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Mechanical analog of quantum bradyons and tachyons
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We present a mechanical analog of a quantum wave-particle duality: a vibrating string threaded through a
freely moving bead or “masslet.” For small string amplitudes, the particle movement is governed by a set of
nonlinear dynamical equations that couple the wave field to the masslet dynamics. Under specific conditions, the
particle achieves a regime of transparency in which the field and the particle’s dynamics appear decoupled. In that
special case, the particle conserves its momentum and a guiding wave obeying a Klein-Gordon equation, with
real or imaginary mass, emerges. Similar to the double-solution theory of de Broglie, this guiding wave is locked
in phase with a modulating group wave comoving with the particle. Interestingly, both subsonic and supersonic
particles can fall into a quantum regime as is the case with the slower-than-light bradyons and hypothetical,
faster-than-light tachyons of particle physics.
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I. INTRODUCTION

The foundations of quantum mechanics (QM) mainly rely
on the pioneering work of de Broglie [1] for which he received
the Nobel prize. The key assumption of de Broglie’s intuitive
approach is that any mass mp of matter acts like a clock
of pulsation ωp such that its mass energy mpc2 balances its
vibrational energy h̄ωp where c is the light velocity and h̄ the
Planck constant. Then, relying on special relativity to estimate
how this moving clock would appear for an immobile ob-
server, de Broglie showed that the clock must be in phase with
a superluminal phase wave, the guiding wave, giving birth
to the celebrated but still mysterious wave-particle duality.
After de Broglie discovered this phase wave, he proposed a
mechanical analog [2–4]: “the double-solution theory.” This
work was subsequently followed by some hydrodynamical
and very interesting analogs, e.g., the Madelung approach [5].
In the same series of works [3,6], de Broglie also introduced
the pilot-wave interpretation nowadays known as de Broglie–
Bohm, or “Bohmian” mechanics, after its rediscovery by
Bohm [7,8]. While the quest for a classical analog of QM is le-
gitimate, it is far from being an easy task and de Broglie failed
in extending his earlier results. Quite recently, the interest on
this subject was renewed by the pioneering work initiated by
Couder and Fort on bouncing droplets [9–11] in which one
or several droplets hit a vertically shaken bath and generate
a surface wave. Among other works (see [12] for a review),
these droplets, sometimes referred to as walkers, were shown
to not only mimic a wave-particle duality at macroscale, but
also to reproduce most, if not all, of QM features. This is not
that surprising because these models share some features with
the double-solution and pilot-wave theories [3,7], known to be
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possible alternative interpretations, however deterministic, of
quantum mechanics.

In this paper, we focus on a type of mechanical analog
closer in spirit to the original double solution of de Broglie,
i.e., transverse waves on which a small bead of mass mp and
of stiffness kp is submitted to the string impulse and moves
without friction. This “masslet” acts as a particle somewhat
similar to a free-to-move defect or impedance jump; the den-
sity and elasticity are locally altered at the particle location. Its
dynamical behavior is governed by usual momentum transfer
at the impedance jump, giving rise to reflection, transmission,
or absorption of the incoming wave. The masslet being free to
move, these mechanisms are accompanied with the radiation
force phenomenon common to acoustic and electromagnetic
fields. This drives the particle in the whole field, incident and
scattered, and eventually leads to memory effects. In the spirit
of de Broglie’s assumptions, the sliding masslet can be viewed
as a a moving clock of pulsation ωp = √

kp/mp in its rest
frame.

In the past, quite similar models were first proposed by
Rayleigh and Helmholtz [13–15] to study the vibrations of
a loaded string. More recently, Boudaoud et al. studied the
self-adaptation of free-to-move beads on a string submitted to
acoustic noise [16] in the context of soap films and pattern
formation. A few years ago, Borghesi showed, relying on
a relativistic framework, that such a system yields a wave-
particle duality governed by the also relativistic Klein-Gordon
equation [17]. Here, we restrict ourselves to the nonrelativistic
Newtonian framework and unravel the emergence of a trans-
parency regime in which the particle-string interaction, and
thus the radiation force, vanish. As we show, this regime is
reminiscent of de Broglie’s double solution [3] (for recent
works and reviews see [18–20]) and furthermore leads to a
Schrödinger equation for the phase wave associated to the
particle. Very interestingly, two classes of transparent particles
are possible candidates: (i) the class of subsonic particles that
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FIG. 1. Sketch of the string-mass mechanical analog. A bead
of coordinates (xp, zp) slides without friction on a string with local
transverse amplitude u(t, x). A vertical spring acts on the bead as
as a vertical restoring force and features an internal clock in the de
Broglie double solution of quantum mechanics.

travel uniformly along the string with a velocity smaller than
the speed of sound on the string and (ii) the class of super-
sonic (i.e., faster-than-sound) particles. These two families of
dynamical motions are hereafter referred to as bradyons and
tachyons, respectively, in reference to their quantum counter-
parts in particle physics (where the speed of sound must be
replaced by the speed of light).

The paper is structured as follows: In Sec. II, we describe
the system and derive the general dynamical equations. We
discuss analytical solutions and present the numerical ap-
proach employed for studying the dynamics. In Sec. III, we
discuss in detail the transparency regimes by focusing on the
quantum analogs of bradyons. A similar analysis is done for
tachyons in Sec. IV. Concluding remarks are addressed in
Sec. V.

II. STRING-MASSLET SYSTEM

A. General description

Our system consists of an elastic string of linear density
λ stretched along x by tension T . The string oscillates in
the transverse z direction and the vibration is characterized
by the field u(t, x). A ring-shaped masslet mp, or bead, is
threaded on this string at x = xp and can slide without friction.
Importantly, in order to make this particle behave as a clock,
the masslet is submitted to an additional elastic force field
corresponding to a spring of stiffness kp. Thus, it exerts an
elastic force toward the nondeformed axis of the string (z = 0)
(see illustration in Fig. 1). The effect of gravity is neglected
throughout the paper.

Since the mass cannot escape the string, its vertical position
zp must satisfy the holonomic condition zp(t ) = u(t, xp(t ))
at any time t . Furthermore, the absence of any dissipation
(and in particular of friction between the particle and the
string) imposes that the reaction force N (t ) from the string
to the particle is locally normal to the string at the particle’s
location (in the limit of small vibration amplitudes, i.e., the
reaction force is mainly vertical). When the string vibrates,
the mass is accelerated vertically and horizontally by the local
string acceleration and subsequently moves along it. Since the
particle has locally a density or elasticity which are different

from the string, its inertia will in turn stretch the string and act
as a source for the field u(t, x), generating scattered waves.
Thereby, the particle acts as a clock moved by and within the
wave field that it has formerly produced.

In this work, we only study nonrelativistic movements, i.e.,
we assume that the velocities of the particle and wave are
much smaller than the celerity of light. Moreover, despite this
limitation our model involves a physical constraint defined
by the velocity c of the elastic waves along the string. This
allows us to define two distinct regimes associated to the Mach
number Ma = |vp,x/c| where vp,x is the horizontal velocity of
the particle. Ma < 1 is the subsonic regime, while Ma > 1
is the supersonic one. As we show in the following, the sub-
sonic regime is physically equivalent to the bradyonic regime
as defined in particle physics for slower-than-light quanta,
while the supersonic regime is similar to the tachyonic one
with faster-than-light quantum particles. The mechanical anal-
ogy with special relativity is remarkable and we demonstrate
that the application of an equivalent Lorentz transformation
(where the sound velocity replaces the velocity of light) is
crucial for a quantum description of mechanical analogs.

B. Deriving the equations

Let us now derive the general set of equations that governs
the dynamics of the masslet-string system. Since our system
possesses several degrees of freedom coupled by a holonomic
condition, the Lagrangian formalism is well suited to derive
the equations of motion. Obviously, the total action I of the
system can be split in three parts as

I =
∫

dt Lp +
∫∫

dt dx Ls +
∫

dt Lint, (1)

where Lp and Ls are, respectively, the Lagrangian of the parti-
cle and the Lagrangian density of the string (indicated by the
cursive letter) in the absence of the holonomic coupling con-
straint Lint . We focus first on the expression of the Lagrangian
Lp of the particle in our system. Since we impose an attraction
toward the string baseline (via the spring of stiffness kp), a
potential

V (zp) = 1
2 mpω

2
pz2

p (2)

is introduced, with ωp a pulsation or equivalently kp = mpω
2
p

a stiffness applied to the particle solely. The particle’s La-
grangian then takes the form

Lp(t, zp, vp) = 1
2 mpv

2
p − V (zp), (3)

where we have introduced �vp = vp,x �ux + vp,z�uz with vp,x(t ) =
dxp(t )

dt and vp,z(t ) = dzp(t )
dt the longitudinal and transverse par-

ticle velocity, respectively. Without the holonomic constraint,
the variational Lagrange principle δ[

∫
dt Lp] = 0 leads to the

usual Newtonian equations

mpẍp(t ) = 0, mp
[
z̈p(t ) + ω2

pzp(t )
] = 0. (4)

Similarly, Ls is obtained by taking the continuum limit of a
chain of springs with constant stiffness and considering small
amplitude vibrations (i.e., neglecting nonlinearities):

Ls(u, ∂t u, ∂xu) = 1
2λ(∂t u(t, x))2 − 1

2 T (∂xu(t, x))2. (5)
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In this equation, λ and T are, respectively, the linear density
and the tension of the string. We also define our local speed of
sound c = √

T/λ of the transverse waves propagating along
the string. Once again, for Lint = 0, one can obtain from the
variational principle δ[

∫
dt

∫
dx Ls] = 0 the wave equation

λ

T
∂2

t u(t, x) − ∂2
x u(t, x) = �u(t, x) = 0, (6)

where � is the usual linear d’Alembert operator.
The specific nature of the holonomic constraint is ideally

grasped by the coupling Lagrangian

Lint (t, xp, zp, N ) = N[zp − u(t, xp)] (7)

or, equivalently, by a Lagrangian density Lint (such that Lint =∫
dx Lint):

Lint (u, x, zp, N ) = N[zp − u(t, x)]δ(x − xp), (8)

where N (t ) is a Lagrange multiplier defining an additional
variable in the variational problem. Variations with respect to
N lead automatically to the holonomic constraint

zp = u(t, xp). (9)

Taking into account the action of the mass on the string,
the wave dynamics follows a new equation obtained from
the variational principle δ[

∫
dt

∫
dx(Ls + Lint )] = 0, whereas

symmetrically the modified dynamics of the sliding mass is
obtained from δ[

∫
dt (Lp + Lint )] = 0. Altogether, this leads

to the following set of coupled equations:

mpẍp(t ) = −∂xu(t, x)|x=xp(t ) N (t ), (10a)

N (t ) = mp
[
z̈p(t ) + ω2

pzp(t )
]
, (10b)

�u(t, x) = −N (t )

T
δ(x − xp(t )) (10c)

with the holonomic condition (9). Interestingly, after elim-
ination of N (t ), Eqs. (10a) and (10b) can equivalently be
rewritten as

ẍp(t ) = −∂xu(t, x)|x=xp(t )
[
z̈p(t ) + ω2

pzp(t )
]
. (11)

Remarkably, this equation is independent of the mass mp,
a fact which is reminiscent of acoustic analogs of grav-
itational forces in hydrodynamical systems [21]. We also
point out that Eqs. (10a)–(10c) can easily be interpreted us-
ing a Newtonian language. The Lagrange multiplier N (t ) is
the vertical reaction force acting on the sliding mass while
−∂xu(t, x)|x=xp(t ) N (t ) is the horizontal component of this re-
action force [i.e., in the linear limit of small wave amplitude
we have ∂xu(t, x)|x=xp(t ) = tan θ � sin θ where θ is the angle
between the reaction force N and the z vertical direction].

We emphasize that Eq. (10c) can be rewritten as
λ̃(t, x)∂2

t u(t, x) = T ∂2
x u(t, x) = 0 with λ̃(t, x) = λ + mδ(x −

xp(t )). In other words, the mass m can also be interpreted
as a local translatable defect in the linear density λ. This
could have an impact for physical interpretations and future
experimental implementations.1

1The effect of gravity can be estimated for a vibrating string at the
pulsation ω by comparing the string vertical acceleration with that

C. Energy and momentum conservation

Moreover, the previous dynamics is completed by an anal-
ysis of energy and momentum conservation in the coupled
system (i.e., of prime integrals of motion). From the full action
and Lagrangian (1) [or alternatively from Eqs. (10a)–(10c)]
we deduce after lengthy but straightforward calculations the
local energy-momentum conservation laws for the field cou-
pled to the mass:

∂tε(t, x) + ∂xSx(t, x) = −Nδ(x − xp(t ))∂t u(t, x)|x=xp(t ),

∂t gx(t, x) + ∂xTxx(t, x) = Nδ(x − xp(t ))∂xu(t, x)|x=xp(t ),

(12)

where ε = 1
2 T [ 1

c2 (∂t u)2 + (∂xu)2] and gx = − T
c2 ∂t u∂xu are,

respectively, the u-field energy and linear (pseudo)momentum
density of the acoustic field along the string. Similarly,
Sx = c2gx and Txx = ε are, respectively, the energy and
(pseudo)momentum density flow along the x direction
(Txx is the constraint tensor of the field which has only
one component here). Moreover, combining Eq. (12) with
Eqs. (10a)–(10c) leads to

d

dt

{∫
dx ε(t, x) + 1

2
mp(ẋp)2

+ 1

2
mp

[
(żp)2 + ω2

p(zp)2
]} = 0, (13a)

d

dt

{∫
dx gx(t, x) + mpẋp

}
= 0, (13b)

which shows that the total energy and linear momentum of the
system are conserved.

We stress that despite its nonrelativistic nature our model
differs from the one proposed in [17] which considered
a Klein-Gordon wave equation from the start, i.e., [� +
�2

m
c2 ]u(t, x) = −N (t )

T δ(x − xp(t )). In [17] it was shown that
such a Klein-Gordon equation with a source term can be used
to generate a mechanical analog of a wave-particle duality.
Here we show that it is not necessary to introduce such a com-
plication. An inhomogeneous d’Alembert equation, i.e., as in
Eq. (10c), is already sufficient to reproduce a wave-particle
duality. As we show in the following, this is in complete
agreement with original ideas developed by de Broglie [22].

III. BRADYONIC OR SUBSONIC REGIME:
WAVE-PARTICLE DUALITY

A. Transparency regime

Let us now focus on a particular class of motion for which
the coupling force N (t ) between the field and the particle
vanishes: This regime, hereafter referred to as transparency
and which corresponds to a uniform movement of the particle

of gravity g. Typically, as soon as the nondimensional number uω2

g
is much larger than unity, gravity is small in comparison with the
string acceleration so that gravity can be neglected in the problem.
Experimentally, for a string vibrating with an amplitude of about
1 cm at a frequency around 1 kHz, the vertical acceleration is roughly
4π 2×10−2–106 that is 4105 m/s2, much larger than g = 10 m/s2.
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along the string, is very rich despite its apparent simplicity. In
this regime, the vertical oscillation of the masslet is no longer
forced and we have

mp
[
z̈p(t ) + ω2

pzp(t )
] = N (t ) = 0 (transparency) (14)

yielding a purely harmonic vertical motion

zp(t ) = A cos (ωpt + ϕ) (15)

with A and ϕ real constants. Equations (10a) and (10c) yield

ẍp(t ) = 0, �u(t, x) = 0 (16)

which results in an inertial movement for the particle: In other
words, the masslet trajectory is a uniform translation along x
combined to a purely harmonic vertical oscillation along z:

xp(t ) = vpt + xp,i (17)

with xp(0) = xp,i and vp(t ) = vp two real constants.
In this configuration, the different degrees of freedom
are decoupled and in particular

∫
dx ε(t, x), 1

2 mp(ẋp)2,
1
2 mp[(żp)2 + ω2

p(zp)2],
∫

dx gx(t, x), and mpẋp are constants
of motions. We emphasize that the oscillatory motion zp(t ) is
reminiscent of de Broglie’s original idea [1,22] of associating
a local clock to any particle. Here, we have a more detailed
mechanical model for which we see that the uniform motion
given by Eq. (17) is dynamically linked to the harmonic
oscillation defined by Eq. (15).

Concerning the string field u(t, x), several solutions are a
priori available. Indeed, the general solution of �u(t, x) = 0
reads as u(t, x) = f (t − x/c) + g(t + x/c) corresponding to
two arbitrary pulses f (t ) and g(t ) propagating, respectively,
along the +x and −x directions. Considering, for example,
the case g = 0 and using the holonomic condition (9) one gets
f (t (1 − vp

c ) − xp,i

c ) = A cos (ωpt + ϕ), i.e.,

f (t ) = A cos

[
ωp

1 − vp

c

(
t + xp,i

c

)
+ ϕ

]
. (18)

This motion would correspond to a mass “surfing” on a
monochromatic propagative wave with pulsation ωp

1− vp
c

. How-

ever, while Eq. (18) is interesting in itself, we are not going
here to develop this approach further. Instead, we now follow
the physical intuitions of de Broglie and seek solutions for
the homogeneous equation �u = 0 such that in a comoving
inertial frame R′ translating at velocity vp with the particle,
the field u would appear as stationary.

B. Searching for standing fields u in the transparency regime:
A relativistic perspective

Following the above-mentioned intuition, we search for
a coordinate transform yielding a stationary solution for
the field. Interestingly, a Galilean transformation of the co-
ordinates (t ′ = t , x′ = x − vpt) which lets the time flow
unchanged fails to bring a standing solution. This coordinate
change, although legitimate here for a Newtonian approach,
is however too crude to allow for clock synchronization at
a distance. A coordinate transformation that does not let the
time unaltered is required to bring a stationary solution.

Actually, a “first-order” Poincaré-Lorentz transformation
of the form x′ = x − vpt , t ′ = t − vp

c2 x is already sufficient

to ensure the invariance of the free wave equation. This is
because the term − vp

c2 x results from a time synchronization
procedure for clocks located at different points of inertial
frames R and R′ as already proposed by Poincaré [23]. More-
over, the d’Alembert operator � being invariant under the
usual Lorentz transformation � = �′, we make use of the
following coordinate change:

x′ = γp(x − vpt ), t ′ = γp

(
t − vp

c2
x

)
, (19)

with γ −1
p =

√
1 − v2

p

c2 so that in the Lorentz-Poincaré group in
dimension 1 + 1, the field u(t, x) appears as a scalar invariant
field, i.e., u(t, x) = u′(t ′, x′). We point out that the variables
t ′ and x′ have no direct physical meaning here since we are
working in the context of Newtonian dynamics where the time
is absolute. However, Eq. (19) is used as a mathematical tool
for finding the solutions of the d’Alembert equation under the
restriction Ma < 1. In this context we emphasize that Voigt
[24] already used the Lorentz transformation as a mathemat-
ical tool in optics but he did not give a clear interpretation of
this transformation. Here, instead the Lorentz transformation
is not completely formal but allows us to enlighten the role of
the group symmetry associated with the wave equation. This
analysis is strongly related to de Broglie’s own work where
the use of relativistic concepts were key for understanding
wave-particle duality.

Searching for a standing solution in the Lorentzian co-
moving frame R′ that ensures a “time-space” separation
u′(t ′, x′) = F (t ′)G(x′), one gets

1

c2

d2F

dt ′2 G − F
d2G

dx′2 = 0 (20)

which turns into a set of equations

d2F

dt ′2 + ω′2F = 0,
d2G

dx′2 + ω′2

c2
G = 0 (21)

with ω′ a complex constant to be determined. For the case
of interest when ω′ is real, F and G are harmonic so that we
obtain an “amplitude modulated” field u′(t ′, x′):

u′(t ′, x′) = B cos (ω′t ′ + η) cos

(
ω′

c
x′ + ξ

)
= u(t, x)

= B cos

[
ω′γp

(
t − vp

c2
x

)
+ η

]

× cos

[
ω′

c
γp(x − vpt ) + ξ

]
, (22)

B, η, and ξ being three real constants. They can be determined
by using the holonomic condition expressed for the case of the
uniform motion zp(t ) = u(t, x = vpt + xp,i ). It follows that

u(t, x = vpt + xp,i ) = B cos

(
ω′

γp
t + η − ω′γpxp,ivp

c2

)

× cos

(
ω′

c
γpxp,i + ξ

)
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which, by identification with z0(t ) given by Eq. (15), yields

ϕ = η − ω′γpxp,ivp

c2
+ 2πn (withn ∈ Z), (23)

A = B cos

(
ω′

c
γpxp,i + ξ

)
, (24)

and above all the relation

ωp = ω′

γp
. (25)

Equation (25) differs from the original de Broglie model
which imposes the relativistic phase harmony condition ωp =
ω′. We will go back to this issue in Sec. III E.

C. Physical interpretation and the de Broglie–Bohm
pilot-wave analogy

Let us now examine this transparent regime and its
underlying quantum interpretation. To give a meaningful de-
scription of the above-cited condition, we can write u′ = u in
Eq. (22) in the form u = B cos Sbrad cos �brad with

Sbrad = ω′t ′ + η = ωt − kx + η,

�brad = ω′

c
x′ + ξ = ω

c
(x − vpt ) + ξ (26)

with ω = ω′γp, k = ωvp/c2. Besides, the following dispersion
relation applies:

ω2

c2
− k2 = ω′2

c2
(27)

between the pulsation ω and the wave vector k. The quantity
Sbrad plays the role of a phase for a plane (carrying) wave
ψ (t, x) = eiSbrad , solution of the Klein-Gordon equation(

1

c2
∂2

t − ∂2
x

)
ψ (t, x) = −ω′2

c2
ψ (t, x). (28)

The phase velocity vph is defined by the condition dSbrad = 0,
which implies

vph = ω

k
= c2

vp
> c (29)

in accordance with the formulas obtained by de Broglie [2].
Besides, �brad in Eq. (26) defines an envelope (i.e., a group)
velocity which identifies with the particle’s velocity vp (setting
d�brad = 0 we get dx/dt = vp). Furthermore, we deduce the
Rayleigh formula vgr = dω

dk = vp which was also obtained by
de Broglie. This is clearly reminiscent of Hamilton’s formula
dHp

dPp
= vp if we identify the Hamiltonian or energy function

Hp := mpc2γp and the linear momentum Pp := mpγpvp with,
respectively, Qω and Qk where Q is a constant having the di-
mension of an action. The similarity between Q and h̄ is clear
and is reenforced if we write Eq. (28) in the limit Ma � 1 as

iQ∂t� � − Q2

2mp
∂2

x ψ (t, x) + mpc2ψ (t, x) (30)

which is identical to Schrödinger’s equation after the substi-
tution Q → h̄ [similarly in the Klein-Gordon equation (28)

we can replace ω′2
c2 by

m2
pc2

Q2 in agreement with standard text-
books]. Moreover, we can also write Hp = −Q∂t Sbrad and

Pp = Q∂xSbrad which are reminiscent of Hamilton-Jacobi
equations with QS playing the role of an action and, therefore,
we have

vp = −c2 ∂xSbrad

∂t Sbrad
(31)

which is the guidance formula introduced by de Broglie in
his pilot-wave interpretation [3,6] and which leads to vp =
Q ∂xSbrad

mp
in the limit Ma � 1 in agreement with Bohmian me-

chanics [6,7]. Therefore, altogether we recover de Broglie’s
assumptions casting the double-solution theory [3] with a ψ
wave also called the guiding wave (solution of the Klein-
Gordon equation) together with the u wave (solution of
the homogeneous d’Alembert equation) associated with the
particle’s movement. Importantly, in our approach (and in
contradistinction to [17]) we start from the d’Alembert equa-
tion and not from the Klein-Gordon equation. Still, we are
able to obtain a guiding wave ψ which is solution of Eq. (28),
i.e., the Klein-Gordon equation. In other words, the mass term
of the Klein-Gordon equation has been generated from the u
field itself. This agrees with a model already presented by
de Broglie in [22], i.e., two years before the model named
traditionally the double solution [3] and based on the Klein-
Gordon equation.

The condition (25) on the frequency can also be written in
terms of phase and becomes a phase-locking condition, since
for x = xp(t ) one gets

Sbrad = ω′t ′ + η = ω′

γp
t + ϕ = ωpt + ϕ (32)

which expresses the phase locking of the particle’s clock (with
pulsation ωp) to that of the wave (with pulsation ω or ω′).

D. Generating the transparent field u(x, t )

Following de Broglie [22,25], we can rewrite the total
wave u as a sum of waves [by means of the trigonometric
identity 2 cos F cos G = cos (F + G) + cos (F − G)] to give
a physically meaningful interpretation

u′(t ′, x′) = B

2
cos

[
ω′

(
t ′ + x′

c

)
+ η + ξ

]

+ B

2
cos

[
ω′

(
t ′ − x′

c

)
+ η − ξ

]
(33)

or, equivalently,

u(t, x) = B

2
cos

[
ω′γp

(
1 − vp

c

)(
t + x

c

)
+ η + ξ

]

+ B

2
cos

[
ω′γp

(
1 + vp

c

)(
t − x

c

)
+ η − ξ

]
. (34)

It is another way to express u as the sum of two
counterpropagating waves u(t, x) = u+(t, x) + u−(t, x) with
(i) u− = B

2 cos [ω−t + ω−x/c + η + ξ ] a wave with a low-
frequency Doppler shift ω− = ω(1 − vp

c ) propagating along
the −x direction, and (ii) u+ = B

2 cos [ω+t − ω+x/c + η − ξ ]
a wave with a high-frequency Doppler shift ω+ = ω(1 + vp

c )
propagating along the +x direction. Experimentally, this
decomposition would allow us to generate the resulting
modulated transparent u field appearing in Eq. (22) as the
sum of two plane waves.
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FIG. 2. The transparent regime for a bradyonic (i.e., subsonic)
particle plotted from the analytical solutions described in the paper.
An equivalent animation obtained from the numerical code of the
full set of equations is available in the Supplemental Material [26].
For this example, we have vp/c = 0.1, xp,i = 0.1 for a string length
of L = 1 and c = 1 (in natural units). We have chosen a ψ-wave
temporal period Tphase = 2π

ω
= 10 and η = ξ = 0. The continuous

thick gray line is the total field u(x, t ) which can be decomposed into
the phase wave ψ (continuous blue line) and the group wave (dashed
gray line). The whole field is shown at two different instants (a) t = 0
and (b) t = 0.08 clearly demonstrating the subsonic (or bradyonic)
regime of the particle. The particle’s initial condition is set so that
it is at a maximum of the group phase �brad [see Eq. (26)] and is
clearly locked to it along time. The red arrows in (a) and (b) compare
the position of the particle at time t = 0 and 0.08, whereas the blue
arrow shows the position and displacement of a phase maximum at
the two instants t = 0 and 0.08.

The analytical solution is plotted in Fig. 2 for this trans-
parency regime (the normalized parameters are indicated
in the caption). Going back to Eq. (26) we have for the
phase wave a temporal period Tphase = 2π

ω
and a spatial pe-

riod λphase = 2π
ω

c2

vp
which have to be compared with the

temporal and spatial periods of the group wave Tgroup =
2π
ω

c
vp

� Tphase, λgroup = 2π
ω

c � λphase (as illustrated in Fig. 2
for λphase/λgroup = 10). Importantly, we have here the well-
known de Broglie formula [1]

Pp = 2πQ

λphase
. (35)

It is interesting to note that in de Broglie’s approach the wave
field was a solution of a nonhomogeneous equation including
a source term for the particle �u(t, x) ∝ δ(x − xp(t )) [i.e.,
like in Eq. (10c)]. Here, instead the transparency condition
N (t ) = 0 imposes the field equation �u(t, x) = 0 and this
simplifies the interpretation of Eq. (34) as the sum of two
plane waves whereas de Broglie had to involve a complicated
sum of advanced and retarded waves emitted by the particle
itself [22,25].

More generally, it is clear that the equations of motion
presented here are strongly nonlinear, and except for a few
specific regimes like the transparent one discussed in this
paper, no analytical solutions are usually reachable. In or-
der to further investigate the physics of our model, we have
employed a numerical scheme based on standard finite dif-
ferences through a Runge-Kutta of order 4 (see, for example,
[27]). Since the mutual interaction between the mass and the
string only enters as an external source term for the each other,
we have implemented separately their differential equations
and solve the full system self-consistently. We first start by
fixing initial compatible configurations for both the string and
the mass. During the time resolution process, an update of
the string is performed, accounting for the presence of the
mass. Once this space-time update is achieved, we proceed to
the update of the mass now accounting back to the new state
of the string. We continue so on and so forth until desired
time periods. The convergence is ensured by respecting the
von Neumann stability criterion. Despite the above-mentioned
nonlinearities in the complete set of equations, the algorithm
appears to be well stable and reproduces very precisely the an-
alytical solutions discussed here (transparency). This validates
our approach and indicates that the coupling between the mass
and the string does not seem to be that crucial in the conver-
gence. For this first work, we have employed our algorithm in
order to complement with the dynamics of the discussed ana-
lytical solutions. In particular, we have recorded a movie [26]
showing the behavior of the mass in the transparency regime.
The question of other possible emerging exotic regimes in
our coupled system is very interesting, though, and deserves
a proper study. We dedicate a more systematic numerical
analysis to a future work.

E. Discussions

The calculations above deserve some comments in relation
with de Broglie’s picture. Indeed, it is noteworthy that the
pulsation ωp remains unchanged regardless of the particle’s
speed and is in particular different from ω′ (which is velocity
dependent). It is slightly different from de Broglie’s results
and is a consequence of our mixed approach, combining a
Lorentz transformation (by means of c the speed of sound) in a
Newtonian framework for which relativistic dynamics do not
apply. More precisely, in de Broglie’s approach which is fully
relativistic (i.e., with the sound celerity replaced everywhere
by the light velocity) the particle’s internal clock with pulsa-
tion ωp is defined in the rest frame R′, not in the laboratory
frame R. The phase-locking condition reads as now

Sbrad = ω′t ′ + η = ω′

γp
t + η − ω′γpxp,ivp

c2
= ωpt ′ + ϕ (36)

and we have thus ω′ = ωp = ω
γp

which differs from Eq. (25)
by a prefactor γp associated with a relativistic time dilation
(we have also η = ϕ since ϕ is now defined in the rest frame
[17,22]). In the nonrelativistic limit where vp

c � 1 and γp � 1
de Broglie’s theory reduces to ω � ω′ = ωp. This is iden-
tical in our model to the regime Ma � 1 (where c is now
the sound velocity) so that the difference between the two
approaches vanishes for sufficiently slow particle motions. It
is interesting to remark that in the Ma � 1 regime the Hamil-
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tonian Hp := mpc2γp which was formally introduced reduces
to Hp � mpc2 + 1

2 mpv
2
p which, up to an additive constant, is

the translational kinetic energy associated with the particle
motion along x (similarly Pp � mpvp which identifies with the
translational linear momentum of the particle). Since c is here
the sound velocity, mpc2 can not physically be identified with
a rest energy which is a relativistic Einsteinian concept. This
once again stresses the similarities and differences between
our mechanical analog and de Broglie’s own approach. For
similar reasons, we have no right to identify the integration
factor Q discussed previously with the Planck constant h̄.
This could only hold in de Broglie’s model for a genuine
quantum particle. Still, the mechanical analogy works fine
for Ma � 1 and could be actually extended to the relativistic
regime by implementing a covariant, i.e., Einsteinian, me-
chanical model. Here, we nevertheless stick to the Newtonian
framework which is closer to the experimental realization
and is already sufficient to grasp the essential features of de
Broglie’s mechanical model.

IV. TACHYONIC OR SUPERSONIC REGIME

So far, we have discussed the dynamics of a particle mov-
ing on the string with a velocity vp smaller than that of the
waves on this string. Since this motion is completely governed
by the interaction with the field u, we do not expect the
particle to spontaneously cross the sound barrier without the
use of an external force. However, one could choose initial
conditions such that vp > c. We would then find a whole new
supersonic regime, which we can investigate. As explained
in the Introduction we choose to refer to such a particle as
a “tachyon” by analogy with the eponymous hypothetical
particles introduced in special relativity, which are a class
of solution for the dynamics associated with faster-than-light
motions [28–31] (symmetrically the case studied previously
with vp < c is referred to as “bradyonic” motion [28–31]).
Indeed, this velocity c appears in the Lorentz transformation
that we use for the field, as in the Lorentz transformation of
special relativity, and appears as an asymptotic limit for the
velocity vp in both cases. However, one should once again not
confuse those two velocities: it is a fundamental limit within
the special relativity framework, while it is not in the context
of a particle sliding on a string. Supersonic particles (anal-
ogous to supersonic aircrafts in a fluid) are indeed possible
solutions. Thus, it is completely reasonable to study these
“acoustic” tachyons, which are physically viable solutions
of the dynamical equations. For this purpose, we see from
Eq. (19) that if we set x′ = 0, we get x = vpt and therefore the
ct ′ axis corresponds to the trajectory of a particle with velocity
vp < c (this is of course the definition of a comoving rest
frame for such a bradyonic motion). If we now set t ′ = 0, we
get x = c2

vp
t = wpt which corresponds to a case where the x′

axis identifies with the trajectory of a tachyonic particle with
velocity wp = c2

vp
> c. This is the first hint that the dynamics

of tachyons is completely symmetrical with that of “normal”
bradyonic particles. Indeed, we can rewrite Eq. (19) as

t ′ = 1

c
�p(wpt − x), x′ = c�p

(
wp

c2
x − t

)
, (37)

with �p = (
w2

p

c2 − 1)−1/2 = γp
vp

c and where we see, by com-
paring with the original Lorentz transformation, that the roles
of space and time have been reversed in the tachyonic case,
compared to the bradyonic one. Furthermore, like for Eq. (19)
the physical meaning of Eq. (37) is not immediate and here
we use it mainly as a mathematical tool for guessing at an
interesting solution of the wave equation. More precisely, let
us consider once again the stationary field

u′(t ′, x′) = B cos (ω′t ′ + η) cos

(
ω′

c
x′ + ξ

)
(38)

defined with the variables t ′ and x′. From the analysis made
before we can use this field to match the motion of a tachyonic
particle with velocity wp = c2

vp
. For this we use in Eq. (38)

a wave with the same pulsation ω′ as in the badryonic case.
However, as we will see below it implies that we use a differ-
ent spring with pulsation �p 
= ωp. Hence, using Eq. (37) we
get in the laboratory frame

u(t, x) = B cos

[
−ω′

c
�p(x − wpt ) + η

]

× cos

[
−ω′�p

(
t − wp

c2
x

)
+ ξ

]
. (39)

We find that, once again, the roles of two quantities have been
swapped. We have now

�tach = ω′t ′ + η = −ω′

c
�p(x − wpt ) + η,

Stach = ω′

c
x′ + ξ = −ω′�p

(
t − wp

c2
x

)
+ ξ . (40)

Here, the carrying phase wave and the envelope have been
swapped: the supersonic phase wave that we had in the brady-
onic case is now traveling alongside the particle; the group
wave is now slower than the particle and has become the phase
wave (i.e., Stach = �brad and Sbrad = �tach). The field itself
remains unchanged, and only the roles of its two components
with respect to the particle have been changed. Thus, all the
results that were obtained in the case of a particle with velocity
vp can be used for a tachyonic particle of velocity wp = c2/vp

if we keep in mind the symmetrical nature of this supersonic
regime. More precisely, considering a uniform motion xp(t ) =
wpt + Xp,i with Xp,i a constant and using the holonomic condi-
tion (9) [i.e., u(t, xp(t )) = zp(t )] together with the oscillatory
zp(t ) motion of Eq. (15) we get by identification with Eq. (39)

ϕ = −ξ − ω′�pXp,iwp

c2
+ 2π p(withp ∈ Z),

A = B cos

(
ω′

c
�pXp,i − η

)
,

�p = ω′

�p
=

ω′ c
vp

γp
. (41)

Comparing the frequency-locking condition with the result
obtained in Eq. (25) we deduce the constraint

ωp
c

vp
= �p (42)

and, consequently, ωp < �p.
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There are, however, a few noteworthy differences in some
of the equations, mainly the dispersion relation between the
wave pulsation � = �′�p (here we use the notation �′ = ω′
to emphasize the role of the phase wave) and wave vector
K = �

wp

c2 which becomes

�2

c2
− K2 = −�′2

c2
(43)

and the Klein-Gordon equation for the wave � = eiStach (with
Stach = Kx − �t + ξ )

�� = +�′2

c2
�, (44)

where the signs in front of �′2
c2 have been reversed compared

with ω′2
c2 in Eqs. (27) and (28). This is specific of tachyonic

motions where the pulsation or mass can be envisioned as
being purely imaginary �̃ = i�′. We have

� = �̃√
1 − w2

p

c2

(45)

and for the tachyon the pure imaginary number i in the nu-
merator is exactly compensated by the same pure imaginary
number in the denominator [28,29,31]. Equation (44) thus
equivalently reads as �� = − �̃2

c2 � which is the usual form
for the Klein-Gordon equation but now with a purely imagi-
nary mass.

Once more, we point out that our supersonic particle is only
superficially looking as a tachyon. Indeed, genuine relativistic
tachyons would induce reluctant causality and thermody-
namic problems [28,29,31,32] which are often considered as
fatal objections to their mere existence. Here, the analogy
with tachyon is not complete. For instance, observe that we
can in analogy with the subsonic regime define the Hamilto-
nian and linear momentum as Hp := mpc2�p = Q� and Pp :=
mpwp�p = QK . Physically, this corresponds to a tachyonic
particle of imaginary mass imp = iQ�′/c2 = iQω′/c2 while
the physical “Newtonian” mass is of course mp. These expres-
sions are in general clearly different from the usual kinetic
energy and momentum of a Newtonian particle.

To illustrate the tachyon dynamics we show in Fig. 3
an example of this transparency regime (the normalized pa-
rameters are indicated in the caption). Here, we have for
the phase wave the temporal period Tphase = 2π

�
= 2π

ω
c
vp

=
1 and a spatial period λphase = 2π

�
c2

wp
= 2π

ω
c = 0.1 which

have to be compared with the temporal and spatial peri-
ods of the group wave Tgroup = 2π

�
c

wp
= 2π

ω
= 0.1 � Tphase,

λgroup = 2π
�

c = 2π
ω

c
vp

= 1 � λphase (as illustrated in Fig. 3 for
λphase/λgroup = 0.1). Clearly, the role of the phase and group
waves has been swapped compared to the bradyonic case.

V. CONCLUSION

A. Speculations about Bose-Einstein statistics

We would like to start this conclusion by pointing out
a possible interpretation in terms of Bose-Einstein statistics
of the collective transparent movement of multiple particles.

FIG. 3. The transparent regime for a tachyonic (i.e., supersonic)
particle of velocity wp/c = 10, and initial coordinate Xp,i = 0 (in
natural units). The two panels correspond to observation times (a)
t = 0 and (b) t = 0.08. The other parameters of the wave and string
are unchanged with respect to Fig. 2. In particular, we have Tphase =
2π

�
= 2π

ω

c
vp

= 1 (see text). Like the subsonic case, the particle is
locked to the group wave cos �tach (dashed gray line) and is clearly
faster than the velocity of the phase wave cos Stach on the string (blue
continuous line). The red and blue arrows compare the displacement
of the particle and phase wave between t = 0 and 0.08.

Indeed, the last section stressed the strong symmetry existing
between bradyonic and tachyonic particle.

Remarkably, it means that a same u wave can carry several
bradyons of velocity vp associated with a spring of pulsation
ωp and tachyons of velocity wp = c2

vp
but with a spring of

pulsation �p (compare Figs. 2 and 3). The different particles
could actually move together on the same string since the
transparency condition N (t ) = 0 ensures that the particles do
not interact with the wave and completely ignore each other.
Therefore, we speculate that we have here the possibility to
generate collective excitations actually reminiscent of bosons
surfing on a given wave.

Consider, for instance, the case of n particles (bradyons
or tachyons) coherently driven by a carrying u wave. The
situation shows some similarity with a Fock state |n〉 in quan-
tum mechanics for a collective excitation (e.g., photons or
phonons) with n energy quanta. To make sense the analogy
should be discussed in the context of the pilot-wave interpre-
tation advocated by de Broglie and Bohm. More precisely, in
the pilot-wave interpretation a bosonic collective excitation
must be analyzed in the configuration space. Therefore, to
a Fock state |n〉 we associate the many-body wave function
�n(x1, x2, . . . , xn, t ) = ∏i=n

i=1 �(xi, t ) with �(xi, t ) a single-
particle wave function [in this work we have a plane wave
�(x, t ) = ei(kx−ωt )] and x1, x2, . . . , xn are the coordinates of
the different particles [7,8]. Moreover, the single-particle
wave-function �(x, t ) is the same for all the particles from
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i = 1 to n which means that all these particles are guided by
the same wave. Indeed, in the pilot-wave interpretation the
velocities of the different particles are given by

dxi(t )

dt
= h̄

m

∂

∂xi
Sn(x1, x2, . . . , xn, t ) = h̄k

m
, (46)

where Sn(x1, x2, . . . , xn, t ) is the phase of the n-particle wave
function �n(x1, x2, . . . , xn, t ). Clearly, all the particles have
the same constant velocity. This clearly motivates our analogy
between a pure Fock state in quantum mechanics and the
collective motion of beads guided by a base wave.

Following this analogy, we could subsequently imagine
a statistical ensemble of such strings carrying a various
number of quanta n = 0, 1, . . . ,+∞ and subsequently de-
velop a particle bosonic statistics with partition function Z =∑n=+∞

n=0 e− nε
ω′

KBT (KB is the Boltzmann constant and T the tem-
perature of the ensemble). The energy εω′ is the Hamiltonian
Hp associated with the bradyons or tachyons characterized by
the frequency ω′. We naturally obtain Planck’s law or more
generally and realistically a bosonic statistics if the number
of particles is finite and fixed. Clearly, this issue is very
interesting for developing mechanical analogs of quantum
statistics and will deserve further studies in connection with
equilibrium and nonequilibrium thermodynamics.

B. Discussion and perspectives

We have developed a simple nonrelativistic mechanical
analog of de Broglie’s wave-particle duality. In the model
considered, an oscillating bead or particle mimics an internal
quantum clock in phase with a transverse acoustic wave field
u(t, x). Despite its nonrelativistic nature the model is based on
a Lorentz transformation where the sound celerity c of waves
on the string replaces the light velocity. Therefore, the model
offers strong similarities with de Broglie’s approach which
was based on special relativity. De Broglie named this phase-
locking feature the “phase harmony” [3] since it emphasizes
the fundamental role of the quantum relation mpc2 = h̄ωp.
Like with de Broglie’s theory the acoustic u field here gen-
erates a phase wave � acting as a guiding field for the particle
in pure analogy with Bohmian interpretation of QM. In other
words, in the presented model the u field unifies the particle
and the wave in an inseparable structure as summarized by
the holonomic condition zp = u(t, xp). Thus, one can speak
about “wave monism” and in that limited sense our analogy
deciphers the meaning of wave-particle duality. Therefore, our
work enables to figure out and visualize clearly a possible
mechanical interpretation of the wave-particle duality and es-
pecially of the phase harmony. It gives a deeper understanding
of the possible cause for the clock synchronization on which
de Broglie’s theory leans.

Interestingly, our approach which was developed for both
the “bradyonic” (i.e., subsonic) and “tachyonic” (i.e., super-
sonic) regime is a priori not limited to uniform motions.
Indeed, the set of equations (10a), (10b), and (10c) can easily
be extended in order to include the effects of a more complex
potential V (t, xp, zp). For example, by adding a longitudinal
potential V (t, xp) Eq. (10a) becomes

mpẍp(t ) = −∂xu(t, x)|x=xp(t ) N (t ) − ∂xV (t, x)|x=xp(t ), (47)

whereas Eqs. (10b) and (10c) are left unaffected. The model
could thus in principle be applied to regimes involving con-
fining potentials which are of particular interest for further
studies on mechanical analogs of QM.

Now, the similarity between our acoustic model and the
bouncing drop model would deserve a dedicated discussion.
Although the two approaches do not seem very different at
first glance, they do not in fact rely on the same fundamentals.
First of all, unlike bouncing drops, the particle in our acoustic
model does not “surf” on the scattered wave it previously pro-
duced. In our system, the uniform movement corresponds to
a perfect decoupling between the bath and the oscillator. Sec-
ond, no Faraday instability is required in the acoustic system,
while it is essential to bouncing drop dynamics. Even more
crucially, there is no superluminal phase wave in the bouncing
drop system. Because both systems yield a quantum analog to
a certain extent, a careful examination of these differences is
probably key to understanding the quantum world.

Finally, while the basis of our mechanical model is rather
simple, the complexity of the various dynamics (with N = 0
and N 
= 0) may reveal interesting and fundamental questions
when extending to higher dimensions (2D or 3D) and to many
interacting particles. In this context, the continued develop-
ment of the numerical method employed to generate the video
(see [26]) will bring further insight into the complex dynamics
of the system [especially when the “transparency” condition
N (t ) = 0 is no longer valid] and for several interacting parti-
cles.

From an experimental point of view, this work naturally ap-
peals for an experimental demonstration of the wave-particle
dynamics on a string. Here, we would like to suggest at least
two possible routes for observing the transparent regime with
subsonic and supersonic particles moving along a string.

The first setup could rely on a simple vibrating string (like a
piano string), excited with a modulated (group × phase) signal
from both ends of a fork. For a given length of the string (and
therefore of the fork), it is possible to obtain periodic condi-
tions at both ends so that both vibrate in phase with exactly

FIG. 4. Principle of a typical experiment for testing a mechanical
analog of wave-particle duality. A rigid fork transmits mechanical
vibrations from an excitation source (vibrating pot P) to an oscil-
lating string attached to the fork at both ends. A sliding (red) bead
constrained to move along the string is connected to a spring attached
to a moving mass (ring on a rail). The bead is acting like a quantum
particle excited by the wave propagating along the string (see text).
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the same signal and generate the amplitude-modulated signal
required to produce transparent movement of the bead. As for
the particle, the elastic force (responsible for the internal par-
ticle frequency) can be achieved either by attaching a vertical
spring to a mass, moving without friction along a horizontal
guiding rod, or by creating magnetic elastic potential such that
any departure from the neutral line of the string would yield
an opposite vertical restoring force on the mass, for instance.
A second and more complex setup would take advantage of
a levitation configuration: by using a superconductive masslet
flowing above a linear magnetic rail, one could obtain a stable
elastic trap and ensure minimal friction along the string. An

example of realization is illustrated on Fig. 4. By tracking and
imaging the particle moving along the string with a high-speed
camera, one should be able to visualize the standing field
associated with the particle regardless of its nature (bradyonic
or tachyonic).
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