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Experimental demonstration of emission of solitons from a resonant localized wave
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We demonstrate the emission of solitons from a resonantly excited localized standing wave in a nonlinear
chain of spring-coupled masses. The localized wave in this system is induced by a properly designed “impurity”
and vibrates around the “impurity” with an intrinsic frequency. We observe that, when subjected to an external
forcing, it is amplified to a large amplitude under the nonlinear resonance, and, then, its wave envelope splits apart
leading to the release of most of its energy in the form of a large-amplitude traveling soliton. The experiment also
shows that the rate of the emission can be controlled by finely tuning the driving parameters, thereby providing
a feasible and controllable way for creation of solitons.
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I. INTRODUCTION

Solitons, a kind of traveling localized nonlinear wave ob-
jects with constant speed and invariant shapes [1], are formed
due to a dynamic balance of interaction between nonlinearity
and dispersion. So far there have been extensive studies and
a fairly in-depth understanding of the existence, propagation,
and interactions of solitons that occur in nature [2–4] and
in physical systems [5–16]. However, the internal dynamic
mechanism of their formation and creation still remains to
be further explored. An understanding of this would make
it viable for solitons to be generated in an efficient and con-
trollable way, which would not only be of fundamental value
in soliton physics, but also be key to relevant engineering
applications.

Although solitons in integrable systems, according to the
inverse scattering theory [17], can in principle be evolved
from some preset initial conditions [18,19], it seems highly
infeasible to precisely set up and control an initial waveform
that would definitely evolved into what is desired. Moreover,
nonideal factors such as dissipation and environmental distur-
bances would also make a real physical system nonintegrable.
It therefore necessitates the development of approaches that
are experimentally realizable for efficient creation of solitons.

One of the few approaches, proposed by Friedland [20,21],
was based on a mechanism of autoresonance. It was argued
that a specially designed spatial distribution of nonlinear
waves would evolved into large-amplitude solitons by using
passage through an ensemble of resonances and subsequent
multiphase self-locking of the system with perturbations. An-
other mechanism called nonlinear supratransmission (NST)
was uncovered by Geniet and Leon [22–25] in a nonlinear
system driven by one end. It was shown when the driving
amplitude is large enough, solitonic pulses are emitted due
to the nonlinear instability. Although amenable for experi-
ments, this method still faces some problems. For example,
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the large-amplitude driving gives rise to the quasilinear wave
background, which reduces the purity of the solitons.

The generation of solitons by resonant absorption of
electromagnetic wave has been proved to be effective in
plasma [26–28]. Driven by an external electric field imposed
on a nonuniform plasma, the Langmuir wave near the critical
density could be resonantly excited. After the phase of grow-
ing the localized electric wave propagates down the density
gradient. The periodical emission of solitons in plasma has
also been demonstrated numerically [29]. However, the pres-
ence of ion inertial disorders the periodic emission process,
making it hard to achieve in experiments.

Our group has proposed a scheme for controllable creation
of solitons from a resonantly excited localized wave [30]. In
this scheme, the localized wave mode, which may be intro-
duced, e.g., by a mass “impurity” in a semi-infinite β-FPU
chain, has a unique natural frequency fr that falls in the
linear forbidden band. When subjected to an external drive of
frequency f ≈ fr , the localized wave mode can be captured
into nonlinear resonance leading to an instability that gives
rise to the emission of solitary waves. As we demonstrated
numerically [30], the driving threshold could be reduced to
one-third of that for supratransmission and the efficiency is
almost doubled with noise greatly suppressed. Utilizing reso-
nance introduced by a mass “impurity,” the emission rate of
solitons could be well controlled by finely tuning the parame-
ter in a wide range.

II. EXPERIMENTAL DESIGN

To demonstrate all these predictions [30], we report our
design and implementation of an experimental β-FPU system.
We first attempted to realize the β-FPU model simply by an
one-dimensional chain (along the x axis) of spring-coupled
masses that are placed on a horizontal and smooth table and
oscillate transversely, as schematically shown in Fig. 1(a).
Let ξn denote the transverse displacement (in the y direction)
of the nth mass Mn in the chain (n = 0, 1, 2, . . .) and Fn the
elastic force of the spring that is between the (n − 1)-th and
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FIG. 1. System design and implementation. (a) Prototype of a
transversely vibrating chain of masses coupled by springs, (b) sketch
of a single unit of a chain of spring-coupled pendulums, and (c) pho-
tograph of the experimental setup.

the nth masses. Every spring in this system is assumed to
be linear and has the same elastic coefficient K . It has a
relaxed length d0 and is prestretched to d (the static length in
the motionless state), so that Fn = −K[

√
d2 + (�ξn)2 − d0],

with �ξn ≡ ξn − ξn−1 being the difference of the transverse
displacements of neighboring masses. The transverse projec-
tion of Fn is F⊥

n = Fn sin αn, with tan αn = �ξn/d being the
slope of the nth spring with respect to the chain axis on the
horizontal table. For |�ξn| � d , a cubic approximation yields
F⊥

n ≈ F (�ξn), where the nonlinear function

F (�ξn) = −K1�ξn − K3

2d2
�ξn

3, (1)

with

K1 = d − d0

d
K, K3 = d0

d
K. (2)

Note that d − d0 = d1 is the prestretch of the springs that pro-
vides the linear part (K1 �= 0) of the elastic force F . Without
it, F would be purely nonlinear [31]. Since K1 + K3 = K , the
relative weight between the linear and nonlinear parts of F is
readily adjustable, in particular, both parts can be of compa-
rable order in magnitude, provided that d1 is properly set. The
total transverse force of restoration acting on the nth mass Mn

is given by F⊥
n − F⊥

n+1 ≈ F (�ξn) − F (�ξn+1). Hence, under
the assumptions of frictionless and small-amplitude vibration
(|�ξn| � d), the equation governing the transverse vibration
turns out to be

Mnξ̈n ≈ K1(�ξn+1 − �ξn) + K3

2d2

(
�ξ 3

n+1 − �ξ 3
n

)
, (3)

for n = 0, 1, 2, . . ., which is a standard β−FPU model. Ac-
cording to Ref. [30], a mass “impurity” can be introduced,
e.g., at site n = 0, by setting M0 < M and Mn �=0 = M. It
induces a localized wave of a unique intrinsic frequency
fr = ωr/2π . In the linear approximation, it can be proved for
ξ−1 = 0 that

ωr = ω0/2√
m − 1 + √

1 − m
,

(
m = M0

M
, ω2

0 = 4K1

M

)
, (4)

where the mass ratio m measures the “impurity” and ω0 is
the lower bound of the forbidden band where linear waves
are prohibited. It is easily seen that, for m < 1, the intrinsic
frequency ωr falls within the forbidden band, i.e., ωr > ω0,
and ωr = ω0 if and only if m = 3/4.

However, there are two major technical problems that hin-
der us from implementing the proposed system. The first is
how to suppress the effect of friction on mass balls. Our test
shows that even if the supporting table is made extremely
smooth, the friction between the table and mass balls is still
strong enough to soon dissipate energy of vibration. The sec-
ond is how to maintain the motion of all masses exactly in the
required transverse (y) direction. Owing to the nonbalanced
longitudinal component of the elastic force, i.e., Fn cos αn �=
Fn+1 cos αn+1, there would exist non-negligible longitudinal
(x) displacements of masses, making the resultant equation
deviate severely from Eq. (3). Of course, one may set up a
transversely guiding track for each mass to force it to move
exactly in the y direction on the horizontal plane, but an in-
stalled track would introduce additional friction, which further
intensifies the friction effect.

We find that both unfavorable effects can effectively be al-
leviated if masses in the chain are suspended and constrained
to move by some long rigid sticks. We then design an im-
proved system that consists of a chain of pendulums, with
their massive bobs being hinged with springs and their pivots
mounted equidistantly on a horizontal steel beam (with spac-
ing d), as is sketched in Fig. 1(b). The pivots of pendulums
are some axle bearings on the steel beam, which effectively
constrain the motions of the massive bobs on vertical planes
perpendicular to the beam, as long as the hanging rods are stiff
enough. The trajectories of the bobs on these vertical planes
are almost horizontal, provided that θn, the swing angles, are
sufficiently small, or the rods (of length l) are sufficiently long
as compared to the displacements ξn = lθn of the massive
bobs. For each of the pendulums, the friction occurs mainly
at its pivot, and it attributes a negligible torque as compared
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with that of the elastic force provided by coupling springs.
We select sufficiently large stiffness of springs, so that the
gravitational torque acting upon each pendulum is negligi-
ble as compared to the torque generated by the springs (see
below). In this way, the swing motion is dominated by the
momenta of the elastic forces, rather than what are found in
the sine-Gordon type [22,32] and coupled pendulum chains
based on torsion and gravity in opposition [33].

The axis component Ln of the momentum owing to
the elastic force of the nth spring is derived and can be
written as

Ln(�θn) = −Kl2

⎛
⎝1 − d0√

d2 + 4l2 sin2 �θn
2

⎞
⎠ sin �θn,

where �θn = θn − θn−1. For |�θn| � 1, it is approximated
that Ln(�θn) ≈ F̂ (l�θn)l , where function F̂ (z) has the same
form as given in formula (1) but with K3 replaced by

K̂3 = K3 − 1

2

(
d

l

)2

K1. (5)

If the pendulums are so long that l � d , then K̂3 ≈ K3, and
thus, F̂ ≈ F . The swing of the nth pendulum then obeys the
equation, Inθ̈n ≈ Ln − Ln+1, with In = Mnl2 being the rota-
tional inertial of the nth pendulum. Here Mn = mn + 1

3 mrod

is an effective mass that takes account of the rod mass mrod

and the bob mass mn of the nth pendulum. Applying the ap-
proximant of Ln, we obtain the equation for θn, which appears
in the same form as Eq. (3) if letting ξn = lθn and replacing
K3 by K̂3.

Based on these considerations, we have built an experimen-
tal system composed of an array of 60 pendulums as shown
in Fig. 1(c). To support the large load of the pendulums, we
install a structure of double steel beams, the upper of which is
used to maintain the horizontality of the lower one that hangs
pendulums directly with pivots. We adopt an aluminum rod
of length l = 30 cm and mass mrod = 24 g for each pendu-
lum, and use springs of elastic coefficient K = 70 N/m and
relaxed length d0 = 4 cm, each prestretched to a static length
of d = 6 cm when connecting neighboring bobs. The springs
also have a factory-set pretension of F0 = 0.35 N, which can
serve for the same purpose as the prestretch. It can be shown
that Eq. (3) are still valid in the presence of the pretension F0,
only if d0 is replaced by d0 − F0/K in the definitions of K’s in
Eq. (2). A rather tedious analytical estimation shows the grav-
itational torque upon each pendulum is less than 5% of elastic
moment, which meets the requirement of the design. The first
pendulum (n = 0), which plays the role of “impurity” in the
present system, has a lighter mass of m0 = 23.06 g, while
other balls weigh mn>0 = 30.21 g. With these parameters, we
calculate from formula (4) that f0 = ω0/2π ≈ 8.79 Hz and
fr = ωr/2π ≈ 8.88 Hz. According to our previous work [30],
the “light mass” impurity will have the center of the localized
wave shift slightly to a position x0 > 0 in our semi-infinite
chain. The shift can also be observed in the experiment, as
is shown in Fig. 2(a). Thus more energy can be absorbed
from the driving, and the center-shifted localized wave is
more unstable when it is resonantly amplified even for small
driving, leading to the periodic emission of solitons. In the

FIG. 2. Snapshots of emission of solitons from the “impurity”-
induced localized wave around the pendulum next to the drive of
displacement ξ−1 = 12.7 cos 2π f t mm ( f = 9.33 Hz). (a) At first,
an evanescent wave of small amplitude is stirred up around the drive.
(b) The localized wave is amplified with its center slightly moving to
the right. (c) The localized wave splits apart, releasing a solitary-
wave packet that propagates away. Note that now the “impurity”
oscillates in phase with the driving. (d) The soliton is passing though
the 17th pendulum.

“heavy mass” case, however, the center of solitons is shifted
out of our semi-infinite chain (x < 0), making it impossible to
split a soliton, as has been confirmed both in our numerical
simulations and experiments.

An electro-magnetic shaker (Type LDS-V780, B&K) is
used to drive the system via the spring that connects the
bob of the first pendulum, as shown in Fig. 1(c), so that
ξ−1 = γ cos ωt and �θ0 = θ0 − ξ−1/l , with γ being the driv-
ing amplitude, and f = ω/2π the driving frequency.

III. EMISSION OF SOLITONS

Figure 2 shows the process of emission of solitons for
f = 9.33 Hz and γ = 12.7 mm [34]. Growing up from a
small-amplitude evanescent wave, the localized wave around
the “impurity” at site n = 0 is resonantly excited and ampli-
fied. When its amplitude is large enough, it undergoes some
nonlinear instability and a breakup, releasing almost all of the
fed energy as a soliton that propagates away from the “impu-
rity.” The soliton appears as a collective vibration of a group of
pendulums whose amplitudes are modulated spatially. After
traveling through the chain of 60 sites, it collides on the other
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FIG. 3. Detected signal of the displacement of the bob at site
n = 13 when the drive works at f = 9.33 Hz and γ = 12.7 mm.
(a) An overview of the recorded waveform; (b) the magnified view
(solid line) of the second wave packet in (a) along with its theoretical
hyperbolic secant envelope (dashed line) obtained by using Eq. (8)
with the fitting parameter a.

end and is reflected. It finally decays and submerges into the
background noise. Once a soliton is released, the localized
wave absorbs and accumulates energy from the drive again,
and the emission process is repeated. Another noticeable fact
is that when the localized wave begins to split, the oscillation
of “impurity” changes from out-of-phase to in-phase with the
driving [see Fig. 2(c)] until a new soliton completely splits
apart. The periodic emission of solitons during the jump be-
tween out-of-phase state and in-phase state resembles the Rabi
cycle in two-state quantum system.

Figure 3(a) presents a waveform of the displacement ξn

of the pendulum ball at site n = 13, which is detected by
an optical sensor, the Laser Displacement Sensor HG-C1200.
A magnified view of the second wave packet in this wave-
form is shown in Fig. 3(b), which exhibits a perfect shape
of envelope soliton in agreement with the theoretical sech
envelope calculated by Eq. (8). In this experiment, the driv-
ing amplitude γ = 12.7 mm, but the emitted solitons have a
much larger amplitude (≈40 mm), manifesting the magnifi-
cation effect and the high efficiency of this type of soliton
creation.

According to the waveform, the displacement ξn of the
vibration assumes the form

ξn = lθn = (−1)nη(xn, t )e jωt + c.c. (n = 1, 2, . . .), (6)

where j = √−1, xn = nd , c.c. denotes the complex conjugate
of the term ahead, and η(x, t ) is the envelope function that
modulates the amplitudes of vibration. In long-wave approxi-
mation, it is readily derived from Eq. (3) that η is governed by

2 jω
∂η

∂t
+ ω2

0d2

4

∂2η

∂x2
+

(
ω2

0 + 24K3

Md2
|η|2 − ω2

)
η = 0. (7)

This is a nonlinear Schrödinger equation [30] that admits a
traveling single-soliton solution [1,35]

η(x, t ) = aη0sech
a

d
(x − cst − x0)e j(k(x−cst )+νt−φ0 ), (8)

where η0 = d
√

K1/12K3, cs = (k/4ω)(ω0d )2, x0 and φ0 are
arbitrary constants, and a is determined by wave number k,
driving frequency ω, and an additional frequency ν as

a =
√

4
(
ω2 − ω2

0 + 2ων
)/

ω2
0 − (kd )2. (9)

The solution (8) well describes the experimentally observed
soliton that travels along the chain at a speed cs that is highly
relevant to amplitude a.

IV. EMISSION RATE CONTROL

The repeat rate of the emission, fe, is found to highly
depend on the driving parameters, as shown in Fig. 4(a).
Since in the experiment f0 = ω0/2π is a little lower than the
theoretical calculation, we start from the driving frequency
f = 8.70 Hz and increase it step by step with a fixed driving
amplitude γ = 10 mm. At first, the localized wave mode
quickly reaches its nonlinear saturation and becomes unstable,
leading to the emission of solitons at a pretty high rate fe.
At a higher f , the localized wave seems to be more robust
and absorbs a larger amount of energy from the drive during
a longer time period, so that the localized wave has larger
amplitude before triggering the nonlinear instability and the
emitted soliton has larger amplitude. The rate of emission
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FIG. 4. (a) The emission rate fe versus the driving frequency f with fixed γ = 10 mm. (b) The emission rate fe versus the driving amplitude
γ with fixed f = 9.20 Hz. (c) The threshold of driving amplitude for emission versus the driving frequency. The theoretical and numerical
curves of nonlinear supratransmission (NST) are also presented for comparison.
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therefore decreases approximately linearly as f is increased.
We have also investigated the dependence of the emission rate
fe on driving amplitude γ , with f fixed at 9.20 Hz. Figure 4(b)
shows that the emission rate fe increases with γ , which is
in line with our physical intuition. The discrepancy between
the numerically computed and the experimentally measured
in Figs. 4(a) and 4(b) is attributed to the damping effect.
Therefore, by tuning the ( f , γ ) parameters, we can control
the emission of solitons, even at an extremely low rate so that
there is only one soliton traveling back and forth along the
finite lattice of pendulums before a new one is generated.

For a given driving frequency f , there is a threshold of driv-
ing amplitude γ , denoted by γth, below which the fed energy
is insufficient to have the localized wave undergo a nonlinear
instability and the localized wave will keep stationary. For
γ > γth but in close proximity to γth, solitons are emitted at an
extremely low rate. The existence of γth at f ≈ fr should be
totally ascribed to the inevitable damping dissipation. γth, of
course, is frequency dependent. This dependency is measured
and presented in Fig. 4(c), which is in a good agreement with
the numerically calculated before [30]. Compared with supra-

transmission (without the “impurity”), the driving threshold
has been significantly reduced.

V. CONCLUSION

In conclusion, we have presented an experimental demon-
stration of emission of solitons by the resonance of a localized
wave. We also demonstrate the controllability of the emission
process via tuning the driving parameters, which provides
great convenience for practical applications. Another attract-
ing feature is the high efficiency of soliton creation in that
most of the energy accumulated in the localized wave is
converted to solitons, making it possible to generate pure and
large-amplitude solitons by using a weak drive. We believe
that the proposed mechanism is generalizable to other nonlin-
ear wave systems for efficient and controllable generation of
solitons.
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