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Quantum entanglement and reflection coefficient for coupled harmonic oscillators
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Quantum entanglement of a system of two coupled quantum harmonic oscillators with a Hamiltonian Ĥ =
1
2 ( 1
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2 + Cx1x2) can be found in many applications of quantum and nonlinear physics,

molecular chemistry, and biophysics. Despite this, the quantum entanglement of such a system is still a problem
under study. This is primarily due to the fact that the system is multiparametric and the quantum entanglement of
such a system is not defined in a simple analytical form. This paper solves this problem and shows that quantum
entanglement depends on only one parameter that has a simple physical meaning: the reflection coefficient
R ∈ (0, 1). The reflection coefficient R has a simple analytical form and includes all the parameters of the system
under consideration. It is shown that for certain values of the coefficient R, the quantum entanglement can be
large. The developed theory can be used not only for calculating quantum entanglement, but also for many other
applications in physics, chemistry, and biophysics, where coupled harmonic oscillators are considered.

DOI: 10.1103/PhysRevE.102.052213

I. INTRODUCTION

The study of the properties of coupled harmonic oscilla-
tors is an important area of modern physics. This interest is
primarily because models of such systems are found in many
applications of quantum and nonlinear physics [1–10], molec-
ular chemistry [11–13], and biophysics [14–17]. In quantum
physics, this interest is mainly due to quantum entanglement
for such a system. In particular, quantum communication pro-
tocols, such as quantum cryptography [18], quantum dense
coding [19], quantum computing algorithms [20], and tele-
portation of the quantum state [21,22], can be explained using
entangled states. On the other hand, physical models of cou-
pled harmonic oscillators have been used in many physics
works, such as the Lee model in quantum field theory [2–4]
and others. A similar Hamiltonian is also used in biophysics to
explain the problem of photosynthesis [14–17]. The study of
the properties of coupled harmonic oscillators, mainly quan-
tum entanglement, is a separate direction in quantum physics.
This is primarily because coupled harmonic oscillators are
a good model of real physical objects. Such objects include
thermal vibrations of bound atoms, photons in cavities, ions
in traps, and much more. The study of coupled harmonic
oscillators is one of the main methods for studying quantum
decoherence (see, e.g., [23,24]).

In particular, of great interest is the system with the Hamil-
tonian in the form

Ĥ = 1

2

(
1

m1
p̂2

1 + 1

m2
p̂2

2 + Ax2
1 + Bx2

2 + Cx1x2

)
, (1)

where p̂k = −ih̄ ∂
∂xk

(where k = 1, 2) is the momentum op-
erator. The solution of the stationary (e.g., [6,25]) and
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nonstationary [25] Schrodinger equation with the Hamilto-
nian (1) is well known. Despite this, there is a problem of the
complexity of calculating and analyzing quantum entangle-
ment for such a system. This is primarily due to the fact that
the system is multiparameter and the quantum entanglement
of such a system in a simple analytical form is not defined.
It should be added that at present, the study of quantum
entanglement for a system with the Hamiltonian (1) mainly
takes into account interactions with the environment. In this
case, the master equation for the reduced density matrix of the
two oscillators ρ (e.g., [9,10,26]) is solved. Most of the results
obtained for such systems do not have an analytical form, but
were obtained by numerical simulation. Therefore, the study
of the quantum entanglement of coupled harmonic oscillators
based on simple analytical expressions is an actual direction.
It should be added that this work is studying quantum en-
tanglement for a dynamical system, thus the nonstationary
Schrodinger equation is solved. Such systems can be found in
many applications of physics, etc. In this case, it is assumed
that at the initial moment of time t = 0 the system of oscil-
lators was not coupled, and at t > 0 a connection appears in
the system. Physically, this means that at t = 0 the oscillators
did not interact, and at t > 0, as a result of some process, a
connection appears, as a result of which quantum entangle-
ment of the system arises. As will be shown below, there are
many examples of such systems. The quantum entanglement
of stationary systems is well studied and is not considered
here.

In this paper, an expression is obtained for the quantum
entanglement of a coupled harmonic oscillator. It is shown that
quantum entanglement depends on only one parameter, which
has a simple physical meaning: the reflection coefficient R ∈
(0, 1). Quantum entanglement was investigated on the basis of
the Schmidt [27,28] modes, and the von Neumann entropy and
Schmidt parameter were used as a measure of quantum entan-
glement. In the expressions obtained, the reflection coefficient
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R has a simple analytical form and includes all the parameters
of the system under consideration. It is shown that for certain
values of the coefficient R quantum entanglement can be large.
The results obtained have the simplest and most convenient
analytical form for the analysis of the quantum entanglement
of the system under study. The developed theory can be used
not only for calculating quantum entanglement, but also for
many other applications in physics, chemistry, and biophysics,
where coupled harmonic oscillators are considered.

II. REFLECTION COEFFICIENT R FOR COUPLED
HARMONIC OSCILLATORS

Usually, to study the quantum entanglement of coupled
harmonic oscillators, the nonstationary Schrodinger equation
Ĥ� = ih̄ ∂�

∂t is solved, with the Hamiltonian (1), e.g., [25].
We will approach this problem in a different way, namely,
we will look for evolution for the operator of the creation or
annihilation of quantum states. We assume that the system at
the initial time t = 0 was in the state |s1, s2〉 [the system was
not connected, i.e., at t = 0 in Eq. (1) the constant C = 0],
which are eigenfunctions of unrelated oscillators whose quan-
tum numbers are s1, s2. The Hamiltonian (1) for such a system
can be represented as

Ĥ =
2∑

k=1

h̄ωk
(
â†

k âk + 1/2
) + h̄�x1x2,

ω1 =
√

A/m1; ω2 =
√

B/m2; � = C

2(m1m2AB)1/4
, (2)

where âk = 1√
2
(xk + ∂

∂xk
), â†

k = 1√
2
(xk − ∂

∂xk
), which are, re-

spectively, the operators of annihilation and creation of
quantum states |sk〉 [29,30]. These operators are related to
quantum states by the relations âk|sk〉 = √

sk|sk − 1〉 and
â†

k |sk〉 = √
sk + 1|sk + 1〉.

Next, we will make variable replacements, similar to [25],
we get

Ĥ = h̄
√

ω1ω2

2

2∑
k=1

(
A′

ky2
k − ∂2

∂y2
k

)
,

A′
1 = ω1

ω2
− �√

ω1ω2
tan α; A′

2 = ω2

ω1
+ �√

ω1ω2
tan α, (3)

where y1 = (ω2/ω1)1/4x1 cos α − (ω1/ω2)1/4x2 sin α, y2 =
(ω2/ω1)1/4x1 sin α + (ω1/ω2)1/4x2 cos α; tan α ∈ (−1, 1), be-

cause tan α = ε
|ε|

√
ε2 + 1 − ε, where ε = ω2

2−ω2
1

2
√

ω1ω2�
, it means

α ∈ (−π/4, π/4).
The solution of the nonstationary Schrodinger equation

with the Hamiltonian (2) will be sought in the form

|�(t )〉 = e−iĤt |s1, s2〉 = 1√
s1!s2!

e−iĤt â†
1

s1 â†
2

s2 |0, 0〉. (4)

Equation (4) up to an inessential phase (see, e.g., [31]) can be
represented as

|�(t )〉 = 1√
s1!s2!

b̂†
1

s1 b̂†
2

s2 |0, 0〉, (5)

where

b̂†
i = e−iĤt â†

i eiĤt ; b̂i = eiĤt âie
−iĤt . (6)

Further, we consider the case of a rather weak coupling C in
oscillators, i.e., C � A, B. In the case of such a connection,
the values of ω1 ≈ ω2 should be taken into account, then ε =
(ω2 − ω1)/�. In this case, using Eqs. (3) and (6), one can
find in an analytical form b̂i, b̂†

i (further, for convenience will
consider b̂i). As a result, we get

(
b̂1

b̂2

)
= UBS

(
â1

â2

)
; UBS =

( √
T eiφ

√
R

−e−iφ
√

R
√

T

)
, (7)

where

R = sin2
(
�t/2

√
1 + ε2

)
(1 + ε2)

; T = 1 − R; cos φ = −ε

√
R

T
.

(8)

Equation (7) are well-known transformations for a linear
beam splitter, where R is the reflection coefficient, T is
the transmission coefficient, and the condition R + T = 1
is met, and φ is the phase difference. Similarly to the
beam splitter (BS) in our case,we introduce the same co-
efficients R, T, φ defined by Eq. (8). Using Eq. (7), you
can find |�(t )〉 by substituting it in Eq. (5). Such cal-
culations for a linear beam splitter are well known (see,
e.g., [31,32]). Although it is possible to write a general ex-
pression for |�(t )〉 using this approach, it is not suitable
for calculating quantum entanglement, since we need to de-
compose |�(t )〉 into Schmidt modes. It is known that by
the Schmidt theorem [27,28] the wave function |�(t )〉 of
interacting 1 and 2 of the system can be decomposed in the
form |�(t )〉 = ∑

k

√
λk (t )uk (x1, t )vk (x2, t ), where uk (x1, t ) is

wave function of a pure state of system 1 and vk (x2, t )
is wave function of a pure state of system 2. Where λk

is the Schmidt mode, which is the eigenvalue of the reduced
density matrix, i.e., ρ1(x1, x′

1, t ) = ∑
k λk (t )uk (x1, t )u∗

k (x′
1, t )

or ρ2(x2, x′
2, t ) = ∑

K λk (t )vK (x2, t )v∗
K (x′

2, t ). If we find the
Schmidt mode λk , we can calculate the quantum entanglement
of the system. To do this, various measures of entanglement
can be used, for example, the Schmidt parameter [27,28]
K = (

∑
k λ2

k )−1 or von Neumann entropy [33,34] SN =
−∑

k λk ln (λk ). The main difficulty in calculating quantum
entanglement is the search λk of the system in question, so let
us move on to the search for this parameter.

You can see that λk does not depend on the phase difference
φ. Indeed, λk = |〈k, k|�(t )〉|2, and the phase difference is
included in |�(t )〉 as eiφ . As a result, we can say that λk

depends on only one parameter: R or T = 1 − R, which means
that quantum entanglement also depends on one parameter.
In [25], the Schmidt mode λk was found, but in a general
form, i.e., depending on many parameters of the system under
consideration. Using Eq. (8) and λk from [25], you can get
λk depending on only one parameter R in the form λk (R) =
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(a) (b)

(c) (d)

FIG. 1. The dependence of the von Neumann entropy SN in
(a) and (b), as well as the Schmidt parameter in (c) and (d) as
a function of R is presented. In the figures, the dependencies are
presented for different initial values of quantum numbers (s1, s2). For
example, when s1 = 1 and s2 = 6, the notation (1,6) is entered.

|ck,s1+s2−k|2, where

ck,p =
s1+s2∑
n=0

As1,s2
n,s1+s2−nA∗k,p

n,s1+s2−ne−2in arccos (
√

1−R sin φ),

Ak,p
n,m = μk+n

√
m!n!

(1 + μ2)
n+m

2
√

k!p!
P(−(1+m+n),m−k)

n

(
−2 + μ2

μ2

)
,

μ =
√

1 + 1 − R

R
cos2 φ − cos φ

√
1 − R

R
, (9)

where Pα,β
γ (x) are Jacobi polynomials, k and p are quantum

numbers of the oscillator in the state |k, p〉 with k + p =
s1 + s2. In Eq. (9), no matter what value φ ∈ (0, π/2) we
choose, the value λk (R) will not depend on φ. This amazing
property of Eq. (9) can be used depending on the tasks under
consideration. For example, if we choose φ = 0, then when
summing by n in Eq. (9), the exponent is replaced by (−1)n. If
we choose φ = π/2, then all the dependence on the reflection
coefficient R will be concentrated in the exponent. In this way,
the relationship of quantum entanglement with the reflection
coefficient R was found. Figure 1 shows the dependence of
quantum entanglement for the von Neumann entropy SN and
the Schmidt parameter K , depending on the reflection coeffi-
cient R.

For example, for s1 = 1 and s2 = 1, quantum entanglement
will be in the form

SN = −(1 − 2R)2 ln(1 − 2R)2 − 4R(1 − R) ln (2R(1 − R)),

K = 1

1 − 8R(1 − R)(1 − 3R(1 − R))
. (10)

For Eq. (10) it is interesting to find the value R at which there
will be the maximum quantum entanglement and this value
R = 1/2(1 ± 1/

√
3). At this value R, the quantum entangle-

ment will be SN = ln 3 and K = 3. This is quite an interesting
result, since at first glance it seems that the maximum entan-
glement should be at R = 1/2. Figure 1 shows that quantum
entanglement strongly depends on the reflection coefficient

(a)

(b)

FIG. 2. The dependence of the von Neumann SN entropy is
shown in (a), as well as the Schmidt parameter in (b) for various
values of R and s. From bottom to top, respectively R = 0.01, R =
0.5, R = 0.1, R = 0.3.

R, but is always zero at R = 0, 1. The larger the quantum
numbers s1, s2, the greater the quantum entanglement. You
can see that there are two maxima quantum entanglement
for different pairs s1, s2, except for the case when one of
the quantum numbers is zero. No matter what measure of
quantum entanglement we use, all dependencies are similar.

We also present quantum entanglement for various val-
ues of s1 = s2 = s in Fig. 2. The calculations are given for
R ∈ (0, 1/2), since for symmetric values of R ∈ (1/2, 1), the
results will be the same. Figure 2 shows that the quantum
entanglement at s1 = s2 = s increases significantly with in-
creasing s. For the Schmidt parameter K , this dependence is
close to linear.

In addition to being able to obtain simple expressions for
quantum entanglement, other physical characteristics can be
calculated using Eq. (9). For example, if one of the quantum
numbers is equal to zero, we choose s2 = 0, we can find in
a very simple form the average value of the quantum num-
bers k and p [see Eq. (9)] for the time t of the oscillators
interaction (where k + p = s1 + s2). As a result, we get k =∑

k kλk (R) = s1(1 − R) and p = ∑
p pλp(R) = s1R.

III. GENERALIZATION TO ANOTHER TYPE OF
COUPLING IN A QUANTUM OSCILLATOR

Consider the case where the type of connection will be
different in the Hamiltonian (1) or (2), namely,

Ĥ =
2∑

k=1

h̄ωk
(
â†

k âk + 1/2
) − ih̄αx1

∂

∂x2
. (11)

This type of connection can occur when we consider the
interaction of a charged oscillator with a quantized mode of
the electromagnetic field, see, e.g., [35,36]. The constant α

determines the value of the connection and can be differ-
ent, depending on the problems under consideration. Next,
we will use the same initial states as above, i.e., |s1, s2〉
[the system was not connected, i.e., for t = 0 in Eq. (11),
the constant α = 0]. In [35], a solution and Schmidt mode
of the nonstationary Schrodinger equation with a Hamilto-
nian (11) was found. Similarly to what was done above, i.e.,
using Eq. (8) and the results of [35] we get the Schmidt mode
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as λk (R) = |Ck,s1s2−k|2, where

Ck,p =
s1+s2∑
n=0

Bs1,s2
n,s1+s2−nB∗k,p

n,s1+s2−ne−2in arccos (
√

1−R sin φ),

Bk,p
n,m = ik−n(−1)p+m μk+n

√
m!n!

(1 + μ2)
n+m

2
√

k!p!
P(−(1+m+n),m−k)

n

(
−2 + μ2

μ2

)
,

μ =
√

1 + 1 − R

R
cos2 φ − cos φ

√
1 − R

R
, (12)

where the reflection coefficient R and the phase shift φ is de-
termined by Eq. (8) for � → α. You can see that in Eqs. (12)
and (9) the amplitudes Ck,p and ck,p are different, but the
Schmidt modes λk (R) are the same. From this it follows
that the quantum entanglement for such systems will be the
same with the same values of R. This is a rather interesting
conclusion, which speaks of the identity of the quantum entan-
glement of these systems. Figures 1 and 2 above, for quantum
entanglement, can also be applied to the case of this type of
coupling in an oscillator.

IV. PHYSICAL ANALYSIS OF THE REFLECTION
COEFFICIENT R

In this section of the article, we will conduct a physical
analysis of the reflection coefficient R and show examples
where the results obtained can be used directly.

Consider the reflection coefficient R, see Eq. (8) for ω2 ≈
ω1 so that |ω2 − ω1| � �. In this case, the parameter ε � 1,
then the coefficient R = sin2 (�t/2). It should be added that
such a obtained coefficient R in the theory of a beam splitter
in the form of coupled waveguides is well known [37] if we
take t = L/v, where L is the length of the coupled waveguide,
v is the propagation velocity light in the waveguide. In other
words, one can directly use the more general expression for
the coefficient R, see Eq. (8) in coupled waveguide theory,
assuming ω1 and ω2 are the frequencies photons for 1 and
2 waveguides, respectively, and � is some parameter that
determines the degree of coupling of two waveguides.

Next, consider the case |ω2 − ω1| � �. In this case, the
parameter ε � 1 and the coefficient R � 1, i.e., the system
practically does not change its initial state.

It should be added that Eq. (9) can be used in quantum
optics to calculate the quantum entanglement of photons in a
beam splitter (with two input and output ports) with a reflec-
tion coefficient R. In this case, ω1 and ω2 are the frequencies
of one and two photons, respectively, and � is some param-
eter characterizing the beam splitter. For example, selecting
one incoming photon at each port of the beam splitter, i.e.,
s1 = s2 = 1 and reflection coefficient R = 1/2 we get the
well-known Hong-Ou-Mandel effect [38]. This means that for
s1 = s2 = 1 the wave function in the form (5) for R = 1/2 will
have only two states on the output ports k = 0, p = 2 and p =
2, k = 0. It is interesting to note that the HOM effect does not
realize maximally entangled photons at the output ports (see
Fig. 1 for s1 = 1, s2 = 1). Such states, as was shown above,
are realized at R = 1/2(1 ± 1/

√
3), see Eq. (10). Combining

the parameters ω1; ω2; �; t , you can always choose the value
of R with maximum quantum entanglement, see Eq. (8).

One of the interesting applications of the results obtained
is the possibility of obtaining the wave functions �(t ) Eq. (5)
that have practical applications by specifying the coefficient
R. By specifying the coefficient R, you can always pick up
the parameters included in it, and thus get the wave function
�(t ) of interest. For example, we need a wave function �(t )
that defines the states of Holland-Burnett (HB) [39]. It is well
known that this wave function is of great interest in various
fields of physics, for example, in quantum metrology [40,41].
To do this, we need to select R = 1/2 and s1 = s2 = s (for
even values s). As a result, we get the wave function (5) in
the form

� =
s∑

n=0

e2inφ

√
(2n)!(2s − 2n)!

2sn!(s − n)!
|2n, 2s − 2n〉. (13)

It should be added that using Eq. (13) one can obtain an
expression for quantum entanglement using the Schmidt pa-
rameter K in the form

K = π (s!)2

�(s+1/2)2
4F3(1/2, 1/2,−s,−s; 1, 1/2 − s, 1/2−s; 1)

,

(14)

where �(x) is the gamma function, 4F3(x1, x2, x3, x4; y1,

y2, y3; 1) is the generalized hypergeometric function. It should
be added that Eq. (14) has a fairly simple approximation
K = s0.897. This clearly shows that quantum entanglement is
unbounded from above, which was well known earlier (the
more s, the more the quantum entanglement).

Quite an interesting and simple example of where the
results obtained can be used is the cooling of mechanical
resonators. The most effective method of cooling micro- and
nanodevices is the sideband method [42,43]. This method
shows great promise for using quantum effects (including
coherent properties) in hybrid systems [44] but first it is neces-
sary to prepare the mechanical component in the ground state,
i.e., cool it as much as possible. Mechanical resonators are
described by Eq. (2), and the connection between them is real-
ized through radiation pressure. Also, cooling can be not only
through radiation pressure, but also through the interaction of
radiation with a charged resonator, in this case the system is
described by Eq. (11), see [36]. We will assume that in the
initial state the resonator was in the s1 state and the interaction
with radiation is described by Eqs. (2) or (11). The initial
quantum number for radiation is usually chosen as s2 = 0,
which we will do. As a result, it is easy to get the average
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quantum number of the cooled resonator k(R) depending on
the reflection coefficient R,

k(R) =
s1∑

k=0

kλk (R) = s1(1 − R). (15)

You can see that Eq. (15) is very simple and is a linear
function of the coefficient R. Choosing R = 1 one can cool
the resonator to its ground state. Of course, this is a superficial
analysis, without taking into account the thermal noise of the
environment, but it shows the simplicity and clarity of the
approach presented here. A similar expression was obtained
in [36] for cooling a charged resonator, but without taking into
account the representation in terms of the reflection coefficient
R. Also for this case one can obtain expressions for quantum
entanglement in the form of the Schmidt parameter

K = 1

(1 − R)2s1 2F 1

( − s1,−s1; 1;
(

R
1−R

)2) , (16)

where 2F 1(a, b; c; x) is Gaussian hypergeometric function.
The general dependence of Eq. (16) can be seen from Fig. 1(b,
d). Also, analyzing Eq. (16), you can get that the maximum of
this function at R = 1/2. With this value of R = 1/2, one can
obtain a simpler expression for quantum entanglement

Kmax = 22s1
(s1!)2

(2s1)!
. (17)

You can also find from Eq. (17) the parameter K for large
values of the quantum number s1, we get Kmax(s1 � 1) →√

πs1. It can be seen in this case that the quantum entangle-
ment is unbounded from above (the more s1, the more the
quantum entanglement).

It should be added that the cases presented here of using the
obtained expressions in quantum optics are only some cases of

using the theory developed here, since the Hamiltonian (1) has
a large number of applications.

V. CONCLUSION

Thus, in this paper, it was shown that the quantum en-
tanglement of two coupled harmonic oscillators is expressed
as a single parameter, this is the reflection coefficient R.
Convenient analytical expressions for the study of quantum
entanglement are obtained. It is shown that for certain values
of R and a given pair of quantum numbers s1, s2 quantum
entanglement has a maximum and can be large. In general,
quantum entanglement is unbounded from above, since it can
take an arbitrarily large value for certain parameters R, s1, s2.
It is quite easy to see from the obtained Eqs. (9) and (12) that
for R = 0 and R = 1 there is no quantum entanglement, which
is clearly seen from Fig. 1. Since quantum entanglement is
expressed in the form of only one parameter, Eqs. (9) and (12)
presented in this work have the most simple analytical form. It
should be added that the quantum entanglement, expressed as
a single parameter (the reflection coefficient R), was obtained
without taking into account the environment. In this case, the
environment can significantly affect the quantum entangle-
ment [45]. Is it possible to represent quantum entanglement,
taking into account the external environment, depending on
the reflection coefficient R and other parameters of the envi-
ronment? This is an open problem and needs to be solved in
the future.
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