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Nonlinear parametric oscillator: A tool for probing quantum fluctuations
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Nanomechanical oscillators have, over the last few years, started probing regimes where quantum fluctuations
are important. Here we consider a nonlinear parametric oscillator in the quantum domain. We show that in the
classical subharmonic resonance zone, the quantum fluctuations are finite but greatly magnified depending on
the strength of the nonlinear coupling. This should make such oscillators useful in probing quantum fluctuations.
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I. INTRODUCTION

The emergence of nanoscale devices [1–6] which feature
various kinds of nonlinear mechanical oscillators has made
it worthwhile to study the quantum dynamics of such sys-
tems. Since these devices as yet are on the verge of onset
of quantum effects [7–12], it makes sense to explore the
first effect of quantum fluctuations on such systems. Para-
metrically driven simple harmonic oscillators, governed by
the Hamiltonian H = p2

2m + 1
2 mω2x2(1 + ε cos �t ), have long

been essential in the field of ion trapping [13] and have been
extensively studied [14–17]. The classical dynamics governed
by this Hamiltonian is described by the Mathieu equation
and has striking properties. The equation shows divergent
subharmonic response [18] in a narrow zone around ω =
�/2(primary response) in the ε versus ω plane with sec-
ondary strong responses in narrower zones around ω = n�/2,
where n = 2, 3, 4, . . .. The particle concerned is supposed
to wander off to infinity in these resonance zones. While
the existence of the primary resonance was well known
(the technique of increasing the amplitude of oscillations
of the playground swing [19]), the first clear evidence of
existence of the higher resonances was provided by Turner
et al. [20]. Subsequently, the nonlinear dynamics of micro-
electronic and nanoelectronic mechanical oscillators (MEMS
and NEMS) have been extensively investigated to probe the
curious behavior of parametrically and directly driven nonlin-
ear systems [21–26]. A particularly intriguing application is
to the study of the Casimir effect [27]. A detailed review of
these theoretical and experimental contributions can be found
in Refs. [28,29].

Investigation of the quantum parametric oscillator also has
a long history. The Floquet functions and the Floquet energies
were calculated by Perelomov and Pelov [30] showing a dis-
crete spectrum in the classical stable zone and a continuous
one in the unstable region. The propagator for the system (for
an initial Gaussian wave packet) was obtained subsequently
by various authors [31–33]. The primary use of the nonlinear
quantum parametric oscillator at the early phase was in the

*Corresponding author: pcps@iacs.res.in

study of quantum optics. One of the earliest studies was by
Graham and Haken [34]. The issue of quantum noise in these
systems was addressed by Carmichael and Wolinsky [35].
Dynamical calculations for the quantum parametric oscillator
using a coherent state basis was carried out by Kinsler and
Drumond [36]. More recently, a nonlinear parametric oscilla-
tor was studied by Ding et al. [37] who considered two similar
ions in a linear Paul trap with the nonlinearity provided by the
Coulomb interaction among the ions. Of particular importance
in our context is the work of Dykman et al. [38] and Peano and
Dykman [39], where a rotating wave transformation is used
to generate a new Hamiltonian whose quasi-energies can be
studied.

In the early studies of quantum dynamics associated with
the above Hamiltonian, however, the focus has usually not
been on the instability zone. As stated clearly in the path
integral treatment [16], the focus is on reducing the problem
to an effective simple harmonic oscillator modeled by a static
Hamiltonian. Our aim in this work is to use the dynamics of
quantum averages to understand the evolution of the average
values of relevant dynamical variables. In the quantum oscil-
lator it is not sufficient to study the dynamics of the mean
position but also the higher moments which are the essential
features of a quantum system. The second moment which is
the variance V = 〈x2〉 − 〈x〉2 = 〈(x − 〈x〉)2〉 is the absolutely
nonignorable part of the quantum dynamics and is directly
related to the energy of the quadratic Hamiltonian considered
above. The mean position 〈x〉 follows exactly the Mathieu
equation written above and shows the same instability zones
as in the case of the classical problem. The immediate ques-
tion is whether the variance has divergence zones as well.
Recent publications [40–42] have revealed two interesting
facts about this system:

(1) The instability zones of both 〈x〉 and V originate from
the same points on the frequency axis in the ω-ε plane, i.e.,
ω = n �

2 (n = 1, 2, 3, . . .).
(2) The instability zones are completely identical. In

Refs. [40] and [42] the skewness and kurtosis have been stud-
ied as well.

In real systems, particles never wander off to infinity. If
they stray too far from the center then the nonlinear terms
in the Hamiltonian become important and a small amount
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of nonlinearity restricts the final amplitude to a large but
finite value. This is a natural phenomenon in molecular bind-
ing where the effective potential binding the atoms is of
a Lennard-Jones V (x) = V0[( a

x )
12 − ( a

x )
6
] or Morse V (x) =

V0[−1 + (1 − e−ax )2] variety, and these have a minima at
some value x = x0. Expansion around x = x0 gives quadratic
and higher order terms. An additional restoring term in the
Hamiltonian that has led to the largest amount of investiga-
tion corresponds to a cubic restoring force. The Hamiltonian
is now

H = p2

2m
+ 1

2
mω2x2(1 + ε cos �t ) + mλ

4
x4. (1)

The quartic term is small for displacements of the or-
der of angstroms. In an oxygen molecule, its contribution
to the vibrational ground stage energy is less than 0.1% of
the quadratic term. It increases with the quantum number
n and for n � 100 (semiclassical) can be a significant ef-
fect [43]. The corresponding classical dynamics as given by
ẍ = −ω2(1 + ε cos �t )x − λx3 has been well studied [25,44].
The primary resonance zone (here the response is subhar-
monic and of finite but large amplitude proportional to λ−1/2)
is around ω = �/2 and the zone is (ε � 1) − ε�/8 < δ <

ε�/8, where ω = �
2 + δ. These results can be obtained an-

alytically from the fixed points of the Krylov-Bogoliubov
flow equations. We use the Krylov-Bogoliubov scheme here
because it gives a direct route to the slow flow dynamics.
Identical results could have been obtained by using the two
timescales method or even a judicious combination of har-
monic balance and the Linstedt-Poincaré technique [45–47].

In this work we focus on the quantum dynamics ensuing
from the Hamiltonian of Eq. (1) in the weak quantum limit
[48–54] where the variance is small and the kurtosis and
higher moments are treated in a Gaussian approximation. Our
principal findings are the following:

(1) The trivial fixed point of the Krylov- Bogoliubov flow
equations are stable for δ > �/8, and the dynamics is a low-
amplitude oscillation about the trivial fixed point.

(2) The nontrivial fixed points of the Krylov-Bogoliubov
flow are completely wiped out by quantum fluctuations.

(3) Nevertheless, there is a finite but large-amplitude
quasiperiodic dynamics of both the mean position and the
variance in the classical instability zone.

We organize the present paper as follows: In Sec. II we
present a derivation of the quantum dynamics in the weak
quantum limit. In Sec. III we discuss how the model can be
treated in a standard nonlinear dynamics framework with the
help of Krylov-Bogoliubov method. In Sec. IV we solve the
model numerically and conclude the present work with a short
summary in Sec. V.

II. THE QUANTUM MODEL

We begin with a derivation of our dynamical system, using
the Heisenberg equation of motion for the expectation value
of an operator (Ehrenfest’s theorem),

d

dt
〈O〉 = ∂

∂t
〈O〉 + 1

ih̄
〈[O, H]〉, (2)

where H is the Hamiltonian given in Eq. (1).

Two derivatives for the position operator lead to

d2

dt2
〈x〉 = −ω2 f (t )〈x〉 − λ〈x3〉, (3)

where f (t ) = 1 + ε cos �t . We note that 〈x3〉 = 〈x〉3 +
3V 〈x〉 + S where S = 〈(x − 〈x〉)3〉 is the skewness. We sim-
plify the calculations by working with initial wave packets
which have S = 0 and by assuming that under the symmetric
Hamiltonian, the S = 0 situation will be maintained. Thus, the
dynamics of the mean position is

d2

dt2
〈x〉 = −ω2 f (t )〈x〉 − λ〈x〉3 − 3λV 〈x〉. (4)

To find the dynamics of the variance, we write

d2

dt2
〈x2〉 = 1

m

d

dt
〈xp + px〉 = 1

m

〈[
(xp + px)

ih̄
, H

]〉

= 2

m2
〈p2〉 − 2ω2 f (t )〈x2〉 − 2λ〈x4〉. (5)

Similarly,

d2

dt2
〈x〉2 = 2

m2
〈p〉2 − 2ω2 f (t )〈x〉2 − 2λ〈x3〉〈x〉. (6)

We thus obtain

d2V

dt2
= d2

dt2
(〈x2〉 − 〈x〉2)

= 2

m2
〈(�p)2〉 − 2ω2 f (t )V − 2λ[〈x4〉 − 〈x3〉〈x〉]

= 2

m2
〈(�p)2〉 − 2ω2 f (t )V − 2λ[K + 3V 〈x〉2]. (7)

In the last line, we have assumed S = 0 and K stands for the
kurtosis 〈(x − 〈x〉)4〉. Long but straightforward algebra gives

d

dt
〈(�p)2〉 = −m2ω2 f (t )

dV

dt
− m2λ

2

[
d

dt
〈x4〉 − 4〈x3〉d〈x〉

dt

]
.

(8)

Using the assumption S = 0 and noting that 〈x4〉 = K +
6V 〈x〉2 + 〈x〉4, where K is the kurtosis, we finally arrive at
the dynamics

d3V

dt3
+ 4ω2 f (t )

dV

dt
= −2ω2 df

dt
V − 12λ〈x〉2 dV

dt

− 6λV
d

dt
〈x〉2 − 3λ

dK

dt
. (9)

Our closed-form expression of the dynamical system is
obtained if we use a Gaussian closure to write K = 3V 2 and
obtain from Eq. (9)

d3V

dt3
+ 4ω2 f (t )

dV

dt
= −2ω2 df

dt
V − 12λ〈x〉2 dV

dt

− 6λV
d

dt
〈x〉2 − 9λ

dV 2

dt
. (10)

The two nonlinear coupled differential equations for 〈x〉
and V [Eq. (4) and Eq. (10)] constitute our dynamical system.
At this juncture, it is convenient to imagine all frequencies

052204-2



NONLINEAR PARAMETRIC OSCILLATOR: A TOOL FOR … PHYSICAL REVIEW E 102, 052204 (2020)

to have been scaled by the characteristic frequency ω0 of the
system and all lengths to have been scaled by the charac-
teristic length l0 of the system. The nonlinearity parameter
then becomes the dimensionless variable λ = λl2

0 /ω2
0. The

fact that we have made Eqs. (4) and (10) constitute a closed
dynamical system essentially means that terms containing h̄
explicitly have been dropped, and the variance V and 〈x〉2 are
small in the sense that λV/ω2 and λ〈x〉2/ω2 are small and
the higher moments are all obtained from 〈x〉 and V by the
Gaussian distribution constraint. This essentially defines the
weak quantum limit.

At this point, it is important to explain how our procedure
differs from the conventional semiclassical approach taken in
Refs. [48–53]. In these contributions, the point of view is to
look at classical dynamics from the Liouville approach of
starting with multiple initial conditions in phase space and
then letting the time evolution lead to spreading out of trajec-
tories which allows for the calculation of average values and
deviations therefrom. These averages are compared with the
naturally occurring quantum averages and fluctuations. The
correspondence exists for a short time interval and is supposed
to break down beyond a characteristic time. A very detailed
investigation of this has been carried out in Katz et al. [55]
for the driven Duffing oscillator. These authors find that in the
early stages of evolution, the quantum Wigner function and
the classical phase-space distributions agree well with each
other. An agreement between quantum observables and clas-
sical averages was also observed, but no particular timescale
for the agreement was seen. Our point of view is to look for
quantum averages only, which for linear systems is absolutely
straightforward (for all moments) but for nonlinear systems
gives rise to a hierarchy. The dynamics of the expectation
values 〈x〉 (position) and 〈p〉 (momentum) couple at least to
the variance V and as shown in our case to V and S (depending
on the nonlinearity, even higher orders may be involved). The
dynamics of V in turn couples to higher moments like kurtosis
(K), and one has an infinite order system. This happens in all
cases of Galerkin truncation of a nonlinear partial differen-
tial equation. To deal with such situations, closure schemes
were developed [32,33] where higher order moments were
expressed in terms of lower order moments and the approx-
imation that we have used here is the most frequently used
one in that context. In this approach, attention is focused on
long-time solutions—the usual goal in a dynamical system—
and hence what we will be looking at is long-time behavior of
the dynamical variables.

A very important quantity that we have not discussed so far
is the average energy. In general, for an autonomous system,
the average energy (expectation value of the Hamiltonian) is
a constant of motion and thus helps in keeping track of the
dynamics, described above. However, for the time-dependent
Hamiltonian that we are discussing here [Eq. (1), the energy
is not a constant of motion. In fact, using Eq. (2), its rate of
change is governed by

dE

dt
= d

dt
〈H〉 = −εmω3〈x2〉 sin ωt

= −εmω3[V + 〈x〉2] sin ωt .

The right-hand side would average out to zero, over a period
2π/ω if 〈x2〉 happens to be a constant. If 〈x2〉 (in reality the
V part of it) is periodic, with a period different from 2π/ω,
then it could be nonzero and significant. What we will find in
the next section is that it has a complicated time dependence
which can provide a small contribution to the average growth
rate of the energy, if averaged over 2π/ω. This could be the
signature of the quantum heating found by Dykman et al.
[38] in the parametrically modulated oscillator and later in
the driven Duffing oscillator [39]. It should be noted that
comparison with Dykman et al. [38,39] is valid only in the
limit of the bath temperature T tending to zero.

Our coupled dynamical system of Eqs. (4) and (10) do
not reveal very much—in particular, because they form a
nonautonomous system. We will need to solve the system
numerically to arrive at the true picture. This will be done
in Sec. IV. To get some insight, however, we will carry out
the standard simplifying technique of working with systems
as represented by Eqs. (4) and (10). The linearized system in
both cases is a Mathieu oscillator with a very strong response
when ω is close to �/2 (primary resonance). Accordingly,
we will carry out this simplification in Sec. III and see what
insight we can gather from this process.

III. A KRYLOV-BOGOLIUBOV TREATMENT

Since the subharmonic response of 〈x〉 at ω = �/2 is the
most spectacular classical limit associated with Eqs. (4) and
(10), we focus on this in the quantum case and add the con-
comitant variance dynamics which has to feature a periodic
response of frequency � as is obvious from the nonlinear
terms and is also known from the study of the quantum
Mathieu equation [40]. Accordingly we embark on a Krylov-
Bogoliubov procedure with the choice

〈x〉 = A cos
�t

2
+ B sin

�t

2

and V (t ) = V0(t ) + V1(t ) cos �t + V2(t ) sin �t . (11)

Interestingly, this procedure for the dynamical system is
analogous to the rotating wave approximation [canonical
transformation by u1 = exp(−ia†aωt/2) where a† and a are
the creation and annihilation operators] carried out by Dyk-
man et al. [38] on the Hamiltonian itself. It should be noted
that the new Hamiltonian in Ref. [38] did not have the form
of a sum of kinetic and potential energies, and we will see the
counterpart of that in our case.

For ε = 0, V0, V1, V2 are constants, and hence we assume
for ε �= 0, all of them A, B, V0, V1, V2 are slowly varying
functions of time and only the first derivatives [of the order
of ε i.e., O(ε)] appear in the flow. We work near ω = �

2 and
consider frequencies ω = �

2 + εδ. The flow equations are

Ȧ = ε

(
δ − �

8

)
B + 3λ

4�
B(A2 + B2)

+ 3λ

�
BV0 + 3λ

2�
(AV2 − BV1), (12a)

Ḃ = −ε

(
δ + �

8

)
A − 3λ

4�
A(A2 + B2)

− 3λ

�
AV0 − 3λ

2�
(AV1 + BV2), (12b)
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FIG. 1. Phase portraits and time series plots obtained from the Krylov-Bogoliubov flow in Region III (stable zone). For instance A vs B is
shown in panel (a) and corresponds to a bounded but aperiodic orbit. In panel (b) V1 vs V2 has been drawn, which is similar to the A vs B plot.
The time series for V0 is shown in panel (c) and shows bounded oscillations which are not periodic In all cases, the amplitudes are O(1). The
parameters used are � = 4.0, δ = 0.60, ε = 0.11, λ = 0.001 (A, B are in units of l0, V0, V1 and V2 are in units of l2

0 , and � and δ are in units
of ω0 and λ = λl2

0 /ω2
0).

V̇0 = −ε�

4
V2 − 3λ

2�
(A2 − B2)V2 + 3λ

�
ABV1, (12c)

V̇1 =
[

2εδ + 3λ

�
(A2 + B2)

]
V2 + 3λ

�
ABV0 + 9λ

�
V0V2, (12d)

V̇2 = −
[

2εδ + 3λ

�
(A2 + B2)

]
V1

−
[
ε�

4
+ 3λ

2�
(A2 − B2)

]
V0 − 9λ

�
V0V1. (12e)

In the classical limit, the V ’s are absent, and we have
the dynamics given by Eq. (12a) and Eq. (12b) with A
and B only. The trivial fixed point is (0, 0). It is a cen-
ter for δ > �/8 (henceforth we will call this parameter
range “Region III”) and unstable for δ < �/8. The domain
�
8 > δ > −�

8 will be called “Region II.” In Region III, one
sees low-amplitude (determined by initial conditions) slow
oscillations in A and B. For δ < �/8, in Region II, the
stable solution is A = 0 and B2 = 4�

3λ
( �

8 − δ), which cor-
responds to a large-amplitude oscillation for λ � 1. The
nature of the solution changes completely for δ < −�/8 (Re-
gion I). These are the well-known solutions for the classical
situation [44].

At this point, it is very important to compare our results
with that of Dykman et al. [38] and the earlier work of
Dykman and Smelyanskiy [56], Dykman [57], and, in partic-
ular, Marthaler and Dykman [58]. In Ref. [58], it has been
shown that the rotating wave approximation takes the original
coordinates, the x and p of the Hamiltonian, in Eq. (1) to the
mixed variables Q and P in terms of which the equations
of motion read Q̇ = (1 − μ)P + P(P2 + Q2) and Ṗ = (1 +
μ)Q − Q(P2 + Q2). This is precisely our Eqs. (12a) and (12b)
with V0 = V1 = V2 = 0, i.e., neglecting the effect of quantum
variance. The dynamics is almost like that in a double-well

potential centered at B = ±
√

4�ε
3λ

( �
8 − δ). In Ref. [38] the au-

thors subsequently consider the addition of an external noise
and write a Markovian dynamics in their Eq. (5). However,
in Sec. III of the paper, they consider the very small damping
(external noise) limit and still find a “noise” which is char-
acterized by what is termed as quantum temperature. In our
case, the role of the quantum temperature is triggered by the
quantum variance, which effectively generates “noise” in the
system.

We now include the quantum fluctuations characterized
by the variance and ask for the new trivial fixed point. This
gives a line of fixed points A = 0, B = 0, V2 = 0, and V1 +
�
8δ

V0 + 9λ
2εδ�

V0V1 = 0. Since the variance V has to be greater
than zero at any instant of time we must have δ > �/8, and
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FIG. 2. Phase portraits and time series plots for the Krylov–Bogoliubov flow in Region II (resonance zone) showing a complete absence
of periodic or quasiperiodic behavior. For instance, A vs B is shown in panel (a). In panel (b), V1 vs V2 is drawn, while the time series for V0 is
shown in panel (c). The parameters used in solving the flow equations are: � = 4.0, δ = −0.10, ε = 0.11, λ = 0.001 (units as in Fig. 1). In
comparison with Fig. 1, two things need to be noted: the large amplitudes of the dynamics and the absence of regularity.

that is the region (Region III) where this fixed point exists.
Hence the trivial quantum “fixed point” is actually a fixed
line. The fluctuations smear the point into a line. It is sta-
ble, which can be easily ascertained from a linearization of
Eq. (12a) to Eq. (12e) around this condition. These statements
are corroborated by a numerical simulation of Eqs. (12) as
shown in Fig. 1. In Fig. 1 we are at δ = 0.60, which is greater
than �/8. Figure 1(a) shows that the trajectory winds round
in the A-B plane about the fixed point A = B = 0, which is
a center. In Fig. 1(b) we show the time development in the
V1-V2 plane. The winding occurs around V2 = 0 and a nonzero
negative value of V1. The time series V0(t ) is displayed
in Fig. 1(c).

We have just seen that the quantum fluctuations smear
out the stable fixed point A = B = 0 in Region III (i.e.,
δ > �/8) and give rise to a fixed line. The dynamics, how-
ever, remains almost periodic and low amplitude and is not
of particular interest. It is in Region II (−�/8 < δ < �/8)
that the parametric oscillation effects are very strong, and to
get the first effect of the fluctuations (the variance V ), we
simply consider V as a parameter, represented by V0, with

V1 = V2 = 0. The effect of the variance is to change Eqs. (12a)
and (12b) to

Ȧ =
[
ε

(
δ − �

8

)
+ 3λ

�
V0

]
B + 3λ

4�
B(A2 + B2), (13a)

Ḃ = −
[
ε

(
δ + �

8

)
+ 3λ

�
V0

]
A − 3λ

4�
A(A2 + B2). (13b)

The nontrivial fixed point A = 0, B2 = 4�
3λ

[ε( �
8 − δ) −

3λV0
�

] exists only if ε( �
8 − δ) > 3λV0

�
, and we see the quantum

fluctuations trying to “erase” the fixed points which gave the
effect of a double-well potential. This is a milder version of
of the result in Ref. [38], where the effect of the fluctuations
is to make the equispaced energy levels unequally spaced.
Here, if V0 is smaller than a critical value V0c = �ε

3λ
( �

8 − δ),
the levels are still equispaced with a smaller spacing but then
for V0 > V0c, the harmonic well is no longer there.

For δ < �/8 in Region II, we now show that the quantum
fluctuations prevent the existence of any fixed point. We use
A = R sin θ and B = R cos θ to write the fixed point condi-
tions coming from Eq. (12a) to Eq. (12e) as

[
ε�

(
δ − �

8

)
+ 3λ

(
V0 − 1

2
V1

)
+ 3λ

4
R2

]
cos θ + 3λ

2
V2 sin θ = 0, (14a)

[
ε�

(
δ + �

8

)
+ 3λ

(
V0 + 1

2
V1

)
+ 3λ

4
R2

]
sin θ + 3λ

2
V2 cos θ = 0, (14b)
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FIG. 3. Phase portraits and time series results as obtained from the Krylov -Bogoliubov flows in Region I (stable zone). A vs B is shown in
panel (a). In panel (b), V1 vs V2 is drawn, while the time series for V0 is shown in panel (c). The parameters used in solving the flow equations
are � = 4.0, δ = −0.60, ε = 0.11, λ = 0.001 (units as in Fig. 1). The oscillations are bounded with amplitudes much smaller than in Region
II and similar to that in Region III.

[
ε�2

4
V2 − 3λ

2
R2 cos 2θ

]
V2 − 3λ

2
V1R2 sin 2θ = 0, (14c)

V2[4εδ� + 6λ(R2 + 3V0)] = −3λV0R2 sin 2θ, (14d)

and

V1[4εδ� + 6λ(R2 + 3V0)] + ε�2

2
V0 = 3λV0R2 cos 2θ. (14e)

Eliminating V2 from Eqs. (14a) and (14b), we get[
εδ� + 3λ

(
V0 + R2

4

)]
cos 2θ = ε�2

8
+ 3λ

2
V1. (15)

Subtracting the above from Eq. (14a) leads to[
3λ

(
V0 + R2

4

)
+ εδ�

]
sin 2θ = −3λ

2
V2. (16)

Using Eq. (14d) to express V2 in terms of V0, we arrive at[
9(R2 + 4V0) + 12

εδ�

λ

][
(R2 + 3V0) + 2εδ�

3λ

]
= 9V0R2. (17)

The above equation (17) cannot be satisfied for any positive
(as per requirement) value of the quantities R, V0, ε, δ, λ, and
�. This establishes our second statement above that the clas-
sical fixed points are wiped out by quantum fluctuations in the
resonance zone (−�/8 < δ < �/8, Region II). As expected

the numerical V2(t ) versus V1(t ) plot in Fig. 2(b) shows erratic
oscillations and so does V0(t ) versus t plot in Fig. 2(c). One
should note that the amplitude of the dynamics is large (reso-
nance), but there is no evidence of the existence of a recurrent
behavior. The absence of any timescale in this dynamics, we
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FIG. 4. Direct simulation of the coupled system constituted by Eq. (4) and Eq. (10): Time series for mean position and variance for
ω > �/2, The time series are just outside the resonance zone and are shown for two values of lambdas, λ = 0.001 and λ = 0.01, respectively.
Panels (a) and (c) represent the variations of 〈x〉 and V respectively for λ = 0.001, whereas in panels (b) and (d) the variations of 〈x〉 and V ,
respectively, have been displayed for λ = 0.01. The parameters used in the simulation are � = 4.0, ω = 2.06, ε = 0.11 (units as in Fig. 1).

believe, is the dynamical system version of quantum heating.
The implication of this is that the dynamics of 〈x〉(t ) and V (t )
(when the full numerical analysis is carried out in the next
section) will not be periodic or even quasiperiodic in Region
II. Finally, to end this section we turn to Region I, where
δ < −�/8, and once again, we find bounded dynamics, quite
similar to that in Region III. The corresponding figures are
shown in Figs. 3(a) to 3(c).

IV. NUMERICAL SOLUTION

In this section, we directly integrate our Eqs. (4) and (10)
to obtain the dynamics of 〈x〉 and V . We provide initial values
of x0 and V0 for 〈x〉 and V in Eqs. (4) and (10) and carry out the
numerical solution. This assumes that the initial wave packet
is the Gaussian 1

π1/4
√

V0
e−(x−x0 )2/2V0 , and according to our as-

sumption, it is subsequently 1
π1/4

√
Vt

e−(x−〈x〉(t ))2/2V (t ). From our
analysis of the Krylov-Bogoliubov reduction in Sec. III, we
expect the dynamics will be low-amplitude almost periodic
oscillations around 〈x〉 = 0 and some small time-averaged
value of V (t ) in Region III and Region I. In Region II we do
not expect any periodic behavior since there is no fixed point
at all in the Krylov-Bogoliubov approximation in this zone.
We expect the amplitude of the mean position and variance to
be an order of magnitude or more higher than in Regions I and
III for λ � 10−3 and ε � 10−1.

We begin with Region III. The basic time period for 〈x〉
in this region 2π/ω and that for V is π/ω. This region
corresponds to ω > �

2 + ε�
8 . For our choice of � = 4.0,

this implies ω > 2 + 0.5ε. We have used ε = 0.11, which
requires ω > 2.055. We have set ω = 2.06, which is very
close to 2.055. Our solution in this region can safely ignore
the nonlinear terms in Eq. (4) when λ = 10−3 [Figs. 4(a)
and 4(c)], and we need the solution of Eq. (4) in the form
¨〈x〉 + ( �

2 + εδ)
2
(1 + ε cos �t )〈x〉 = 0, where, � = 4.0, ε =

0.11, and εδ = 0.06. Trying a solution 〈x〉 = F (t ) cos �t
2 +

G(t ) sin �t
2 , where F (t ) and G(t ) are slowly varying functions,

it is well known that for δ > �
8 (= 1

2 ) as we have here, the
amplitudes F (t ) and G(t ) are periodic with the period T =
2π/ε

√
δ2 − ( �

8 )
2
. Hence the solution for 〈x〉 in this region

has the form 〈x〉 ∝ e(2π it )/T cos ( �
2 + α). The basic period is

4π/� = π for � = 4.0, and this is seen as the rapid variation
in Fig. 4(a), and the amplitude oscillates with the period T
above which for ε = 0.11, � = 4.0, and δ = 0.06 works out
as 300 which is the time period of the modulating wave in
Fig. 4(a). For Fig. 4(b), the value of λ is larger, and a correc-
tion to the above results from the coupling between 〈x〉 and V
would have to be included. As for V (t ), for very small values
of λ, we can ignore the λ containing terms in Eq. (10), and the
resulting solutions can be found in Ref. [42]. What one sees
in Figs. 4(c) and 4(d) is the addition of a constant contribution
and a sinusoidal variation, the constant coming from the zero

052204-7



PRASUN SARKAR AND JAYANTA K. BHATTACHARJEE PHYSICAL REVIEW E 102, 052204 (2020)

FIG. 5. Time series of 〈x〉 and V for ω < �/2 (Region I) as obtained from the direct simulation of the coupled system [Eq. (4) and Eq. (10)].
The amplitudes are much smaller in each case compared to the ω = �/2 case. Keeping other parameters fixed, two different sets have been
shown here, for λ = 0.001 and λ = 0.01. Panels (a) and (c) represent the variations of 〈x〉 and V , respectively for λ = 0.001, whereas in panels
(b) and (d) the variations of 〈x〉 and V , respectively, have been displayed for λ = 0.01. The used set of parameters are as follows: � = 4.0,
ω = 1.89, ε = 0.11 (units as in Fig. 1).

eigenvalue in the linear part of Eq. (10). Since almost identical
logic holds for Region I, we do not discuss it separately. The
results are shown in Fig. 5.

We begin by trying to anticipate what the dynamics of
〈x〉 and V will look like in Region II. From the structure
of Eqs. (4) and (10) coupled with the Krylov-Bogoliubov
system written in Eqs. (12) in this resonant zone for λ � 1, we
anticipate an amplitude of oscillation for 〈x〉 [see the assumed
solution in Eq. (11)], which is approximately O(1/

√
λ) and an

amplitude for V , which is O(1/λ). This would mean that the
amplitude of oscillation of V will be significantly greater than
the amplitude for 〈x〉. This is the first thing that we note from
Figs. 6(a) and 6(b). For λ � 10−3, the amplitude of oscillation
for 〈x〉 is about 20, while that for V is about 100. We note from
Figs. 6(a) and 6(b) that there is a waxing and waning of the
amplitude on a much larger timescale. We can actually antici-
pate this from Eqs. (12a) and (12b) if we ignore the coupling
of 〈x〉 and V . In that case, for −�

8 < δ < �
8 , linearizing about

the fixed point A∗ = 0, B∗ = ±
√

4ε
3

��
λ

, with � = �
8 − δ, we

find that δA = A − A∗ and δB = B − B∗ satisfy

δȦ = 2ε�δB,

δḂ = −ε�

4
δA,

leading to δÄ + �2
0δA = 0, with �2

0 = ε2��/2. At � = �/8
(the value for which Fig. 6 has been drawn, �2

0 = ε2�2/16.
This gives a modulation timescale of 2π/ε, which is what we
see in Fig. 6(a) with ε = 0.11. A similar argument qualita-
tively gives the modulation of the amplitude of the variance in
this limit. The primary issue for such low values of λ is that the
dynamics of 〈x〉 and V are extremely weakly coupled. As the
value of λ increases, this coupling also increases and the dy-
namics of 〈x〉 starts deviating strongly from its behavior when
the coupling is negligible. This is the point made in Figs. 6(c)
to 6(e). Here, as we increase the value of λ, the number of
independent timescales appearing in 〈x〉 starts increasing, and
this is consistent with the finding of Dykman et al. [38], where
it is seen that the driven quantum system is effectively charac-
terized by a set of independent frequencies (incommensurate
in general) and leads to the concept of quantum heating.

V. SUMMARY

In this paper, we have looked at the nonlinear parametric
oscillator in quantum mechanics. The weak quantum limit
(where the variance dynamics is accurately obtained) is the
approximation used to reduce the problem to a pair of cou-
pled nonlinear ordinary differential equations for the mean
position and the variance. To get an analytic handle in the
physically interesting subharmonic resonance zone, we tried
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FIG. 6. The large-amplitude oscillations of the mean position and variance for λ = 0.001 and λ = 0.01 are shown in panels (a) and (b),
respectively. In panels (c) to (e) the time series for the mean position 〈x〉 has been shown for λ = 0.001, λ = 0.01, and λ = 0.1, for classical
and quantum cases. The increasing influence of quantum fluctuation on the classical dynamics is apparent. The following set of parameters has
been used: � = 4.0, ω = 2.0, ε = 0.11 (units as in Fig. 1).

the Krylov-Bogoliubov technique. The quantum fluctuations
actually wipe out the classical fixed points in the resonance
zone and hence in that zone perturbative techniques are of
limited value. We want to focus mainly on our results shown
in Fig. 6. The large quantum variance shown in Fig. 6(b)
and its significant influence on the dynamics of the mean
position for increasing nonlinearity as shown in Fig. 6(e) are
the primary features of this present work. The dynamics of
〈x〉 in the resonance zone is no longer characterized by a
single frequency (and its harmonics) and bears a very close

resemblance to the quantum heating discussed by Dykman
et al. [38,39].
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