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The present study explores the existence and orbital stability of discrete bright breathers through the Joyeux-
Buyukdagli DNA model incorporating long-range interactions (LRIs). The nonlinear Schrödinger equation is
derived from a semidiscrete approximation and subsequently used to construct the targeted initial condition
for numerical computations of the discrete breather. It appears that the interplay between the carrier wave
frequency and the LRI induces stationary forward or backward propagating waves. For critical values of the LRI,
stationary waves can occur out of the center/edge of the first Brillouin zone. The predicted breathers differ in
their robustness and mobility for specific carrier-wave frequency and LRI. In all cases, semianalytical predictions
agree with numerical simulations.
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I. INTRODUCTION

In physics it is now commonly accepted that, without a
break of translational invariance by an impurity or disorder,
energy localization can occur in a system under the form of
an intrinsic localized mode solely due to nonlinearity [1–4].
The discrete breather (DB) [also termed the intrinsic localized
mode (ILM)] is a solution that is spatially localized as well as
temporally periodic in a spatially discrete system [1–4]. DBs
have been extensively studied numerically and experimentally
in various practical nonlinear systems [1–4]. Although they
have the propensity to be strongly pinned at a specific location
of the lattice, they can also move easily under some circum-
stances while maintaining their localization [5,6]. Although
DBs are mainly investigated in short-range lattice systems
having, typically, nearest-neighbor interaction [1–4], they are
also observed in next-nearest-neighbor interacting systems
[7–9]. Another family, termed long-range interacting systems,
can also form lattice structures such as Fermi-Pasta-Ulam sys-
tems [10–12], vortices of plasmas [13,14], a photonic crystal
waveguide [15,16], fluids [17], a magnetic chain [18], and
DNA [19–25].

The DNA molecule belongs to the class of biopolymers,
and it has a very important biological function. It supports
genetic information and allows the transmission of this infor-
mation from cell to cell and from one generation to another
via replication and transcription or recombination processes
[26–28]. It is a biomolecule in which nonlinearity, local-
ization, and energy transfer emerge as prevailing regulatory
factors [27,28]. It is also an appealing playground to study
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the effect of long-range forces, because the hydrogen bond
responsible for the DNA interbase coupling has a finite dipole
moment and produces long-range interaction (LRI) forces
[19–25]. Most of the nonlinear wave studies of LRI in DNA
are based on the Peyrard-Bishop (PB) model [19–25]. The PB
model was refined by Joyeux and Buyukdagli (JB) to have
phase-transition curves in agreement with experimental obser-
vations and to ensure a sharp melting transition [29,30]. The
nonlinear DNA model developed by JB was previously used to
study quasicontinuum compactons, fractional breathers, and
DBs without LRI [31–35]. Therefore, in order to deal with a
more realistic DNA model, a modified version of the JB model
including LRI is selected as the core model in this study.

Nonlinear models can correctly predict the regions where a
DNA molecule is more likely to open [36]. In addition, breath-
ing modes that can be evidenced analytically/numerically
through such models are presently widely accepted to be at the
initiation of transcription in DNA [27,28]. This biomolecule
has thus drawn considerable interest in the community of
nonlinear physicists [19–25,27–35].

There are two dominant pictures for the computational
studies of breathing mode dynamics in DNA. The first one
uses the low amplitude and weakly nonlinear approximation
in order to get the nonlinear Schrödinger (NLS) equation
and to estimate the breather solution [27,28]. Although this
quasicontinuum multiscale approximation appears to provide
an analytically tractable wave amplitude profile [27,28], this
continuum of initial breathers is unstable compared to its dis-
crete analog [37]. The second picture shows how to compute
the exact solution numerically starting with a chosen initial
condition from the anticontinuous limit (i.e., the solution of
the uncoupled lattice dynamics), and “continue” it using the
Newton-Raphson method up to some specified value of the
neighbor coupling constant [19–21,25]. Both approaches have
considerable challenges: (i) the solution of the first picture is
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quasidiscrete, though the real DNA is discrete; (ii) the finding
of the solution during the estimate of the discrete analog with
the second picture is somewhat challenging due to numer-
ous possibilities to select the initial spatial configuration for
numerical computation of the exact DB after obtaining the an-
ticontinuous solution. To overcome the previously mentioned
challenges, the procedure for estimating the DB in this study
begins with the standard NLS-model reduction to identify the
initial ansatz analytically and then subsequently estimate the
true nonlinear DB solutions numerically [38–40]. To the best
of our knowledge, this has yet to be done in the study of
nonlinear lattices with LRI [10–14,17–25,41,42].

In the past decade, it was demonstrated that a decrease
in the carrier wave frequency in the first Brillouin zone
induces a negative sign of the group velocity and can subse-
quently lead to the emergence of backward wave propagation
[38,43–45]. It was further demonstrated that backward or
forward waves can be obtained just by varying a system
parameter without changing the overall system structure;
this is termed chameleon behavior (CB) [46]. Although the
study of nonlinear dynamics and solitons in LRI systems
was first conducted several decades ago (e.g., Tchawoua
et al. [47] and Remoissenet et al. [48]), and more recently
(e.g., [10–14,17–25,41,42]), to best of our knowledge the CB
has yet to be reported in LRI models. The present study
explored the possibility of observing CB in a LRI system as
well as analyzing breather orbital stability.

Following the Introduction (Sec. I), the rest of the present
paper is structured as follows: In Sec. II, the model ob-
ject of our study is introduced. It is a modification of the
JB DNA model [29,30], with the incorporation of a LRI
term due to dipole-dipole interactions. After derivation of the
lattice-dynamics equations, the semidiscrete approximation is
applied, the NLS equation is derived and the approximate
analytical solution is obtained. In Sec. III, the DB is obtained
and its stability is verified. Following Cuevas et al. [19–22],
the effect of the LRI variation of the DNA model is system-
atically investigated while conducting an analysis. In Sec. IV,
the obtained results are discussed, and the study ends with a
summary and concluding remarks (Sec. V).

II. THE MODEL

The version of the JB model considered here consists of
adding an energy term to the original Hamiltonian [29,30] that
takes into account LRI due to the dipole-dipole forces. The
Hamiltonian of the JB model can be rewritten as

H =
∑

n

Hn,

Hn = 1

2m
P2

n + D[1 − exp(−ayn)]2

+ �H

CJ

[
1 − exp

(−b(yn − yn−1)2
)] + Kb(yn − yn−1)2

+ 1

2

∑
κ �=n

q2

4πε0d3

1

|κ|3 yn+κyn. (1)

This Hamiltonian corresponds to the case of a homoge-
neous DNA molecule in which dipole moments are parallels

and point all in the same direction. In Eq. (1), Pn = mẏn is
the momentum, yn represents the transverse stretching of the
nucleotide pair at site n, and m denotes the mass of a nu-
cleotide. The variables D and a are, respectively, the depth and
inverse width of the Morse potential, �H is a finite stacking
energy, b is the spatial scale factor, and Kb is a harmonic elastic
constant. The last term (LRI) in Eq. (1), which was not consid-
ered in the JB model [29,30], has the following coefficients:
d is the distance between consecutive neighboring base pairs
in the same strand, and q is the charge transfer due to the
stretching of hydrogen bonds [19–22]. The LRI is limited to
(N − 1)/2 neighboring base pairs if N is odd or to (N − 2)/2
neighboring base pairs in each direction of a given site of the
chain if N is even [19–22]. The dimensionless equation of
motion corresponding to the Hamiltonian Eq. (1) is

d2Yn

dτ 2
+ 2Kb

a2D
(2Yn − Yn+1 − Yn−1)

+ 1

a2D

∑
κ �=n

JκYn+κ

+ 2b�H

a2DCJ

[
(Yn − Yn−1)e− b

a2 (Yn−Yn−1 )2
]

− 2b�H

a2DCJ

[
(Yn+1 − Yn)e− b

a2 (Yn+1−Yn )2
]

− 2
(
e−Yn − 1

)
e−Yn = 0, (2)

where Yn = ayn, τ = t
√

a2D/m, and Jκ = q2

4πε0d3|κ|3 . The cou-
pling constant Jκ is related to the charge transfer due to the
formation of the hydrogen bonds (q) and the distance between
base pairs (d ). The subscript κ is the normalized distance
between base pairs [19–22].

Following the original approach in [49], it is assumed that
the oscillations of bases are large enough to be anharmonic,
but still insufficient to break the bond since the plateau of
the Morse potential is not reached. It is then presumed that
the base nucleotides oscillate around the bottom of the Morse
potential. On the one hand, the wave amplitude is considered
large enough, so that the nonlinear effects that play an essen-
tial role in the DNA dynamics can be incorporated [27,28]. On
the other hand, it is still very small compared with the motions
that result in permanently open states where the nucleotides
reach the plateau of the Morse potential. We can therefore ex-
pand the terms exp[− b

a2 (Yn±1 − Yn)2] and exp[−Yn] in Eq. (2)
up to second and third order, respectively [31–35]. The corre-
sponding equation of motion is

Ÿn − k2(Yn+1 − 2Yn + Yn−1) + ω2
g

(
Yn−αY 2

n + βY 3
n

)
+ k4

[
(Yn+1 − Yn)3 − (Yn − Yn−1)3]

+
∑

κ

ĴκYn+κ = 0, (3)
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Ĵ
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Δ
ω

0

0.1

0.2

0.3

0.4

Ĵ
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FIG. 1. The linear dispersion relation showing the pulsation ω as a function of the wave number k0 in the first Brillouin zone for different
values of Ĵ: (a) Ĵ = 0, (b) Ĵ = 0.053, and (c) Ĵ = 0.1. (d) Variation of the allowed phonon band according to Ĵ .

with the coefficients

k2 = 2

a2D

(
Kb + b�H

CJ

)
, k4 = 2�Hb2

CJDa4
, ω2

g = 2,

Ĵκ =
{ Ĵ

|κ|3 for 1 � |κ| � (N − 1)/2,

0 otherwise,
α = 3

2
,

β = 7

6
, Ĵ = q2

4πε0a2d3D
,

(4)

where |κ| is the normalized distance between base pairs. The
used parameters are m = 300 amu, D = 0.04 eV, a = 4.45
Å−1, b = 0.10 Å−2, �H = 0.44 eV, Kb = 10−5 eV Å−2, d =
3.4 Å, ε0 = 8.85 × 10−12 Fm−1, and CJ = 2 [19–22,29,30].

A. Linear analysis

By keeping only linear terms in Eq. (3), a plane-wave
solution is assumed in the form Yn(τ ) = A exp[i(k0n
 − ωτ )],
where A is the constant amplitude, 
 is the distance separating
neighboring bases, and ω and k0 denote the angular frequency
and the wave number, respectively. The substitution of the
previously mentioned plane-wave ansatz into Eq. (3) leads to
the following linear dispersion relation:

ω2 = ω2
g + 4k2 sin2

(
k0


2

)
+ 2Ĵ

∑
m

cos(k0m
)

m3
. (5)

By using Eq. (5), the angular frequency ω is plotted as a
function of the wave number k0 in the first Brillouin zone
(k0 ∈ [0, π/
] [50]) for three different values of Ĵ (see Fig. 1).
It can be noticed that the dipole-dipole coupling constant
prominently shapes the regions for the allowed/forbidden
band-gap frequencies. For certain values of Ĵ , the dispersion
curve has a positive [Fig. 1(a)], a negative [Fig. 1(c)], or a

mixed [Fig. 1(b)] slope. As the group velocity (vg) of the wave
is linked with the dispersion relation, the sign of the slope of
the dispersion curve gives an indication about the sign of vg.
From Eq. (5), the group velocity is derived as follows:

vg ≡ ∂ω

∂k0
= 1

ω

[
k2
 sin(k0
) − Ĵ


∑
m

sin(k0
m)

m2

]
. (6)

The variable vg is null if Ĵ = Ĵcr(k0), positive if Ĵ < Ĵcr(k0),
and negative if Ĵ > Ĵcr(k0). The variable Ĵcr(k0) is the critical
value of the dipole-dipole coupling interaction and is given
by Ĵcr(k0) = k2 sin(k0
)/

∑
m[sin(k0
m)/m2]. The variation

of Ĵcr(k0) according to the wave vector k0 is depicted in Fig. 2.
Figure 2 not only confirms the prediction made on Fig. 1(b)
(namely that for k0
 < 0.4π the group velocity is negative,
while it is positive for k0
 > 0.4π ), but it also shows that it is
possible to obtain waves with null group velocity apart from

FIG. 2. Critical dipole-dipole coupling constant Ĵcr as a function
of wave vector k0. The zone colored in gray (or in blue) in this figure
represents the parameter region for a positive (or negative) group
velocity.
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FIG. 3. Chart of the existence of bright and dark solitons as well
as the sign of the group velocity as a function of the wave vector and
the dipole-dipole coupling constant.

the center (k0
 = 0) and the upper limit (k0
 = π ) of the first
Brillouin zone.

B. Nonlinear analysis

Due to the fact that the mathematical model of Eq. (3)
is less straightforward to tackle directly, the semidiscrete (or
quasicontinuum) approximation is adopted [53,54]. The ap-
proach assumes that the solution of Eq. (3) is under the form

Yn(τ ) = εF1(εn
, ετ )eiθn+ε2[F0(εn
, ετ ) + F2(εn
, ετ )e2iθn ]

+ c.c. + O(ε3), (7)

where θn = n
k0 − ωτ , F1(εn
, ετ ), and F2(εn
, ετ ) are com-
plex functions and c.c. is their complex conjugate, i2 = −1,
F0(εn
, ετ ) is a real function, ω and k0 denote the carrier’s
frequency and wave number, respectively, and ε is a formal
small parameter. By inserting Eq. (7) into Eq. (3) and collect-
ing the terms in different orders of ε and eiθn , the functions F0

and F2 can be expressed as functions of F1:

F0 = μ|F1|2, F2 = δF 2
1 , μ = 2αω2

g

ω2
g + 2Ĵ

∑
m

1
m3

,

δ = αω2
g

ω2
g + 4k2 sin2(k0
) − 4ω2 + 2Ĵ

∑
m

cos(2k0
m)
m3

. (8)

By using Eq. (8), one can show that F1 is a solution of the
nonlinear Schrödinger (NLS) equation [31,33]:

i
∂F1

∂τ
+ P

∂2F1

∂η2
+ Q|F1|2F1 = 0, (9)

where the coefficients of dispersion (P) and nonlinearity (Q)
are

P = 1

2ω

[
k2


2 cos(k0
) − v2
g − Ĵ
2

∑
m

cos(k0
m)

m

]
, (10)

Q = 1

2ω

[
−ω2

g[3β−2α(δ + μ)] + 48k4 sin4

(
k0


2

)]
, (11)

with the group velocity (vg) given in Eq. (6), and η = ε(n
 −
vgτ ) is the rescaled space variable. It is well known that
the NLS equation possesses soliton solutions whose specific
nature is governed by the signs of the coefficients P and Q
[53–56]. In particular, if PQ > 0, the NLS equation supports
bright soliton solutions, while for PQ < 0 it supports dark
soliton solutions [53–56]. In the case under consideration, the
signs of the coefficients P and Q for Eq. (9) depend not only
on the frequency ω but also on the dipole-dipole coupling con-
stant Ĵ . The sign of the product PQ as a function of k0 and Ĵ is
depicted in Fig. 3. It can be noticed that the dipole-dipole cou-
pling constant influences considerably the types of solitons.
For the absence or very low values of the LRI (Ĵ � 0.012 35),
the system supports only forward propagating breathers. For
Ĵ ∈ [0.012 35, 0.081 33], there are possibilities to have both
forward and backward waves. When Ĵ > 0.081 33, only the
backward waves (pulse/dark) exist in the system. Therefore,
various soliton solutions (pulse or dark) with positive (forward
wave) or negative (backward wave) group velocity emerge
from specific values of the wave vector and LRI. Thus, the
LRI enriches the system dynamics.

Bright breatherlike modes can mimic and match the ex-
perimentally observed local fluctuational opening as well as
bubbles propagating along the DNA lattice [27,28]. The anal-
ysis of the present study is therefore restricted to the particular
case PQ > 0.

By using the known analytical pulse soliton solution of
Eq. (9) [53–56], and the relations given by Eq. (8), the re-
sulting solution from the ansatz Eq. (7) is

Yn(τ ) = 2ε

√
2P

Q
u0 sech{εu0[n
 − (vg + 2εPL0)τ ]} × {

cos
{
(εL0 + k0)n
 − [

ω + εL0vg + ε2P
(
L2

0 − u2
0

)]
τ
}}

+ 2ε2

(
2P

Q

)
u2

0 sech2{εu0[n
−(vg+2εPL0)τ ]}×
{

μ

2
+δ cos

{
2(εL0+k0)n
−2

[
ω+εL0vg+ε2P

(
L2

0 −u2
0

)]
τ
}}

, (12)

with u0 and L0 constants of integration.
To validate the previous analytical approximation, the dis-

crete equation (2) is numerically integrated by means of
the standard fifth-order Runge-Kutta scheme with periodic
boundary conditions, and a time step chosen small enough
to conserve the energy of the system. The initial conditions
Yn(τ = 0) and Ẏn(τ = 0) for numerical integration are de-
rived from Eq. (12). The other constants necessary for this
simulation are ε = 0.1, 
 = 1, u0 = 1, and L0 = 0. The re-

sults are displayed in Figs. 4 and 5. In the panels of Fig. 4,
Ĵ = 0.02 and k0
 = 0.45π . This value of the wave vector
corresponds to the forward bright solution analytically pre-
dicted in Fig. 3 (case PQ > 0, vg > 0). Panel (a) of Fig. 4
shows the spatiotemporal dynamic of the breather, while panel
(b) shows the snapshot evolution of the analytical solution
given by Eq. (12) (gray line) as well as the numerical solution
(gray circle) at time τ = 1000, which demonstrates a good
agreement with our analytical predictions. However, since
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FIG. 4. Spatial and temporal evolution of the breather [panel (a)] and the snapshots of the evolution of the analytical/numerical solution
[panel (b)] of the forward wave solution of Eq. (2) for Ĵ = 0.02 and k0
 = 0.45π . Panel (c) represents only the zoom of the numerical
solution given out in panel (b) at time τ = 4000 and for n ∈ [1, 250], where we observe two very-low-amplitude quasilinear wave packets
[indexed by (1) and (2)], which move in the opposite direction of the initial excitation indexed by (3). Panel (d) represents the 2D DFT
[see Eq. (14)] of the moving breather given in panel (a). The green dashed curve is the linear dispersion curve given by Eq. (5) while the line
is for ω(p) = ω(p)

c + V (p)(k0 − k(p)
c ) (p = 1, 2, 3) with k(1)

c = −0.45π , ω(1)
c ≈ 1.448, V (1) ≈ −2.4551 × 10−2 (blue dotted line), k(2)

c = 2k(1)
c ,

ω(2)
c ≈ 1.477, V (2) ≈ −8.8176 × 10−3 (red dotted line), and k(3)

c = −k(1)
c , ω(3)

c = ω(1)
c , V (3) = −V (1) for the blue line. To see clearly the emitted

waves (1) and (2) of panel (c) in the 2D DFT, we magnified each of those waves by 500.

the obtained solution given in Eq. (12) is the approximative
solution for the real discrete system, the space-time evolution
of the breather will generate tails of oscillations or relatively

small nonlinear/quasilinear extended waves called wings [57].
A zoom of the solution in Fig. 4(c) illustrates that the prop-
agation of the main nonlinear wave indexed by (3) radiates
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FIG. 5. Spatial and temporal evolution of the breather [panel (a)] and the snapshots of the evolution of the analytical/numerical solution
[panel (b)] of the backward wave solution of Eq. (2) for Ĵ = 0.442 and k0
 = 0.4337π . Panel (c) represents only the zoom of the numerical
solution given out in panel (b) at time τ = 400 and for n ∈ [130, 400], where we observe two very-low-amplitude quasilinear wave packets
[indexed by (1) and (2)] which move in the opposite direction of the initial excitation indexed by (3). Panel (d) represents the 2D DFT
[see Eq. (14)] of the moving breather given in panel (a). The green dashed curve is the linear dispersion curve given by Eq. (5), while
the line is for ω(p) = ω(p)

c + V (p)(k0 − k(p)
c ) (p = 1, 2, 3) with k(1)

c = −0.4337π , ω(1)
c ≈ 1.467, V (1) ≈ +0.2562 (blue dotted line), k(2)

c = 2k(1)
c ,

ω(2)
c ≈ 1.212, V (2) ≈ +8.3632 × 10−2 (red dotted line), and k(3)

c = −k(1)
c , ω(3)

c = ω(1)
c , V (3) = −V (1) for the blue line. To see clearly the emitted

waves (1) and (2) of panel (c) in the 2D DFT, we magnified each of those waves by 75.

052212-5



GNINZANLONG, NDJOMATCHOUA, AND TCHAWOUA PHYSICAL REVIEW E 102, 052212 (2020)

Ĵ
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FIG. 6. (a), (b) Variation of the breather velocity as a function of the LRI. The analytical velocity stands for the group velocity vg [Eq. (6)]
while its numerical analog [Eq. (13)] is computed after solving the full discrete system given by Eq. (2). For all these panels, k0
 = 0.4337π.

(c), (d) 2D DFT of waves (1), (2), and (3) of Figs. 4(c) and 5(c) as well as the lines and intersection points of breather (3) with phonon mode.

two very-low-amplitude wave packets [indexed by (1) and
(2)], which both move in the opposite direction of the initial
excitation. To know if waves (1) and (2) of Figs. 4(c) and 5(c)
are nonlinear or quasilinear waves, it would be judicious to
perform the two-dimensional discrete Fourier transform of the
moving breather.

C. Two-dimensional discrete Fourier transform

It is well known that certain information and characteris-
tics of a signal that are hidden in the spatiotemporal domain
(n, τ ) can be emphasized in the frequency domain (k0, ω).
To explore in-depth the response of the discrete lattice, the
two-dimensional discrete Fourier transform (2D DFT) of the
solution given by Eq. (12) is used. The traveling breather in
the frequency domain moves along a line ω = ωc + V (k0 −
kc) in (k0, ω) space, where kc and ωc are, respectively, the fre-
quency and wave number of a carrier wave [58]. The variable
V is the velocity (slope) of the moving wave, and it can be
numerically estimated through Eqs. (13):

V = 1

T

Tk∑
k=1

Ẏ (τk ), Y (τk ) =
∑N

n=1 nY 2
n (τk )∑N

n=1 Y 2
n (τk )

, (13)

where T is the simulation duration, Tk the number of time
steps, and Y (τk ) is the evolution of the pseudocenter of mass
of the breather [51].

By using the 2D DFT formula below [58],

Ỹ (k0, ω) =
τp=τ∑
p=0

N−1∑
q=0

Yq(τp) exp[−i(k0
xq − ωτp)], (14)

the moving breather dynamics are represented in Figs. 4(d)
and 5(d). The breather amplitude |Ỹ (k0, ω)| is displayed

by a heat map [low (blue) to red (high) values], and the
green dashed curve is the linear dispersion curve given
by Eq. (5).

The analysis of Fig. 4(d) shows that the breather velocity
(V (3) ≈ 2.4551 × 10−2) is almost equal at the group velocity
(vg ≈ 2.4603 × 10−2), and the direction of propagation of the
breather is according to the line ω(3) = ω(3)

c + V (3)(k0 − k(3)
c )

(given by the solid blue curve) with ω(3)
c ≈ 1.448 and k(3)

c =
0.45π . It is noticed that the velocity of the breather decreases
or increases for lower or higher values of the LRI coefficient,
respectively [Figs. 6(a) and 6(b)].

The same observation is made in Fig. 5(d), where the
breather propagation follows the line ω(3) = ω(3)

c + V (3)(k0 −
k(3)

c ) with k(3)
c = 0.4337π , ω(3)

c ≈ 1.467, and V (3) ≈ −0.2562
while vg ≈ −0.2565.

Careful analysis and observation during evolution of wave
(1) in Fig. 4(c) reveals that it is a very low nonlinear wave
propagating symmetrically but in the opposite direction to
the wave (3). Indeed, its 2D DFT shows that it follows
the line given by ω(1) = ω(1)

c + V (1)(k0 − k(1)
c ) with ω(1)

c ≈
1.448, k(1)

c = −0.45π , and V (1) = −2.4551 × 10−2. By car-
rying out a similar analysis to wave (2), we see that it is a
quasilinear wave that propagates along the line ω(2) = ω(2)

c +
V (2)(k0 − k(2)

c ) with ω(2)
c ≈ 1.477, k(2)

c = 2k(1)
c , and V (2) =

−8.8176 × 10−3. It should be noted that wave (1) keeps its
shape and speed almost constant for a fairly long evolution
time, while wave (2) disappears for the same time. The anal-
ysis performed for the case of Fig. 4(c) can be transposed to
Fig. 5(c) with ω(1)

c ≈ 1.467, k(1)
c − 0.4337π , V (1) = +0.2562,

ω(2)
c ≈ 1.212, k(2)

c = 2k(1)
c , and V (2) = +8.3632 × 10−2. It

should be noted that in order to be able to observe the waves
(1) and (2) in the plane (ω, k0), we have magnified them
by 500 (for the case of Fig. 4) and by 75 (for the case of
Fig. 5).
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D. Resonant breather with the phonon band

The moving approximated solution given by Eq. (12) re-
peats itself after a time τ ′ = τ + qTb, but it shifts from its
initial position (n′ → n ± p), with p, q integers and Tb =
2π/ωb the breather period. This approximate solution could
be resonant with the phonon mode. These resonant (p/q)
moving breathers would then obey the following relation:

Yn±p(τ + qTb) = Yn(τ ), ∀ n. (15)

Given that this breather would resonate with the plane wave
of phonon modes, we could then apply the plane-wave ansatz
(see Sec. II A) to Eq. (15), which leads to the condition [67]

ω

ωb
= 1

q

[
±

(
k0


2π

)
p − m

]
, (16)

with ωb the breather frequency, m being any integer, and ω

is given in Eq. (5). By using the values of the pair (k0, ω)
corresponding to the line of breather propagation on the one
hand and the Gauss-Newton method on the other hand, it is
possible to obtain the integers p, q, and m associated with
the corresponding moving breather. Once p, q, and m have
been obtained, it then becomes possible to calculate in a more
general way all the values of m by combining Eqs. (16) and
(5) through

m = ±
(

k0


2π

)
p ∓ q

ωb

×
√

ω2
g + 4k2 sin2

(
k0


2

)
+ 2Ĵ

∑
s

cos(k0
s)

s3
, (17)

as well as the intersection points with the phonon band
(k0 j, ω j ).

Figures 6(c) and 6(d) give the 2D DFT of the solutions
shown in Figs. 4(a) and 5(a), respectively. We can see in these
figures that the small wave amplitudes (1) and (2) highlighted
in Figs. 4(c) and 5(c) originate from the resonance of breather
(3) with the phonon mode as evidenced by the oblique white
line. The dashed lines (which are the intersection lines) as well
as the blue filled circles (which are the intersection points)
come from Eqs. (17) and (16).

The diagram displayed in Fig. 3 shows that for Ĵ ∈
[0.012 35, 0.081 33], it is possible to have a coexistence
of bright breathers having positive, negative, or null group
speeds depending on the wave vector k0. Consequently, one
can expect to have an interaction (collision) between the
forward, backward, and stationary waves. To verify this,
Eq. (2) is simulated with superpositions of initial conditions
derived from Eq. (12), and corresponding to the forward,
backward, or stationary propagating breather solution. The
results of these simulations are displayed in Fig. 7, show-
ing four types of collision: the forward-forward collision
[Fig. 7(a)], the backward-backward collision [Fig. 7(b)], the
forward-backward collision [Fig. 7(c)], and the forward-
stationary-backward collision [Fig. 7(d)]. Figure 7 confirms
the prediction made in Fig. 3 and shows that after the interac-
tion (collision) of the various solutions, emergent breathers
maintain their shapes and speeds (a key characteristic of a
soliton [54]).

III. IDENTIFYING STATIONARY DISCRETE BREATHERS

The NLS-model reduction is used to identify an initial
ansatz of an approximate soliton solution, subsequently intro-
duced in the original dynamical lattice to assess its potential
robustness. In contrast to previous studies of breathers in DNA
[27,28,31–33], here we do not restrict our considerations to
that. We went a step further toward a numerical calculation
of the “true” nonlinear bright breather solutions (up to a
prescribed numerical accuracy) and assessing their spectral
stability.

It was demonstrated that breathers of small amplitude that
are highly localized describe the information transfer in DNA
[27,28]. Thus, the low amplitude breather solution estimated
in the previous section through a perturbation approach can
be a good initial profile in our quest for the exact DB. Our at-
tention here will be focused on the discrete bright breatherlike
solutions, which means that the following conditions must be
satisfied:

Yn(τ ) = Yn

(
τ + 2π

ωb

)
, lim

|n|→∞
Yn = 0. (18)

Here, ωb and Tb = 2π/ωb are the DB frequencies and
periods, respectively. It should be noted that these solutions
exist if and only if the condition of nonresonance with the
phonon modes is fulfilled, namely z × ωb �= ω(Ĵ, k0), where
ω(Ĵ, k0) is the linear spectrum frequency of the system given
by Eq. (5), and z is an integer [1–4]. Various methods can
be used to find the DB solutions to Eq. (2). In this study,
the iterative Newton-Raphson method, which makes possible
the obtention of the discrete breatherlike solutions with a
relatively high accuracy, is employed [59]. The true challenge
of the Newton-Raphson method resides in the suitable choice
of the initial condition. Indeed, it is well known that when this
initial condition is not close to the sought solution, the method
does not converge [59]. Since we are interested in discrete
bright breathers, we will use the procedure of Refs. [38–40].
For this purpose, the NLS bright soliton solution estimated
in Eq. (12) is used as the initial condition for the Newton-
Raphson method to estimate numerically the exact periodic
motion.

As the initial solution is static, a standing-wave profile
(vg = 0) can be determined with values of the wave number k0

and Ĵ suitably chosen [solving the equation vg = 0 based on
Eq. (6)]. In addition, since the solution with the typical expo-
nential decay amplitude is supported in the k0-parameter range
where the product PQ of the NLS equation (9) demonstrates
focusing behavior (i.e., PQ > 0), Figs. 2 and 3 show the
appropriate choices of this wave number, which are k0
 = 0
for Ĵ ∈ [0, 0.01235], k0
 = π for Ĵ ∈ [0.08133, 0.37], and for
Ĵ ∈ ]0.012 35, 0.081 33[ for values of k0
 pertaining to Ĵcr.
The long-range coefficient modifies the allowed bandwidth
�ω = ωmax − ωmin of the phonon modes [see Fig. 1(d)]. Thus
it appears that values of Ĵ should be carefully selected.

To fulfill the nonresonance condition, a value of the
breather frequency ωb is suitably chosen such that the sec-
ond harmonic 2ωb of this frequency lies above the value of
ωmax(Ĵ, k0).

Once the periodic and localized solution Ŷn(τ ) [condition
Eq. (18)] is obtained, it is important to study its stability. For
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FIG. 7. Contour plot showing four types of spatiotemporal collision of forward and backward waves: (a) Forward-forward collision
obtained for k0

1
 = 0.620π (vg1 = 8.072 × 10−3, Amax1 = 8.327 × 10−3) and k0
2
 = 0.454π (vg2 = 2.820 × 10−3, Amax2 = 1.602 × 10−2);

(b) backward-backward collision obtained for k0
1
 = 0.344π (vg1 = −3.268 × 10−3, Amax1 = 1.788 × 10−2) and k0

2
 = 0.152π (vg2 =
−1.277 × 10−2, Amax2 = 1.035 × 10−2); (c) forward-backward collision obtained for k0

1
 = 0.454π (vg1 = 2.820 × 10−3, Amax1 = 1.602 ×
10−2) and k0

2
 = 0.344π (vg2 = −3.268 × 10−3, Amax2 = 1.788 × 10−2); (d) forward-stationary-backward collision obtained for k0
1
 = 0.454π

(vg1 = 2.820 × 10−3, Amax1 = 1.602 × 10−2), k0
2
 = 0.400π (vg2 = 0, Amax2 = 1.721 × 10−2), and k0

3
 = 0.344π (vg3 = −3.268 × 10−3,
Amax3 = 1.788 × 10−2). For all these simulations, the value of the dipole-dipole coupling constant is fixed at Ĵ = 0.053. [Note: Amax and
vg stand for maximum amplitude and group velocity of the breather, respectively. The index 1, 2, . . . stands for each individual breather during
initial superposition. The numerical simulation results [Eq. (2)] and the analytical solution [Eq. (12)] agree. For the sake of clarity, they are not
compared as in Figs. 4(b) and 5(b) to avoid an overload of the plotted graphs.]

that purpose, an infinitesimal perturbation χn(τ ) is added to
it [Yn(τ ) = Ŷn(τ ) + χn(τ )] and the equation of motion (2) is
linearized with respect to χn(τ ):

χ̈n + 2Kb

a2D
(2χn − χn+1 − χn−1) +

∑
i �=n

Ĵiχn+i

+ 2b�H

a2DC

[
1 − 2b

a2

(
Ŷn − Ŷn−1

)2
]

(χn − χn−1)

× e− b
a2 (Ŷn−Ŷn−1 )2 − 2b�H

a2DC

[
1 − 2b

a2

(
Ŷn+1 − Ŷn

)2
]

× (χn+1 − χn)e− b
a2 (Ŷn+1−Ŷn)2

+ 2
(
2e−Ŷn − 1

)
e−Ŷnχn = 0. (19)

To identify the orbital stability of these solutions, Floquet’s
analysis can be performed. Floquet’s method is commonly
accepted for the DB stability analysis [2,5]. A solution Ŷn(τ )
is considered stable when, for any initial conditions, the linear
perturbation χn(τ ) does not grow exponentially with time.
When Ŷn(τ ) is time-periodic with period Tb, then Eq. (19)
defines a linear map between the initial perturbation at τ = 0
and the perturbation at time τ = Tb, expressed by a matrix
M = M(Ŷn), known as the monodromy matrix:[

χn

χ̇n

]
τ=Tb

= M ×
[
χn

χ̇n

]
τ=0

. (20)

The complex eigenvalues λ and eigenvectors of the 2N × 2N
monodromy matrix M provide information about the stability
of the DB. If all eigenvalues modulus |λ| are less than (or
equal to) 1, then the DB is linearly (or marginally) stable.
Otherwise, perturbation effects persist and grow with time
(typically exponentially), leading to a linearly unstable DB.

Parameters used for this numerical simulation whose peri-
odic boundary conditions were used are N = 50 and ε = 0.8;
other parameters such as u0 and 
 are unchanged. Figure 8
gives the representation of the solutions obtained by using
Eq. (12) as the initial condition. The parameters used to obtain
Figs. 8(a) and 8(b) are k0
 = 0 [(a) ωb = 1.40, Ĵ = 0.0; (b)
ωb = 1.407 63, Ĵ = 0.011 115]; Figs. 8(c) and 8(d) are ob-
tained for k0
 = π [(c) ωb = 1.417, Ĵ = 0.1; (d) ωb = 1.35,
Ĵ = 0.2]; while Fig. 8(e) is obtained for k0
 = 0.0275π , ωb =
1.426, Ĵ = 0.0161, and Fig. 8(f) for k0
 = 0.474π , ωb =
1.4474, Ĵ = 0.058 74. After conducting a Floquet stability
analysis of the obtained solution, the eigenvalues of the mon-
odromy matrix are projected on the unit circle (see the inset
curves). It appears that both cases k0
 = 0 (with ωb = 1.40,
Ĵ = 0.0 or with ωb = 1.407 63, Ĵ = 0.011 115) and k0
 = π

(with ωb = 1.417, Ĵ = 0.1 or with ωb = 1.35, Ĵ = 0.2) give
solutions that are linearly stable [see Figs. 8(a)–8(d)]. How-
ever, when Ĵ = Ĵcr(k0), it is observed that for Ĵcr = 0.0161, the
periodic solution of frequency ωb = 1.426 is linearly stable
[see Fig. 8(e)] while the one obtained for ωb = 1.4471 and
Ĵcr = 0.058 74 is linearly unstable [see Fig. 8(f)].
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FIG. 8. Family of corrected DBs together with the corresponding Floquet multipliers (inset curve) projected on a unit circle, obtained
for k0
 = 0 [(a) ωb = 1.40, Ĵ = 0.0; (b) ωb = 1.407 63, Ĵ = 0.011 115], for k0
 = π [(c) ωb = 1.417, Ĵ = 0.1; (d) ωb = 1.35, Ĵ = 0.2], for
k0
 = 0.0275π [(e) ωb = 1.426, Ĵcr = 0.0161], and for k0
 = 0.474π [(f) ωb = 1.4474, Ĵcr = 0.058 74].

Figure 9 displays the energy propagation resulting from the
numerical simulation over 8000 periods of the built DBs, as
well as the representation of solution Yn in the (k0, ω) Fourier
space. Figure 9(b) confirms the instability of the solution
evidenced by Fig. 8(f). After time τ ≈ 4000Tb, the wave is
progressively delocalized along the lattice in a noncoherent
manner due to interaction with the lattice phonon mode as the
2D DFT shows it (see the inset curve). Moreover, Fig. 9(a)
shows that the wave keeps its shape and its localization
throughout simulation and does not interact with the phonon
mode, thus confirming the stability of the solution obtained in

Fig. 8(e). It should be noted that the solutions obtained with
Figs. 8(a)–8(d) behave with dynamics nearly similar to that
reported in Fig. 8(e).

The 2D DFT of the built stationary solutions shows a clear
separation between the position of the discrete breather and
the value of the dispersion relation at the considered wave
vector kc. This separation is indeed due to the constructed
solution with frequency inside the lower forbidden band gap,
and it is still observed in the stationary mode (V = 0), in
which the position of the discrete breather is parallel to the
line ω = ωb and centered at kc (see the inset curve of Fig. 9).

FIG. 9. Contour plot showing spatiotemporal energy propagation of a stable [panel (a): ωb = 1.426, Ĵcr = 0.0161, k0
 = 0.0275π ] and an
unstable [panel (b): ωb = 1.4474, Ĵcr = 0.05874, k0
 = 0.474π ] discrete breather given by Figs. 8(e) and 8(f), respectively. The inset is the
2D DFT of a stationary DB computed from Eq. (14).
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FIG. 10. Profile of corrected discrete breather (a) vs the long-range coefficient parameter Ĵ obtained for k0
 = 0. (b) Evolution with
respect to dipole-dipole coupling constant Ĵ of the maximum modulus of the Floquet multiplier. (c) Energy propagation of a MDB emitted by
a perturbed SDB for k0
 = 0, Ĵ = 0, ωb = 1.40, and ν = 0.56. (d) 2D DFT |Ỹ (k0, ω)| in the (k0, ω) space [given by Eq. (14)] of displacements
Yn(τ ) of the obtained moving discrete breather, where the red curve is the linear dispersion curve given by Eq. (5). The black curve corresponds
to the line ω = ωb + V (k0 − kc ), with ωb = 1.40, kc = 0, and V ≈ 1.084 × 10−2, while the gray curves are those obtained by means of
Eqs. (16) and (17). The blue filled circle represents the intersection of the resonant breather line with the phonon band.

Once the stationary periodic solution is obtained, the next
step is to perform its mobility. Indeed, to be able to answer the
proteinic request of the living organism, the DNA molecule
needs to be transcribed, which is modeled by a bubble of
translation being propagated on the segment of selected DNA
for this purpose. The mobility of the exact discrete breather is
achieved with the method of Alvarez et al. [60], which con-
sists in “kicking” the exact stationary DB solution obtained
with the formula

Y 0
MDB,n = Y 0

SDB,n cos[ν(n − n0)],

Ẏ 0
MDB,n = ±Y 0

SDB,n sin[ν(n − n0)],
(21)

where MDB/SDB stand for moving/static discrete breather.
The parameter ν refers to a wave number. The ± sign corre-
sponds to a breather moving forward (+) and backward (−).
Note that during their propagation, DBs can interact with the
phonon mode. Certainly, achieving mobility of ILM by the
“kick” method produces a lot of phonons, but despite this, it is
also possible to find the intersection points of the propagating
breather with the dispersion curve as performed in Sec. II D.

Due to the fact that k0
 is chosen at the middle of the first
Brillouin zone (k0
 = 0), Fig. 10 shows the emergence of a
DB solution with neighboring base pairs oscillating spatially
in phase, as shown in Fig. 10(a). It can be noticed that for
values of Ĵ ∈ ]0, 0.012 35], the amplitude of the obtained
periodic solutions is a decreasing function of the coefficient
Ĵ , while the spatial expansion of the solution grows with LRI.
This family of solutions is linearly stable [Fig. 10(b)], and
their frequencies vary not linearly according to the law ω

app
b =

AĴr , with A = 1.418 556 3 and r = 0.001 963 517 2. Using
Eq. (21), Fig. 10(c) gives the energy propagation [Eq. (1)] of
the obtained MDB for Ĵ = 0, ωb = 1.40, and ν = 0.56. This

energy propagates while passing from site n to site n + 1 at
each q-period (q = 20) and resonates with the phonon band
at the point indicated by the blue filled circle [see Fig. 10(d)].
As one can see, this MDB emits phonons that propagate in
the opposite direction (negative intersection wave vector), as
shown in Fig. 10(d), where we plot the 2D DFT in the (k0, ω)
plane and through which one can see several frequencies
interacting with the phonon-dispersion relation.

The analysis of Fig. 10 can be applied to Fig. 11 con-
cerning the amplitude as well as the width of the built
periodic solutions. It should be noted, however, that these
solutions are obtained for Ĵ = Ĵcr(k0). It can be seen in
Fig. 11(a) that for certain values of the couples [k0, Ĵcr(k0)],
the obtained periodic solutions have neighboring base pairs
oscillating spatially either in phase or in opposition of phase.
These solutions are stable for any Ĵcr(k0) � Ĵcr1 (with Ĵcr1 =
0.023 212) while they become unstable for any Ĵcr(k0) > Ĵcr1

[see Fig. 11(b)] and their frequencies vary also not linearly
according to the law ω

app
b = AĴr

cr(k0) with A = 1.497 574 3
and r = 0.007 233 644. The analysis of Figs. 10(c) and 10(d)
can still hold for Figs. 11(c) and 11(d) but with k0
 =
0.474π , Ĵcr(k0) = 0.058 74, ωb = 1.4474, and ν = 0.144 74.
However, unlike the case of Fig. 10(d), this MDB passes from
site n to site n + 1 at every q = 208 periods and resonates
highly with the phonon band, as can be seen in Fig. 11(d),
where the blue filled circles represent the intersection points
of the resonant DB with the phonon band.

The solutions obtained and reported in Fig. 12 are those
corresponding to values of the wave vector chosen at the
edge of the first Brillouin zone (k0
 = π ). Figure 12(a) shows
the emergence of a solution with neighboring base pairs os-
cillating spatially in opposition of phase, in contrast with
the solution at the center of the first Brillouin zone [see
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FIG. 11. Profile of corrected discrete breather (a) vs the long-range coefficient parameter Ĵ obtained for Ĵ = Ĵcr(k0). (b) Evolution with
respect to dipole-dipole coupling constant Ĵ of the maximum modulus of Floquet’s multiplier. (c) The dependence of the DB frequency with
respect to Ĵ . Energy propagation of a MDB emitted by a perturbed SDB for k0
 = 0.474π , Ĵcr(k0) = 0.058 74, ωb = 1.4474, and ν = 0.14474.
(d) 2D DFT |Ỹ (k0, ω)| in the (k0, ω) space [given by Eq. (14)] of displacements Yn(τ ) of the obtained moving discrete breather, where the
red curve is the linear dispersion curve given by Eq. (5). The black curves correspond to the lines ω = ωb + V (k0 − kc ), with ωb = 1.4474,
k±

c = ±0.474π , V ≈ 1.105 × 10−3, while the gray curves are those obtained by means of Eqs. (16) and (17). The blue filled circles represent
the intersection points of the resonant breather line with the phonon band.
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FIG. 12. Profile of corrected discrete breather (a) vs the long-range coefficient parameter Ĵ obtained for k0
 = π . (b) Evolution with respect
to dipole-dipole coupling constant Ĵ of the maximum modulus of the Floquet multiplier. (c) The dependence of the DB frequency with respect
to Ĵ . Energy propagation of a MDB emitted by a perturbed SDB for k0
 = π , Ĵ = 0.2, ωb = 1.35, and ν = 0.27. (d) 2D DFT |Ỹ (k0, ω)| in the
(k0, ω) space [given by Eq. (14)] of displacements Yn(τ ) of the obtained moving discrete breather where the red curve is the linear dispersion
curve given by Eq. (5). The black curves correspond to the lines ω = ωb + V (k0 − kc ), with ωb = 1.35, kc = π , V ≈ −1.01 × 10−2 while the
gray curves are those obtained by means of the Eqs. (16) and (17). The blue filled circles represent the intersection points of the resonant
breather line with the phonon band.
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Fig. 10(a)]. These solutions with the wave number closer to
the upper cutoff of the first Brillouin zone are linearly sta-
ble [see Fig. 12(b)]. Their frequencies vary also not linearly
according to the law ω

app
b = AĴr , with A = 1.160 365 2 and

r = −0.090 687 018. The analysis of Figs. 10(c) and 10(d)
can apply to Figs. 12(c) and 12(d) but with k0
 = π , Ĵ = 0.2,
ωb = 1.35, and ν = 0.27. Just like the case of Figs. 10(d)
and 11(d), this backward MDB propagates from site n to site
n − 1 every 20 periods and also interacts with the phonon
band at several points (see the blue filled circles), as shown
in Fig. 12(d).

We can observe in Figs. 10(d), 11(d), and 12(d) that the
direction of propagation of the moving discrete breather is
according to the line ω = ωb + V (k0 − kc), as shown by the
black curves in these figures.

IV. DISCUSSION

The analysis of the linear dispersion relation is crucial as
the DB mainly vibrates in the forbidden band gap for the
avoidance of possible resonances with phonons of the lattice
with frequencies inside the allowed frequency band [1–4].
The obtained results show that such analysis is also capital
for understanding the nonlinear wave propagation. When the
product between the group velocity (vg) and the phase veloc-
ity (vph = ω/k0) is positive, then the soliton moves forward.
When this product is negative, there is a backward wave prop-
agation. The latter is frequently encountered in left-handed
metamaterials (e.g., [38,43–45]). Surprisingly, it can be seen
that the dispersion relation of the DNA, or any other nonlinear
lattice models with LRI, did not receive enough attention from
this angle [10–14,17–25,41,42]. Different values of Ĵ change
the direction of the wave, and then induce the chameleon
behavior emphasized by Togueu et al. [46]. More interest-
ingly, stationary bright breathers beyond the edge/center of the
first Brillouin zone (wave number different from 0 or π ) are
obtained solely due to a specific LRI. To our knowledge this
has yet to be reported in the literature [10–14,17–25,41,42].

It was demonstrated that bright and dark solitons can be
achieved in the same medium, structure and wavelength de-
pending on a slight change of the input condition in an optical
waveguide array [61]. A possible alternation of envelope and
dark-soliton solutions that depends on the long-range inter-
actions was noticed a long time ago in monatomic/diatomic
systems (e.g., Tchawoua et al. [47], Remoissenet et al. [48],
and references therein). Likewise, it is notably observed that
semidiscrete dark and bright breathers from the NLS reduc-
tion can be supported by the DNA discrete system. Notably,
the existence and the modification of the direction of propa-
gation of these two families of solutions are possible in the
present model depending solely on the LRI magnitude. The
obtained results in the present study, therefore, led us to con-
clude that a slight change in the LRI can foster the occurrence
of dark or bright breathers in a physical system. Note that the
semidiscrete dark solution and simulation was purposely not
mentioned in this study, which focused solely on the bright
breather, which is qualitatively and biologically more relevant
for the studied system.

The study of LRI in nonlinear discrete systems has re-
cently attracted more scientific interest. Among the reported

phenomena, the LRI modifies the speed and amplitude of the
propagating semidiscrete breathers [10], or it induces nonlin-
ear supratransmission [11] and creates on-site DBs [12]. In
opposition to the well-known forward waves (FWs) ubiqui-
tously found in various physical media [62,63], the backward
waves (BWs) are waves with antiparallel phase and group
velocities. The BWs are not mathematical artifacts. They
have been highlighted for instance in dusty plasma crystals
[64,65]. In electrodynamics, they correspond to the opposition
between field momentum connected to the phase velocity and
the Poynting vector, which is connected to the group velocity
[66]. Depending on the system parameters of physical devices
such as a nonlinear discrete transmission electrical line, the
microwave moving breather can have its wavelets and wave
packets traveling in opposite directions, thus exhibiting ei-
ther BW or FW behavior [45,46]. The present study shows
the possibility of CB in the model as noticed in the short-
range-interacting nonlinear discrete electrical transmission
line [46].

In the literature, it is demonstrated that quasidiscrete back-
ward and forward waves can interact [51,52], or they can be
generated separately depending on the system parameter [46].
It is demonstrated here that their discrete analog can also be
generated depending on the specific carrier wave number and
LRI intensity. Moreover, it can be noticed that the obtained
mobile discrete breather from the perturbation procedures is
not an exact solution of the dynamical equations because they
have peaks inside the phonon band, and they are naturally
expected to radiate small-amplitude waves. They have a finite
life because they radiate phonons. This fact occurs because
a mobile discrete breather has two frequencies: one due to
the internal vibration and another one due to the periodic
translation, which is smaller than the first one and is respon-
sible for the resonance with the phonons, and thus of their
emission [2,3]. The precise numerical computation of trav-
eling bright breathers using Newton-Raphson-type methods
and their stability analysis through Floquet’s theory (modulo
shifts) constitute another interesting problem that is worth
addressing. The systematic analysis of stability of moving
breathers is a challenging task left for future work. It is im-
portant to note that this task would only be accessible by
standard methods when the velocity and frequency of the trav-
eling breather satisfy specific commensurability conditions.
(See, for example, Refs. [57,67] for a relevant discussion.)

In a series of papers, Cuevas et al. [19–22] demonstrated
that the speed and the orbital stability of the forward DB in
DNA can be modified by the LRI. However, their procedure
to construct the numerically exact DB involves a selection of
an initial condition that is not easy to choose, while in the
present study the semidiscrete solution, which is analytically
tractable, is selected as the initial guess and further corrected
numerically.

The direct usage of the semidiscrete solution in the simula-
tion shows that there are some radiation losses due because
the quasicontinuum waves try to adapt to the real system,
which is discrete. Furthermore, the continuum limit and
multiscale approximation narrow the existence domain of
DBs to solutions that have frequencies close to the linear band
[1–4]. Floquet’s stability analysis of the semidiscrete solution
(results not shown in the text) shows that it is always less
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stable than the exact DB. In the study of Dauxois et al. [37],
the same problem was already pointed out during numerical
simulations of the short-range Peyrard-Bishop (PB) model.
A semianalytical approach similar to what was adopted in
a physical setup such as short-range interacting nonlinear
left-handed electrical lines and granular materials [38–40] is
employed as an attempt to overcome the weakness in this
study.

In the PB model, the existence of DBs has been demon-
strated [27,28], and DBs are thought to be the precursors to
the bubbles that appear before the transcription processes in
which large fluctuations of energy have been experimentally
observed. The PB model was further amended in order to
incorporate the effect of LRI [19–24]. Such interaction was
reported to influence the breather, shape, speed, and stability
[19–24]. Inspired by the anharmonic model suggested by PB,
Joyeux and Buyukdagli (JB) proposed a new model based
on site-specific enthalpy and closer to the statistical models
[29,30]. This study accounted for LRI as in Refs. [19–24],
but highlighted instead the existence of two different regimes,
namely forward and backward discrete ILMs, as well as their
stability based on the JB model.

The moving breather evidenced in the original DNA model
of Peyrard and Bishop was proven to accurately mimic the
breathing mode between base pairs as well as the low am-
plitude breathing modes moving along the molecule, which
can be amplified and initiate the transcription process [27].
It is well known that the DNA transcription can be done in
two directions. However, the solution obtained from the orig-
inal PB model cannot explain why this breathing can move
backward or forward solely on model parameter values. The
incorporation of the long-range interaction in this study was
an attempt to address this issue.

The core model used here has been proposed by JB to
explain homogeneous/inhomogeneous DNA denaturation and
finite stacking enthalpy energy of base pairs [29,30]. This
advocates that our results obtained by amending the JB model
with LRI can be useful to explore some properties of DNA
chains. It is worthwhile to recall that hydrogen bonds respon-
sible for the interbase coupling, namely the hydrogen bond
in the N-H· · · O group, is characterized by a finite dipole
moment. Therefore, a stretching of the base pair will cause
a change of the dipole moment, so that the excitation trans-
fer in the molecule will be due to transition dipole-dipole
interaction with a 1/r3 dependence on the distance, r. It is
also demonstrated that hydrogen-bonded water filaments are
linked with nucleotides in DNA [68–70]. In this case, an
effective long-range excitation transfer may occur due to the
nucleotide-water coupling. The propagating soliton along the
DNA molecule was suggested to cause long-range interfer-
ence with the DNA-protein interaction [28]. These factors can
thus modify LRI and breather mobility to corner the energy at
the different sites of the DNA. It can therefore foster/enhance
the transcription bubble occurrence/amplitude [27,28]. These
trapped ILMs may therefore operate as local energy pools
and can reassign this encapsulated energy to a localized and
propagating transcription bubble. The results obtained in the
present study suggest that a suitable balance between the
effect of these external factors can prevent amplitude rise and
control the spatiotemporal dynamics of the energy.

The transcription of DNA into RNA is not a one-way
process: the DNA strand can be read in both directions. One
strand of DNA is not identical in one way or another. Indeed,
by the structure of the nucleotides that constitute it, there are
two types of ends, denoted 5’ and 3’. These numbers refer
to the carbon numbers of deoxyribose (the DNA D), one of
the nucleotide elements. In other words, at the 5’ (or 3’) end
of a strand, it is the 5’ carbon (3’) of the deoxyribose that is
free. Transcription takes place in both directions, 3’ to 5’, but
also 5’ to 3’ [71]. The directions of transcription processes
are different not only for DNA molecules of different liv-
ing organisms but also for different promoter regions of the
same DNA molecule. For some promoters (regions of DNA
that lead to initiation of transcription of a particular gene),
the transcription process preferably develops in the upstream
direction, while for others the process develops in the down-
stream direction. There are also promoters that do not have a
preferred direction of transcription [28].

From the PB model [26–28], or from its improved version
[29–35], the dynamical equations have been studied numeri-
cally, and a kinklike/breather solution was used as an initial
condition. As a result, it was found that an initially static
soliton can remain static, oscillate, or move. It can move
along the DNA molecule in one of two possible directions
(due to an appropriate “kick” or velocity sign of the initial
solution): upstream or downstream. In the present study, it
is demonstrated that these three events can happen only due
to the specific values of the LRI. Note that the direction of
transcription further depends on the sequence of bases near
the starting point, as well as on the relative position of the
initial soliton and the promoter region [72].

V. CONCLUSION

On the theoretical side, in the present study we used the
NLS reduction to illustrate the existence of a small-amplitude
forward and backward breather arising from the interplay be-
tween long-range interactions and the carrier wave frequency.
It was further demonstrated that there exist zero-velocity
breathers due to the LRI even if the wave number is neither
at the edge nor at the center of the first Brillouin zone

Contrary to earlier works that simply tested the robustness
of such states with only the use of direct numerical simula-
tions, here we went a significant step further. The numerically
discrete exact solutions were identified and continued para-
metrically over the frequency and LRI values. This allowed
us to identify a possible relationship between the discrete
breather frequency and the LRI. Their spectral stability was
also verified. The mobile discrete breathers are obtained af-
ter “kicking” the static discrete breather despite considerable
radiation losses due to resonance with phonons.

As highlighted previously, there are nontrivial technical
obstacles to overcome toward a calculation for general pa-
rameter values of both the frequency and the velocity of the
exact traveling discrete breather [57,67]. A numerical study
of the stability of periodic traveling and standing waves going
beyond the nonlinear Schrödinger solution (NLS) approxi-
mation used in this study will also be of interest in order to
classify the parameter regimes leading to modulated periodic
waves, localized structures, or disordered regimes.
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We have demonstrated that bright breathers are not only
interesting nonlinear excitations of the DNA model from a
theoretical point of view, but they are also within the reach
of real word importance for this biopolymer, given the ability
to control LRI (e.g., with water solvent). The forward and
backward breather could explain the mechanism by which the
DNA breathing mode and DNA transcription can be achieved
in two directions along the biomolecule.
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