.1%, respectively. Because the large parameter
α = γ /4 = 6.44 ± 0.36 the Gaussian approximation (small
blue circles) is much closer to the experimental and theo-
retical distributions P(ui ) than in the case of much smaller
parameter α = 1.35 ± 0.06, where a big discrepancy be-
tween the experiment and the Gaussian approximation was
observed.

In summary, we have measured the distributions of the
real and imaginary parts of the off-diagonal element of the
scattering matrix Sab for chaotic networks with broken time
reversal symmetry and for different losses. The experimen-
tal results are in very good agreement with the theoretical
predictions from supersymmetry random matrix theory [8].
We also experimentally determined the distributions of the
real and imaginary parts of the off-diagonal element Kab of
the Wigner’s reaction K̂ matrix for chaotic networks with
broken time reversal symmetry. We show that Kab is not
Gaussian distributed when the levels do not completely over-
lap, in perfect agreement with recent theoretical prediction
of Ref. [9].

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Centre, Poland, Grant No. UMO-2016/23/B/ST2/03979.
L.S. thanks CNRS for support, Contract No. 874365. We
would like to thank Yan Fyodorov, Szymon Bauch, and Pavel
Kurasov for useful discussions.

[1] E. P. Wigner, Ann. Math. 53, 36 (1951).
[2] F. Haake, Quantum Signatures of Chaos (Springer-Verlag,

Heidelberg, 2001).
[3] H. A. Weidenmüller and G. E. Mitchell, Rev. Mod. Phys. 81,

539 (2009).
[4] M. V. Berry, Proc. Roy. Soc. Lond. A 400, 229 (1985).
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