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Parametric instability-induced synchronization in chemical oscillations and spatiotemporal patterns
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We consider a model reaction-diffusion system with two coupled layers in which one of the components
in a layer is parametrically driven by a periodic force. On perturbation of a homogeneous stable steady state,
the system exhibits parametric instability inducing synchronization in temporal oscillation at half the forcing
frequency in absence of diffusion and spatiotemporal patterns in presence of diffusion, when strength of
parametric forcing and the strength of coupling are kept above their critical thresholds. We have formulated a
general scheme to derive analytically the critical thresholds and dispersion relation to locate the unstable spatial
modes lying between the tilted Arnold tongue in the amplitude-frequency plot. Full numerical simulations on
Gierer-Meinhardt activator-inhibitor model corroborate our theoretical analysis on parametric instability-induced
antiphase synchronization in chemical oscillation and spatiotemporal pattern formation, between the two layers.
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I. INTRODUCTION

Periodic forcing of an excitable or oscillatory system in
zero dimension or with spatial extension lies at the heart of
nonlinear dynamics [1,2]. An oscillatory system driven by
a periodic perturbation with appropriate frequency and am-
plitude may get entrained where the entrainment occurs for
matching of rational ratio of numbers with the frequency ratio
of the forcing frequency and the characteristic frequency of
the system [3,4]. Periodic forcing of circadian clock in the
sleep-wake cycle by sunlight [5–7], of Belousov-Zhabotinsky
(BZ) reaction by light [8,9], of electrochemical reaction by
potential wave [10] has opened up a variety of spatiotempo-
ral phenomena [11,12], such as oscillatory Turing patterns,
standing wave labyrinths, rotating spirals, and mixed mode
oscillations [13] resulting in spatiotemporal chaos and inter-
mittency. These developments have been the subject of a large
body of literature [14] over the past couple of decades.

To put the present work in an appropriate perspective we
begin by distinguishing two different situations of periodic
forcing. First, when the system is directly driven [15], the
forced oscillation occurs for any strength of forcing. Second,
when the parameter of a system, say a frequency is driven,
the system undergoes sustained periodic oscillation [16] at a
subharmonic frequency with respect to the forcing frequency
provided the strength of periodic forcing is raised beyond a
critical instability threshold. In the present paper we deal with
the second situation in the context of oscillatory chemical
reaction and reaction-diffusion systems. Parametric instability
[17] was investigated earlier in several areas of physical sci-
ences, e.g., in ruffled surface waves in hydrodynamics [18], in
mechanical vibrations [19], in tuning organ pipes in acoustics
[20], for exciting oscillators in electrical circuits [21], for
wave-mixing and wave amplification using nonlinear crystals
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in optics [22], and in nonlinear active devices like Josephson
junctions [23]. In the context of chemical reactions [24] a sin-
gle chemical oscillator in the steady state was demonstrated to
exhibit parametric oscillation by suitably modulating a scaling
parameter at twice the oscillation frequency beyond a critical
pumping strength. In presence of diffusion [25] the single
system under this condition can exhibit spatiotemporal pro-
files, stationary in space but periodic in time. These profiles
appear as standing clusters observed in experiments [26]. Our
focus in this paper lies on parametric instability in diffusively
coupled oscillatory chemical reactions [27–29] and coupled
reaction-diffusion systems [29–37]. Coupling of excitable
and oscillatory chemical systems and reaction-diffusion sys-
tems between thin layers through transverse diffusivity and
nonlinearity are well known for quite sometime in several
other contexts. The examples include, among others, gener-
ation of wave instability [30] yielding twinkling eye patterns
and stationary Turing patterns, use of Kuramoto-like nonlo-
cal coupled chemical oscillators to generate chimera states
consisting of coexisting subpopulations of synchronized and
unsynchronized oscillators [27], formation of self-organized
pacemakers using coupled reaction-diffusion systems [31],
lattice gas automata model for coupled reaction-diffusion
systems [32], use of diffusively coupled BZ oscillators with
global feedback to generate in-phase and antiphase oscil-
lations [33], and phase-lag synchronization in networks of
photochemically coupled chemical oscillators with a broad
frequency distribution [28]. Chaotic instability and various bi-
furcation scenarios have been analyzed in coupled BZ systems
[29] and in coupled reaction-diffusion systems [34], respec-
tively. It has also been demonstrated that coupling in excitable
media may lead to spontaneously generated periodic wave
[35] while spiral waves can be triggered by linear coupling
of reaction-diffusion systems [36]. Turing pattern formation
has been studied also in coupled reaction-diffusion systems
with distributed delays [37]. Our objective in this paper is
to demonstrate how the diffusive coupling between two lay-
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ers can induce temporal or spatiotemporal synchronization
in oscillatory chemical reaction or reaction-diffusion systems
through parametric instability. We consider a model of chemi-
cal reaction with and without diffusion in two layers which are
transversely coupled minimally and one of the components in
one layer is parametrically driven by a sinusoidal time-varying
force. It has been shown that when the forcing frequency
matches twice the oscillation frequency, the system in both
layers undergoes sustained parametric temporal or spatiotem-
poral oscillations which gets synchronized, when the strength
of forcing and strength of coupling are maintained beyond
their critical instability thresholds. We have formulated a gen-
eral scheme to derive the critical thresholds for coupling and
forcing which determine the range of wavelength for this
parametric instability and antiphase synchrony in temporal
oscillations and spatiotemporal patterns. Our theoretical anal-
ysis is illustrated with the help of an activator-inhibitor model
with Gierer-Meinhardt kinetics used widely in the context of
developmental biology and full numerical simulations.

The outline of the paper is as follows: In Sec. II we
have presented a general scheme of two-layer coupled os-
cillatory chemical system to derive the threshold conditions
for parametric instability in the coupled system leading to
synchronization of sustained oscillations. This is followed
by detailed numerical simulation of Gierer-Meinhardt model
for illustration. The scheme is extended to reaction-diffusion
system in Sec. III. The conditions for parametric instability-
induced spatiotemporal synchronization are worked out on
the basis of a multiple timescale perturbation analysis. Nu-
merical simulations have been carried out to demonstrate
synchronized spatiotemporal pattern formation. The paper is
concluded in Sec. IV.

II. PARAMETRIC INSTABILITY INDUCED
SYNCHRONIZATION IN CHEMICAL OSCILLATION

IN COUPLED CHEMICAL SYSTEM

A. General scheme

We begin by considering a general two-layer coupled os-
cillatory chemical system whose kinetics is given by the
following equations:

Primary layer

{
u̇1 = f (u1, v1) + a sin(ωpt )u1 + α(u1 − u2)
v̇1 = g(u1, v1) ,

(2.1)

Secondary layer

{
u̇2 = f (u2, v2) + α(u2 − u1)
v̇2 = g(u2, v2) , (2.2)

where u1 and v1 refer to the concentration of the chemi-
cal species involved in primary layer and u2 and v2 are the
concentration of the corresponding chemical species in the
secondary layer; f and g are, in general, nonlinear functions.
Two layers are transversely coupled through variables u1 and
u2 with the coupling constant α in the spirit of inhibitor
[35] or activator [36] coupled models. a sin(ωpt ) is the si-
nusoidal parametric forcing term acting on u1 in the primary
layer where a and ωp are the amplitude and frequency of the
parametric forcing, respectively. The dynamical system has a

steady state at (u0
1, v0

1, u0
2, v0

2 ) and linearization of the system
around the steady state leads us to the time evolution of the
small perturbation (δu1, δv1, δu2, δv2) expressed as

˙δu1 = ( fu1 + a sin(ωpt ) + α)δu1 + fv1δv1 − αδu2, (2.3)

˙δv1 = gu1δu1 + gv1δv1, (2.4)

˙δu2 = −αδu1 + ( fu2 + α)δu2 + fv2δv2, (2.5)

˙δv2 = gu2δu2 + gv2δv2, (2.6)

where fui , fvi , gui , gvi are the usual first derivatives of the
functions f and g with respect to ui and vi as the subscripts
indicate. Here the index i is 1 or 2 for the primary and
secondary layers, respectively. The conditions ( fui + gvi ) < 0
and ( fui gvi − fvi gui ) > 0 ensure the stability of the steady
states (u0

1, v
0
1 ) and (u0

2, v
0
2 ) of the uncoupled oscillators. By

differentiating Eq. (2.4) and Eq. (2.6) with respect to time t
and manoeuvring the resulting equations using the relations
of Eqs. (2.3)–(2.6), one can write

¨δv1 + [γ1 − α − a sin(ωpt )] ˙δv1

+ [�2
1 + gv1{α + a sin(ωpt )}]δv1 + (αβ ) ˙δv2

− (αβgv2 )δv2 = 0, (2.7)

¨δv2 + [γ2 − α] ˙δv2 + [�2
2 + αgv2

]
δv2 +

(
α

β

)
˙δv1

−
(

αgv1

β

)
δv1 = 0, (2.8)

where γi = −( fui + gvi ) ; �2
i = ( fui gvi − fvi gui ).

As per the conditions of steady state, γi and �2
i are both posi-

tive. Equation (2.7) and Eq. (2.8) therefore describe the linear
primary and secondary oscillators, respectively. As expected
the characteristic frequency and the damping constant of each
oscillator get affected by the coupling constant α. The charac-
teristic frequency of the primary oscillator on the other hand
is modulated parametrically by an external time-dependent
part sin(ωpt ). In absence of the parametric forcing and the
coupling terms the oscillators reduce to their usual damped
harmonic form:

¨δvi + γi ˙δvi + �2
i δvi = 0 ; with i = 1, 2. (2.9)

The distinct feature of the primary oscillator described by
the Eq. (2.7) is that it is capable of parametric oscillation. It
is expected that because of the coupling terms in Eqs. (2.7)
and (2.8) this may induce sustained periodic oscillation to
the secondary oscillator resulting in synchronization [38]. To
explore this scenario we assume solutions

δv1(t ) = x1 cos(ωt ), (2.10)

δv2(t ) = x2 cos(ωt ), (2.11)

for periodic oscillations at a frequency ω, where x1 and x2 are
the amplitude of the signal wave of the primary and secondary
oscillators, respectively. Expanding sin(ωpt ) in Eq. (2.7) in
terms of exponentials and substituting Eq. (2.10) and (2.11),
we write
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({[
−ω2

2
+ (�2

1 + αgv1 )

2

]
+
[

(γ1 − α)ω

2

]
i

}
eiωt +

{(aω

4

)
+
(agv1

4

)
i
}

ei(ωp−ω)t

)
x1

+
[{(

−αβgv2

2

)
+
(

αβω

2

)
i

}
eiωt

]
x2 = 0 (2.12)

and ({[
−ω2

2
+ (�2

2 + αgv2 )

2

]
+
[

(γ2 − α)ω

2

]
i

}
eiωt

)
x2

+
[{(

−αgv1

2β

)
+
(

αω

2β

)
i

}
eiωt

]
x1 = 0. (2.13)

In deriving the above equation we have discarded all the nonsynchronous terms. From Eq. (2.12) it follows that sustained
oscillation is possible if

ωp − ω = ω ; or, ωp = 2ω. (2.14)

This is the condition for parametric resonance. From Eqs. (2.12)–(2.14) one obtains

x1

x2
=

{(
αβgv2

2

)
−
(

αβω

2

)
i

}
{[

−ω2

2
+ (�2

1 + αgv1 )

2
+ aω

4

]
+
[

(γ1 − α)ω

2
+ agv1

4

]
i

} , (2.15)

and
x1

x2
=

{[
−ω2

2
+ (�2

2 + αgv2 )

2

]
+
[

(γ2 − α)ω

2

]
i

}
{(

αgv1

2β

)
−
(

αω

2β

)
i

} , (2.16)

use of the above two equations yields[
(�2

2 − ω2) + αgv2

][
(�2

1 − ω2) + αgv1 + aω

2

]
− [(γ2 − α)ω]

[
(γ1 − α)ω + agv1

2

]
= α2(gv1 gv2 − ω2), (2.17)

[ω(γ2 − α)]
[
(�2

1 − ω2) + αgv1 + aω

2

]
+
[
ω(γ1 − α) + αgv1

2

] [
(�2

2 − ω2) + αgv2

]
= α2ω(gv1 + gv2 ). (2.18)

Equations (2.17) and (2.18) can be solved to obtain critical forcing strength a as

a = 2[γ1γ2ω
2 − α(γ1 + γ2)ω2 − �1�2 − α(�1gv2 + �2gv1 )]

[ω�2 − ωgv1γ2 + α(gv1 + gv2 )ω]
, (2.19)

where the coupling strength α is given as an appropriate solution of the following cubic equation:

P1α
3 + P2α

2 + P3α + P4 = 0, (2.20)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P1 = [2ω2(gv1 + gv2 )2]
P2 = [{2ω2(gv1 + gv2 )(�2 − gv1γ2)} + {[gv1 gv2 − ω2][ω2(γ1 + γ2) + (gv1�2 + gv2�1)]}

−{ω2(gv1 + gv2 )(gv1γ2 + gv2γ1 − �1 − �2)}]
P3 = −[{ω2(�2 − gv1γ2)(gv1γ2 + gv2γ1 − �1 − �2)} + {(gv1 gv2 − ω2)(γ1γ2ω

2 − �1�2)}
−{(ω2γ2 + gv1�2)[(γ1 + γ2)ω2 + (gv1�2 + gv2�1)]} + {ω2(γ2�1 + γ1�2)(gv1 + gv2 )}]

P4 = −[{ω2(γ2�1 + γ1�2)(�2 − gv1γ2)} + {(γ1γ2ω
2 − �1�2)(ω2γ2 + gv1�2)}]

�i = (�2
i − ω2); i = 1, 2.

The solution of Eqs. (2.19) and (2.20) gives us the critical
values of coupling constant (αc) and forcing strength (ac).
To evaluate αc and ac we first solve the cubic equation of
coupling constant α, i.e., Eq. (2.20) using Newton-Raphson

iterative method and use the solution αc to estimate the
value of critical forcing strength ac. The solution (αc, ac)
represents the threshold condition for the sustained para-
metric synchronized oscillation of the coupled chemical
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system. Summarizing the above discussions we note that
the conditions for parametric instability leading to sustained
synchronized chemical oscillation in the two layers are
twofold; first, the condition for parametric resonance ωp = 2ω

and second, the critical instability threshold condition on forc-
ing strength a and on coupling strength α to overcome the
dissipative effect of the dynamics. To corroborate the general
scheme for the two-layer oscillatory chemical system we now
consider a prototypical model of Gierer-Meinhardt kinetics
[39,40] widely studied over the years as a testing ground for
various theories of nonlinear chemical dynamics. The results
of full numerical solutions are described in the subsequent
sections.

B. Application and Gierer-Meinhardt kinetics

In order to corroborate our theoretical findings of the
preceding subsection we now carry out detailed numerical
simulation of the kinetic Gierer-Meinhardt model. The model
consists of kinetic terms and diffusion terms. To validate
our scheme we first take the kinetic terms into consideration
which constitutes an activator-inhibitor dynamics. The equa-
tions describing the kinetic model that includes parametric
driving as well as the coupling are as follows:

Primary oscillator⎧⎪⎨
⎪⎩

∂u1

∂t
= u2

1

v1
− u1[1 − a sin(ωpt )] + φ1 + α(u1 − u2)

∂v1

∂t
= μ1(u2

1 − v1)
,

(2.21)

Secondary oscillator

⎧⎪⎨
⎪⎩

∂u2

∂t
= u2

2

v2
− u2 + φ2 + α(u2 − u1)

∂v2

∂t
= μ2(u2

2 − v2)
.

(2.22)

Here ui represents the activator concentration and vi refers
to the inhibitor concentration; φi and μi are the basic pro-
duction rate and the relative removal rate, respectively. The
homogeneous steady state of the uncoupled system is given
as u0

i = (1 + φi ) and v0
i = (1 + φi)2, for i = 1, 2. Although

this kinetic model is a two parameter system, the steady state
depends only on one parameter φi but not on μi. For the steady
state of the coupled system one must choose the parameter
φ1 = φ2. It follows from the linear stability analysis of the
uncoupled system that Hopf bifurcation curve is given by

μH = 1 − φi

1 + φi
. (2.23)

The Hopf bifurcation is illustrated by the solid red line in
Fig. 1. The stripped gray region under the curve portrays the
homogeneous oscillatory state and the white region above the
curve represents the homogeneous stable state. For the present
purpose we choose the steady state for the primary as well
as secondary oscillator located at the homogeneous stable
(white) region of Fig. 1, for the parameter set μ1 = 0.35,
φ1 = 0.6, μ2 = 0.35, and φ2 = 0.5. The coupled system in
the region does not remain in the steady state and furthermore

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Homogeneous stable State

μ H

φi

Hopf line

Homogeneous Oscillatory State

FIG. 1. μH vs. φ plot of Hopf bifurcation curve for the uncou-
pled system. The points marked by star and dot correspond to two
different steady states of the uncoupled system (units arbitrary).

by virtue of Eqs. (2.19) and (2.20) the given parameter set
yields the values of critical coupling constant αc = 0.0345
and critical forcing strength ac = 0.1524. Having known the
bifurcation diagram and the critical instability thresholds for
coupling and the forcing strength Eqs. (2.22) and (2.23)
are numerically solved using the fourth-order Runge-Kutta
method with time step �t = 0.01.

The results of the numerical simulations are presented
in the Figs. 2 and 3 for the coupled dynamics below and
above the instability threshold, respectively. When the forcing
strength a and the coupling strength α are set below their
threshold values, the oscillation of concentration of activator
in the primary as well as in the secondary layer takes place
at a forcing frequency as shown in Fig. 2(a). Furthermore
the long time waveform shows that the oscillation is accom-
panied by damping and continuous without synchronization.
The phase diagrams depicting the stable and parametrically
unstable regions in terms of a-μ plot and α-μ plot are shown
in Figs. 2(b) and 2(c), respectively. These two plots are the
two-dimensional projections of the surface defined by a, μ,
and α. The chosen points in the plots are shown for the
values μ = 0.35, a = 0.1024, and α = 0.0145 which corre-
spond to the region below the parametric instability threshold.
For higher values of a and α beyond their critical instability
thresholds characterized by ac = 0.1524 and αc = 0.0345, the
coupled system exhibits sustained synchronized parametric
oscillation at ω = ωp

2 , i.e., at half the forcing frequency. This
is shown in Fig. 3(a). The phase diagrams are shown in
Figs. 3(b) and 3(c) for the parameter set corresponding to the
threshold values αc, ac, and μc, for synchronized parametric
oscillation. Two uncoupled chemical oscillators in two layers
in different steady states can thus be coupled and subjected
to a parametric forcing beyond the critical threshold values of
coupling and forcing strength to excite synchronized sustained
oscillation at a subharmonic frequency. It is easy to check that
the oscillations in the two layers are in antiphase disposition.
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FIG. 2. (a) Forced unsynchronized oscillation of the coupled system: Temporal profile of oscillatory concentration (u1) of primary layer
(plotted with red line) and concentration (u2) of secondary layer (plotted with blue line) below the critical values of coupling constant αc =
0.1524 and forcing strength ac = 0.0345 for the parameter set φ1 = 0.6, μ1 = 0.35, φ2 = 0.5, μ2 = 0.35, ωp = 1.143 and for a = 0.1024,
α = 0.0145. The green oscillatory lower profile of the inset plot represents parametric forcing a sin(ωpt ) and is shown for comparison with the
concentration profile oscillatory at ωp over a short time window. (b) Phase diagram (explained in the text) on the μ-a plane where the white
region represents the unstable region, i.e., the region of parametric oscillation and the red region represents the stable region, i.e., the region
of forced oscillation along with the chosen point μ = 0.35, a = 0.1024. (c) Phase diagram (explained in the text) on the μ-α plane where the
white region represents the unstable region, i.e., the region of parametric oscillation and the blue region represents the stable region, i.e., the
region of forced oscillation along with the chosen point μ = 0.35, α = 0.0145 (units arbitrary).
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FIG. 3. (a) Temporal antiphase synchronization of oscillation at ωp

2 under parametric forcing: Profile of oscillatory concentration (u1)
of primary layer (plotted with red line) and concentration (u2) of secondary layer (plotted with blue line) at the critical values of coupling
constant αc = 0.1524 and forcing strength ac = 0.0345 for the parameter set φ1 = 0.6, μ1 = 0.35, φ2 = 0.5, μ2 = 0.35, ωp = 1.143, and
for a = 0.1524, α = 0.0345. The green oscillatory lower profile of the inset plot represents parametric forcing, a sin(ωpt ) and is shown
for comparison with concentration profile oscillations at ωp

2 over a shorter time window. The phase diagrams (b) and (c) are same as in
Figs. 2(b) and 2(c) but for the parameter set mentioned above. The chosen point denoted by dark squares lies at the boundary between the
stable and parametrically unstable regions (units arbitrary).
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III. SPATIOTEMPORAL SYNCHRONIZATION
IN COUPLED REACTION-DIFFUSION SYSTEMS

A. General considerations and inclusion of diffusion

To start with we consider a pair of coupled reaction-
diffusion systems in two variables, u and v. The dynamical
equations in two dimensions (x, y) can be written down as
follows:

Primary layer{
u̇1 = f (u1, v1) + a sin(ωpt )u1 + α(u1 − u2) + D1∇2u1

v̇1 = g(u1, v1) + ∇2v1
,

(3.1)

Secondary layer

{
u̇2 = f (u2, v2) + α(u2 − u1) + D2∇2u2

v̇2 = g(u2, v2) + ∇2v2
.

(3.2)

Here ui(x, y, t ) and vi(x, y, t ) are the concentration of the
two reacting species; Di represents the ratio of the diffu-
sion coefficients of the chemical species participating in the
reaction, i.e., Di = Dui

Dvi
, with i = 1 and i = 2 denoting the

primary and secondary layers, respectively. f and g are, in
general, nonlinear kinetic terms. Two layers are transversely
coupled through diffusion as in the previous section. Lin-
earization of the system around the steady state leads us to
the time evolution of the small spatiotemporal perturbation
(δu1, δv1, δu2, δv2) expressed as

˙δu1 = [ fu1 + D1∇2 + a sin(ωpt ) + α]δu1 + fv1δv1 − αδu2,

(3.3)

˙δv1 = gu1δu1 + [gv1 + ∇2]δv1, (3.4)

˙δu2 = −αδu1 + [ fu2 + D2∇2 + α]δu2 + fv2δv2, (3.5)

˙δv2 = gu2δu2 + [gv2 + ∇2]δv2. (3.6)

Assuming spatiotemporal perturbations δu1, δv1, δu2, δv2

in two dimensions of the forms δui = δUi(t ) cos(Kxx + Kyy)
and δvi = δVi(t ) cos(Kxx + Kyy), i = 1, 2 and using them in
Eqs. (3.3)–(3.6) yields the following set of kinetic equations:

˙δU1 = [ f ′
u1

+ a sin(ωpt ) + α]δU1 + fv1δV1 − αδU2, (3.7)

˙δV1 = gu1δU1 + [g′
v1

]δV1, (3.8)

˙δU2 = −αδU1 + [ f ′
u2

+ α]δU2 + fv2δV2, (3.9)

˙δV2 = gu2δU2 + [g′
v2

]δV2, (3.10)

where

f ′
ui

= fui − Di(K
2
x + K2

y )

g′
vi

= gvi − (K2
x + K2

y ); with i = 1, 2.

As in the preceding section, Eqs. (3.7)–(3.10) can be rewritten
in the form of two second-order coupled ordinary differential

equations for the two layers,

¨δV1 + [γ1 − α − a sin(ωpt )] ˙δV1

+ [�2
1 + g′

v1
{α + a sin(ωpt )}]δV1

+ αβ ˙δV2 − αβg′
v2

δV2 = 0, (3.11)

¨δV2 + [γ2 − α] ˙δV2 + [�2
2 + g′

v2
α]δV2

+ α

β
˙δV1 − α

β
βg′

v1
δV1 = 0, (3.12)

where we have defined

γi = −( f ′
ui

+ g′
vi

) = −[ fui + gvi − (Di + 1)K2];

K2 = K2
x + K2

y ; β = gu1

gu2

�2
i = ( f ′

ui
g′

vi
− fvi gui ) = [DiK

4 − { fui + gvi Di}K2

+ { fui gvi − fvi gui}]; i = 1, 2.

Equations (3.11) and (3.12) are the starting point of our analy-
sis for spatiotemporal synchronization induced by parametric
driving of the reaction-diffusion system.

B. Parametric spatiotemporal instability and synchronization:
A multiscale analysis

Having formulated the general scheme of parametrically
driven coupled reaction-diffusion systems as governed by
Eqs. (3.11) and (3.12) we now resort to an analysis of stability
boundaries of the coupled system. Our objective here to locate
the regions where the primary layer looses its stability with the
emergence of pattern forming solutions with growing normal
modes. The dynamical Eqs. (3.11) and (3.12) can be rewritten
in a modified timescale τ = ωpt as follows:

¨δV1 + ερ1[1 − c1 sin(τ )] ˙δV1 +
[
ν1 + g′

v1
ε
(α

a
+ sin τ

)]
δV1

+ [σωp]ε ˙δV2 − [σg′
v2

]εδV2 = 0, (3.13)

¨δV2 + ερ2 ˙δV2 +
[
ν2 +

(
αg′

v2

a

)
ε

]
δV2

+ [σ ′ωp]ε ˙δV1 − [σ ′g′
v1

]εδV1 = 0, (3.14)

where ε = a

ω2
p

; κi = (γi−α); ρi = κiωp

a
; c1 = a

κ1
; νi = �2

i

ω2
p

;

σ = αβ

a
; σ ′ = α

βa
.

Equations (3.13) and (3.14) incorporate two timescales for
small values of ε, the scaled forcing amplitude; the timescale
ξ = τ corresponds to the periodic motion itself, and a slower
timescale η = ετ represents the approach to the periodic mo-
tion. Expanding δV1(ξ, η) in a power series in ε as

δV1(ξ, η) = δV 0
1 (ξ ) + εδV 1

1 (ξ ) + ε2δV 2
1 (ξ ) + · · · , (3.15)

δV2(ξ, η) = δV 0
2 (ξ ) + εδV 1

2 (ξ ) + ε2δV 2
2 (ξ ) + · · · , (3.16)
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in Eqs. (3.13) and (3.14), the resulting equations can be solved order by order. The zero-order equations are given by

∂2(δV 0
1 )

∂ξ 2
+ ν1 δV 0

1 = 0, (3.17)

∂2(δV 0
2 )

∂ξ 2
+ ν2 δV 0

2 = 0, (3.18)

which yield a set of solutions for simple harmonic oscillator with characteristic frequencies
√

ν1 and
√

ν2. We then write the
slowly varying amplitude solutions as follows:

δV 0
1 (ξ, η) = A1(η) cos(

√
ν1ξ ) + B1(η) sin(

√
ν1ξ ), (3.19)

δV 0
2 (ξ, η) = A2(η) cos(

√
ν2ξ ) + B2(η) sin(

√
ν2ξ ). (3.20)

For the first order in ε and for the special choice ν1 = ν2 = 1
4 , we have

∂2(δV 1
1 )

∂ξ 2
+ ν1 δV 1

1 =
[
∂A1

∂η
+ ρ1

2
A1 − αg′

v1

a
B1 + ρ1c1

4
B1 − g′

v1

2
A1 + σωp

2
A2 + (σg′

v2
)B2

]
sin

ξ

2

+
[
−∂B1

∂η
− ρ1

2
B1 − αg′

v1

a
A1 − ρ1c1

4
A1 − g′

v1

2
B1 − σωp

2
B2 − (σg′

v2
)A2

]
cos

ξ

2

+
[
ρ1c1

4
B1 − g′

v1

2
A1

]
sin

3ξ

2
+
[
ρ1c1

4
A1 − g′

v1

2
B1

]
cos

3ξ

2
, (3.21)

∂2(δV 1
2 )

∂ξ 2
+ ν2 δV 1

2 =
[
∂A2

∂η
+ ρ2

2
A1 − αg′

v2

a
B2 + σ ′ωp

2
A1 + (σ ′g′

v1
)B1

]
sin

ξ

2

+
[
−∂B2

∂η
− ρ2

2
B2 − αg′

v2

a
A2 − σ ′ωp

2
B1 + (σ ′g′

v1
)A1

]
. (3.22)

To avoid secular terms we set the coefficients of sin ξ

2 and cos ξ

2 equal to zero so that we have⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂A1

∂η
∂B1

∂η
∂A2

∂η
∂B2

∂η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g′
v1

− ρ1

2

αg′
v1

a
− ρ1c1

4
−σωp

2
−σg′

v2

−αg′
v1

a
− ρ1c1

4
−ρ1 + g′

v1

2
−σg′

v2
−σωp

2

−σ ′ωp

2
−σ ′g′

v1
−ρ2

2

αg′
v2

a

σ ′g′
v1

−σ ′ωp

2
−αg′

v2

a
−ρ2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1

B1

A2

B2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.23)

It is clear that A1, B1, A2, B2 have exponential growth. This instability arises because of ν1 = ν2 = 1

4
and corresponds to a 2 : 1

subharmonic resonance in which the driving frequency (ωp) is twice the natural frequency for each oscillator. Expanding ν1 and
ν2 in a power series in ε one obtains

ν1 = 1

4
+ εν1

1 + ε2ν2
1 + · · · , (3.24)

ν2 = 1

4
+ εν1

2 + ε2ν2
2 + · · · . (3.25)

Repeating the same calculation with ν1 and ν2 we arrive at a set of coupled closed equations of A1, B1, A2, B2 which can be
written in the following matrix representation:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂A1

∂η
∂B1

∂η
∂A2

∂η
∂B2

∂η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g′
v1

− ρ1

2

αg′
v1

a
− ρ1c1

4
+ ν1

1 −σωp

2
−σg′

v2

−αg′
v1

a
− ρ1c1

4
+ ν1

1 −ρ1 + g′
v1

2
−σg′

v2
−σωp

2

−σ ′ωp

2
−σ ′g′

v1
−ρ2

2

αg′
v2

a
+ ν1

2

σ ′g′
v1

−σ ′ωp

2
−αg′

v2

a
+ ν1

2 −ρ2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1

B1

A2

B2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.26)
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As both σ and σ ′ are proportional to the ratio α
a and the ratio is very small we can neglect the terms associated with σ and σ ′ to

a leading order. This leads us to the following two equations:⎛
⎜⎝

∂A1

∂η
∂B1

∂η

⎞
⎟⎠ =

⎛
⎜⎝

g′
v1

− ρ1

2

αg′
v1

a
− ρ1c1

4
+ ν1

1

−αg′
v1

a
− ρ1c1

4
+ ν1

1 −ρ1 + g′
v1

2

⎞
⎟⎠
⎛
⎝A1

B1

⎞
⎠, (3.27)

⎛
⎜⎝

∂A2

∂η
∂B2

∂η

⎞
⎟⎠ =

⎛
⎜⎝ −ρ2

2

αg′
v2

a
+ ν1

2

−αg′
v2

a
+ ν1

2 −ρ2

2

⎞
⎟⎠
⎛
⎝A2

B2

⎞
⎠. (3.28)

As the main drive for instability in the system is the parametric forcing acting on the primary layer, the perturbative stability
analysis of the primary layer is sufficient for locating the instability region. Therefore we consider the equation describing the
primary layer, i.e., Eq. (3.27) and proceed further. The equation can be solved by assuming a solution in the form A1(η) =
A0

1 exp(η�) and B1(η) = B0
1 exp(η�), for nontrivial constants A0

1 and B0
1. The following condition must hold∣∣∣∣∣∣∣

g′
v1

− ρ1

2
− �

αg′
v1

a
− ρ1c1

4
+ ν1

1

−αg′
v1

a
− ρ1c1

4
+ ν1

1 −ρ1 + g′
v1

2
− �

∣∣∣∣∣∣∣ = 0. (3.29)

The eigenvalues �± are given by

�± = −ρ1

2
± 1

2

√√√√g′
v1

2 − 4

[
ν1

1
2 +
(

2αg′
v1

a

)
ν1

1 +
(

αg′
v1

a

)2

−
(ρ1c1

4

)2
]
. (3.30)

For the transition between stable and unstable regions, we set �± = 0 and obtain

ν1
1 = −

(
αg′

v1

a

)
± 1

2

√(ρ1c1

2

)2
+ g′

v1

2 − ρ2
1 . (3.31)

ν1 is therefore modified to first order as follows:

ν1 = 1

4
− ε

(
αg′

v1

a

)
± ε

2

√(ρ1c1

2

)2
+ g′

v1

2 − ρ2
1 . (3.32)

The above condition gives two transition curves emerging from ν1 = 1
4 forming instability region inside a tilted V-shaped

Arnold’s-tongue profile in the ε-ν1 plane. For the outside region the system shows quasiperiodic motion. The spatial inhomo-
geneity or spatiotemporal patterns are likely to emerge in the instability origin of the tongue. The origin of tilt of the tongue is
the diffusive coupling between the two layers through α. Keeping in mind that γi, κi, ρi, c1, νi, �i depend on wavelength we

find the dispersion relation in terms of ωp as a function of K2 from the relation �2
1

ω2
p

= 1
4 to obtain the allowed range of wavelength

for specific choice of parametric frequency ωp,

ωp =
√

4{( fu1 − DK2)(gv1 − K2) − fv1 gu1}, (3.33)

for the given parameter values. In what follows we illustrate the general scheme of Arnold tongue and dispersion relation with
the help of Gierer-Meinhardt reaction-diffusion system followed by detailed numerical simulations for pattern formation.

C. Application to Gierer-Meinhardt model: Parametric instability-induced synchronized spatiotemporal patterns

We now return to Gierer-Meinhardt kinetic model as discussed in Sec. II B and include the diffusion terms for the activator
and inhibitor. The equations are described in a dimensionless form as follows:

Primary layer

⎧⎪⎨
⎪⎩

∂u1

∂t
= u2

1

v1
− u1[1 − a sin(ωpt )] + φ1 + α(u1 − u2) + D1∇2u1

∂v1

∂t
= μ1(u2

1 − v1) + ∇2v1

, (3.34)

Secondary layer

⎧⎪⎨
⎪⎩

∂u2

∂t
= u2

2

v2
− u2 + φ2 + α(u2 − u1) + D2∇2u2

∂v2

∂t
= μ2(u2

2 − v2) + ∇2v2

. (3.35)
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0.0 0.1 0.2
0.0

0.2

0.4

0.6

0.8

P2

μ

D

Hopf Line
Turing Line

P1

FIG. 4. Bifurcation diagram for the coupled Gierer-Meinhardt
model without parametric forcing. The Hopf line (black solid line)
and the Turing line (red dashed line) are shown in the μ-D parameter
space for φ1 = φ2 = φ = 0.6 and D1 = D2 = D (units arbitrary).
The points P1 and P2 are the chosen points in stable steady-state
region for the primary and the secondary layers, respectively.

The homogeneous steady state of the uncoupled system is
given in Sec. II B. Keeping note that they depend only on φi,
we first choose φ1 = φ2(= φ) for the rest of the treatment.
Under this condition we have u0

1 = u0
2 and the linear stability

analysis of the coupled reaction-diffusion system reveals the
Hopf and Turing bifurcation lines which are given as μH =
1−φi

1+φi
and μT = 1

D ( 2
1+φ

− 1)
2
, respectively. These bifurcation

lines are shown in the μ-D plane in Fig. 4 for φ = 0.6.
We now consider two points P1 (μ1 = 0.5, D1 = 0.1) and

P2 (μ2 = 0.6, D2 = 0.1) in the stable steady-state region for
φ1 = φ2 = φ = 0.6 as shown in Fig. 4, for illustration of the
analytical result obtained in the last section and numerical
simulations. Using Eq. (3.33) we have plotted the dispersion
relation ωp vs. K2 in Fig. 5 for the set of parameter values
as mentioned earlier. It is evident that the choice of forcing
frequency of the external sinusoidal field for parametric spa-
tiotemporal oscillation and synchronization is not arbitrary
but is dictated by the appropriate length scale of the spatially
extended system.

Having determined the location of the two steady states P1

and P2 for the primary and secondary layers of the coupled
system we now switch on parametric forcing term a sin(ωpt ).
The choice of ωp, as shown in Fig. 5, is guided by K2. With
ωp = 1 and K2 = 1 and φ1 = φ2 = φ = 0.6, D1 = D2 = 0.1,
we set μ1 = 0.5 and μ2 = 0.6 corresponding to two points P1

and P2 and plot ε vs ν1 using Eq. (3.32) for forcing strength
a = 0.5 and coupling strength α = 0.5. The result is presented
in Fig. 6(a). A tilted Arnold’s tongue appears in the ε-ν1

parameter space separating out the gray unstable region in
the middle of the tongue, from quasiperiodic stable region
outside.

The linear stability analysis based on multiple timescale
perturbation scheme as enumerated above is now corroborated

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

ω
p

K2

FIG. 5. The plot of dispersion relation [ωp vs K2, Eq. (3.33)] for
the set of parameters as mentioned in the text.

by a full scale numerical simulation of the coupled reaction-
diffusion dynamics. To this end we return to Eqs. (3.34) and
(3.35) and carry out numerical integration using Euler’s algo-
rithm over (250 × 250) discrete grid points in two dimensions
for each of the two layers. The spatial resolution for the space
coordinate and the time increment were set as �X = �Y =
0.2 and �t = 0.0025, respectively. All the nodes of the grid
were initially kept at the homogeneous steady state (u0

1 =
u0

2 = 1.6 and v0
1 = v0

2 = 2.56). The system was perturbed by
a weak random noise at grid point. The numerical integration
was carried out using periodic boundary conditions over 5000
time units in each case. The results are plotted in Figs. 6(b)
and 6(c) for the primary and the secondary layers, respectively
at t = 5000 time units for a chosen parameter point γ1 = 0.4,
ε = 0.5 [shown by star mark in stable quasiperiodic region,
i.e., outside the tongue region in Fig. 6(a)]. As expected one
observes uniform homogeneous spatiotemporal profiles for
both the layers in complete agreement with our theoretical
analysis.

As the coupling strength α is reduced to α = 0.3 keeping
the forcing strength same at a = 0.5, ε-ν1 plot encompasses a
larger unstable region inside the tongue as shown in Fig. 7(a).
The star marked point at ν1 = 0.4 and ε = 0.5 in ε-ν1 pa-
rameter space now lies inside the tongue. We now proceed
with numerical simulation of the coupled reaction-diffusion
system. The development of the spatiotemporal profiles is
depicted in Figs. 7(b)–7(d) and Figs. 7(e)–7(g) to 10 000 time
units for the primary and secondary layers, respectively, at
different time intervals. The parametric spatiotemporal insta-
bility leads to formation of patterns in the form of spots and
stripes. It is interesting to note that the dark spots and stripes
of the primary layer appear as bright spots and stripes of the
secondary layer observed at the same time clearly indicating
that they are synchronized with antiphase disposition. The
patterns remain stationary in time. This is is sharp contrast to
what one observes for parametric instability-induced pattern
formation in single systems where the patterns in the form of
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FIG. 6. (a) Tilted Arnold tongue in the ε − ν1 plot [Eq. (3.32)] for the coupled Gierer-Meinhardt reaction-diffusion model for the two
points P1 (μ1 = 0.5) and P2 (μ2 = 0.6) for φ1 = φ2 = φ = 0.6 and D1 = D2 = D = 0.1 of Fig. 5 corresponding to stable steady-state region
of the primary and the secondary layers and for ωp = 1.0, K2 = 1.0, a = 0.5, α = 0.5. The unstable region denoted by gray color inside
the tongue while the outside region corresponds to stable quasiperiodic region; (b) spatiotemporal profiles of u1 (primary layer) obtained by
numerical simulation of parametrically driven Gierer-Meinhardt reaction-diffusion system [Eqs. (3.34) and (3.35)] at t = 5000 time units for
ν1 = 0.4 and ε = 0.5 and for other parameters as mentioned; (c) same as in (b) but for u2 (secondary layer) (units arbitrary).

standing clusters remain oscillatory in time but stationary in
space [25,26].

With further reduction of the value of coupling strength
(α = 0.25), the area of the unstable zone of the Arnold tongue
in ε-ν1 plot increases significantly. This is shown in Fig. 8(a).
The star marked point ν1 = 0.4 and ε = 0.5 still remains
inside this region. We observe synchronized spatiotemporal
patterns in the form of spots and stripes both for the primary
and secondary layers corresponding to this point. The results
are shown in Figs. 8(b)–8(d) and Figs. 8(e)–8(g).

We have further explored the effect of parametric forcing
a and coupling constant α on the coupled reaction-diffusion
system described by Eqs. (3.34) and (3.35) when the param-
eters of the system are chosen in such a way that the initial

state of system lies in the Turing region of the bifurcation
diagram. To this end we have chosen μ1 = μ2 = μ = 0.4 and
the diffusion coefficients of the system D1 = D2 = D = 0.03.
Figure 9(a) shows that the parameter set chosen for the sim-
ulation indeed lies in the Turing region of the bifurcation
diagram. When we ran the simulation with α = 0.0 and a =
0.12 the results depicted by Figs. 9(b) and 9(c) reveal that for
this parameter set both layers are in the stationary spot-like
patterned state as expected. We have also found that for lower
values of the parametric forcing strength a the results remain
qualitatively same as those shown in Figs. 9(b) and 9(c).
When the parametric forcing strength is increased further, the
primary layer, i.e., the layer which undergoes parametric forc-
ing loses spatial heterogeneity, whereas the secondary layer
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FIG. 7. (a) Same as in Fig. 6(a) but for α = 0.3. [(b)–(d)] The spatiotemporal patterns obtained by numerical simulation of the coupled
Gierer-Meinhardt reaction-diffusion system for the parameter set as mentioned in Fig. 6(a) for ν1 = 0.4 and ε = 0.5 for u1 (primary layer) at
time (b) t = 500, (c) t = 5000, (d) t = 10 000 time units; [(e)–(g)] same as in Figs. 7(b)–7(d) but for the secondary layer (units arbitrary).

remains as it is. This is shown in Figs. 9(d) and 9(e). Now un-
der this situation if we raise the value of the coupling strength
to α = 0.3 the spotlike pattern reappear in the primary layer
due to the propagation of instability from the secondary layer
through coupling as shown in Figs. 9(f) and 9(g). Hence, we
may conclude that the parametric forcing a plays a destructive
role and coupling constant α plays a constructive role for
the stationary patterns in coupled reaction-diffusion systems
when the parameters are chosen in the Turing region of the

bifurcation diagram. The results are generically different from
those observed earlier where the parameter set lies in the
steady-state region.

Apart from the system described by Eqs. (3.34) and (3.35)
there are other three possibilities regarding the presence of the
parametric forcing term and the coupling term in the activator
and inhibitor dynamics of the primary and secondary layers.
In the rest of the section we discuss what happens to these
three cases.
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FIG. 8. Same as in Fig. 7 but for α = 0.25 (units arbitrary).

First, the case where the inhibitor of the primary layer is subjected to the parametric forcing and the activators of both the
layers undergo coupling, i.e.,

Primary layer

⎧⎪⎨
⎪⎩

∂u1

∂t
= u2

1

v1
− u1 + φ1 + α(u1 − u2) + D1∇2u1

∂v1

∂t
= μ1{u2

1 − v1[1 − a sin(ωpt )]} + ∇2v1

, (3.36)

Secondary layer

⎧⎪⎨
⎪⎩

∂u2

∂t
= u2

2

v2
− u2 + φ2 + α(u2 − u1) + D2∇2u2

∂v2

∂t
= μ2(u2

2 − v2) + ∇2v2

. (3.37)

Full numerical simulation of the Eqs. (3.36) and (3.37) reveals no patterned state, which can be explained as follows: In this
situation we have applied the parametric forcing which plays the key role for inducing instability in the inhibitor component of
the primary layer. It may be noted that the inhibitor diffuses faster than activator even in absence of forcing. The application of

052209-13



PAUL, PAL, AND RAY PHYSICAL REVIEW E 102, 052209 (2020)

FIG. 9. (a) Bifurcation diagram for the coupled Gierer-Meinhardt model without parametric forcing. The Hopf line (black line) and the
Turing line (red line) are shown in the μ-D parameter space for φ1 = φ2 = φ = 0.6 and D1 = D2 = D (units arbitrary). The parameters μ1 =
μ2 = μ = 0.6 and D1 = D2 = D = 0.03 are chosen in the Turing region for the primary and the secondary layers. [(b) and (c)] Spatiotemporal
profiles of (b) u1 (primary layer) and (c) u2 (secondary layer) obtained by numerical simulation of parametrically driven Gierer-Meinhardt
reaction-diffusion system [Eqs. (3.34) and (3.35)] at t = 5000 time units for α = 0.0 and a = 0.12. [(d) and (e)] Same as in (b) and (c) but
for a = 0.13. The upper layer tends to loose spatial heterogeneity as compared to the lower layer. [(f) and (g)] Same as in (d) and (e) but for
α = 0.3. The spatiotemporal patterns reappear in both layers (units arbitrary).

parametric forcing causes a further enhancement of the diffusion so that the parametric instability condition cannot be sustained
because of rapid homogenization of the system.

In the second scenario we have applied the coupling to the inhibitor and parametric forcing to the activator.

Primary layer

{
∂u1
∂t = u2

1
v1

− u1[1 − a sin(ωpt )] + φ1 + D1∇2u1

∂v1
∂t = μ1(u2

1 − v1) + α(v1 − v2) + ∇2v1

, (3.38)

Secondary layer

{
∂u2
∂t = u2

2
v2

− u2 + φ2 + D2∇2u2
∂v2
∂t = μ2(u2

2 − v2) + α(v2 − v1) + ∇2v2

. (3.39)
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The numerical simulation of Eqs. (3.38) and (3.39) again reveals no patterned state. The forcing of activator leads to its
enhancement of effective diffusion in the first layer as compared to that of the inhibitor. As the diffusive coupling terms are
applied to the inhibitors of the system the disparity of the diffusion in the activator and inhibitor gets reduced which prevents the
propagation of the instability and the system remains homogeneous.

Third, we consider a situation when both the forcing and the coupling terms are present in the inhibitor,

Primary layer

⎧⎪⎨
⎪⎩

∂u1

∂t
= u2

1

v1
− u1 + φ1 + D1∇2u1

∂v1

∂t
= μ1{u2

1 − v1[1 − a sin(ωpt )]} + α(v1 − v2) + ∇2v1

, (3.40)

Secondary layer

⎧⎪⎨
⎪⎩

∂u2

∂t
= u2

2

v2
− u2 + φ2 + D2∇2u2

∂v2

∂t
= μ2(u2

2 − v2) + α(v2 − v1) + ∇2v2

. (3.41)

In this case the instability generated by the parametric forcing
dies down readily due to the large effective diffusion coeffi-
cient of the inhibitor of the first layer. It is therefore imperative
that the system would prefer homogeneity. This has been cor-
roborated by numerical simulation of Eqs. (3.40) and (3.41).
We have also numerically simulated Eqs. (3.34) and (3.35)
where the parameter set is chosen in such a way that initially
both the activator and the inhibitor of the primary layer are in
the oscillatory state. In this scenario also, the simulations did
not produce any relevant patterned state.

Summarizing all the aforesaid cases, we therefore conclude
that a balanced interplay of parametric forcing and coupling
which act in opposite directions in the activator dynamics
characterized by slow diffusion can give rise to parametric
instability and synchrony in the system.

IV. CONCLUSION

In this paper we have demonstrated a type of synchrony in
sustained chemical oscillations and in spatiotemporal patterns
in the coupled reaction-diffusion systems arising out of para-
metric instability. The synchronized parametric oscillation
due to periodic forcing of a parameter is quite distinct from the
usual direct driving of the dynamics that leads to quasiperiodic
oscillation of the system since in absence of the driving the
system returns to the usual oscillatory state or the Hopf state.
In parametric oscillation one observes sustained oscillation
without decay at a frequency half the pumping frequency once
the strength of periodic forcing is kept above the instability
threshold, while below the threshold the system undergoes de-
cay to the homogeneous steady state. We now summarize the
main conclusions of this study. First, antiphase synchroniza-
tion of oscillations or spatiotemporal patterns in the two layers
depend on the critical threshold of coupling strength as well
as the critical threshold of the strength of forcing under para-
metric resonance condition. Second, the dispersion relation,
i.e., the dependence of the allowed range of wavelength for
synchrony in spatiotemporal patterns on excitation frequency,
is determined by the critical coupling strength as well as the

amplitude of external forcing. The multiscale perturbation
theory clearly reveals the parametric instability regions in V-
shaped Arnold tongue in the scaled amplitude-frequency plot.
The region of instability gets enlarged with decrease of the
strength of coupling. Third, while the linear stability analysis
based on perturbation theory reveals the generic features of
the conditions for parametric instability-induced synchrony in
oscillations or patterns, the details of the nature of patterns
depend on the specificity of the model considered and the
nonlinearity intrinsic to the model itself. Fourth, our scheme
is based on the coupling between two layers. It is possible to
include more layers to the primary one to achieve synchrony
among them although such a generalization becomes difficult
because of increased number of equations to be solved to
derive analytically the critical thresholds for forcing strength
and strength of coupling between different layers. Fifth, the
numerical simulations carried out using the parameters of
the system residing in the Turing region of the bifurcation
diagram reveals that the parametric forcing strength and the
coupling strength act in different directions in the activator
dynamics, i.e., while the coupling strength assists the process
of pattern formation, the parametric forcing strength plays a
destructive role.

In view of the direct bearing of the multilayer tissues
and lipid bilayer membranes, the multilayer chemical systems
with or without diffusion can prove themselves to be inter-
esting candidates for the study of complex patterns [41] in
biological systems. Further investigation in this direction may
throw more light on synchronization in biosystems.
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