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Subdynamics of fluctuations in an equilibrium classical many-particle system
and generalized linear Boltzmann and Landau equations
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Exact completely closed homogeneous generalized master equations (GMEs) governing the evolution in
time of equilibrium two-time correlation functions for dynamic variables of a subsystem of s particles (s < N)
selected from N � 1 particles of a classical many-body system are obtained. These time-convolution and
time-convolutionless GMEs differ from the known GMEs (e.g., Nakajima-Zwanzig GME) by the absence
of inhomogeneous terms containing correlations between all N particles at the initial moment of time and
preventing the closed description of s-particle subsystem evolution. Closed homogeneous GMEs describing
the subdynamics of fluctuations are obtained by applying a special projection operator to the Liouville-type
equation governing the dynamics of the correlation function with the related to the Gibbs distribution initial
state, which is more natural than the conventional factorized initial state. No common approximation, like
the “molecular chaos,” is needed. In the linear approximation in the particles’ density, the linear generalized
Boltzmann equation accounting for initial correlations and valid at all timescales is obtained. This equation
for a weak interparticle interaction converts into the generalized linear Landau equation in which the initial
correlations are also accounted for. The connection of these equations to the nonlinear Boltzmann and Landau
equations is discussed. The same approach is applicable to studying the kinetics of the conventional reduced
s-particle distribution functions for a classical N-particle system driven from an equilibrium state by an external
force.
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I. INTRODUCTION

One of the long-standing problems of statistical physics
of N-particle (N � 1) systems remains the derivation of the
closed kinetic equations for s-particle (s < N) distribution
functions (statistical operators) sufficient for calculation of
the measurable values characterizing a nonequilibrium state
of the many-particle system. The natural starting point is the
Liouville (classical system) or von Neumann (quantum sys-
tem) linear equation for an N-particle distribution function or
statistical operator. In the reduced description method leading
to the Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY)
chain, the closed Boltzmann kinetic equation can be obtained
by employing the Boltzmann “molecular chaos” approxima-
tion at any time moment (beginning from the initial state)
or more sophisticated Bogoliubov principle of weakening of
initial correlations [1]. In the latter case, in the first approxi-
mation in particles’ density, the nonlinear Boltzmann equation
follows from the BBGKY chain on a large (kinetic) timescale.
Note that nonlinearity of the Boltzmann equation, ob-
tained from the linear Liouville (or von Neumann) equation,
is a consequence of the above-mentioned approximations.
Lanford’s derivation of the Boltzmann equation (however,
only on a small timescale and for a hard-sphere system) [2]
seems to be the most relevant result in the mathematical
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foundation of the kinetic theory. Some aspects of the rigorous
mathematical approach to this problem can be found in [3].

For the case of a small interparticle interaction, the nonlin-
ear Landau equation follows from the nonlinear Boltzmann
equation (see, e.g., [4]). But, strictly speaking, the Landau
equation should be derived from the particles’ system dynam-
ics (the Liouville equation) in the weak-coupling limit. The
partial result in this direction (for the short timescale) was
obtained in [5]. The linear versions of these equations (linear
Boltzmann and Landau equations) also rely on the molecular
chaos approximation (see, e,g, [6]).

In the projection operators’ approach leading to the gener-
alized master equations (GMEs) (see, e.g., [7]), in order to ob-
tain the completely closed (homogeneous) linear equation for
the reduced s-particle (s < N) distribution function (statistical
operator), the undesired inhomogeneous term (a source) con-
taining all N-particle initial correlations should be disregarded
(which is incorrect in principle [8]). The mentioned pro-
cedures allowing for obtaining the desired closed kinetic
equations are not completely satisfactory: They imply, e.g.,
the “propagation of chaos” in time hypothesis for the factor-
ized initial state, the general proof of which is still lacking
(see, e.g., [9]), and do not allow for considering the evolu-
tion process on any timescale for an arbitrary initial state.
The natural desire then arises to abandon the molecular
chaos (or other mentioned assumption) and include initial
correlations into consideration. This can be effectively done,
e.g., by deriving from the Liouville (von Neumann) equa-
tion the completely closed (homogeneous with no source)

2470-0045/2020/102(5)/052136(11) 052136-1 ©2020 American Physical Society

https://orcid.org/0000-0001-5292-1483
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.052136&domain=pdf&date_stamp=2020-11-30
https://doi.org/10.1103/PhysRevE.102.052136


VICTOR F. LOS PHYSICAL REVIEW E 102, 052136 (2020)

evolution equations valid on any timescale and accounting
for initial correlations in the kernel governing the evolution
of the reduced s-particle distribution function (statistical op-
erator). For arbitrary initial conditions, it has been attempted
in [10–13].

It is widely recognized that the selected initial state plays
an essential role in deriving the effective equations describing
the evolution of the multiparticle system. For example, the
very special (and not very realistic [8]) factorized initial state
allows for deriving the nonlinear Boltzmann equation from
the linear Liouville equation. On the other hand, there is a
natural initial condition: the equilibrium state of the whole
system at some initial time moment t0. The evolution of the
system in that case can be studied either under the influence
of an external force (switched on at t > t0) or by means of
equilibrium correlation functions. But, with the help of the
traditional projection operator [see Eq. (12) below] we again
obtain the inhomogeneous Nakajima-Zwanzig equation.

However, the equilibrium initial state provides an opportu-
nity for including initial correlations into consideration. For
a quantum system, the closed homogeneous linear evolution
equations accounting for initial correlations were obtained
in [14,15] with application to the polaron mobility problem.
It turns out that the initial equilibrium state in the classi-
cal physics case is even more favorable than the case of
quantum physics, for realization of the program with no
molecular chaos (factorized initial state) assumption. In this
paper we show that there is a special projection operator
selecting the relevant part of the N-particle function satisfy-
ing the Liouville-type equation and governing the evolution
of an equilibrium two-time s-particle (s < N) correlation
function that obeys the exact time-convolution (TC) or time-
convolutionless (TCL) homogeneous GMEs. Thus, it is shown
that there is a subdynamics in the subspace of s particles and,
therefore, the evolution equation for the correlation function
(thermal fluctuations) is completely closed (no undesirable
terms defined on the full phase space of N particles). It has be-
come possible due to the fact that the initial condition for the
Liouville-type equation, defining the evolution of the correla-
tion function, is related to the Gibbs equilibrium distribution.
The initial correlations are now “hidden” in the projection
operator, and the kernels of obtained homogeneous equations
can effectively be expanded in the particle density n or in
a small interparticle interaction. In the first case, the linear
generalized Boltzmann equation accounting for initial corre-
lations and valid at all timescales follows from the obtained
homogeneous TC GME in the first order in n expansion of

the kernel governing the evolution of a one-particle correla-
tion function. We show how this equation leads to the linear
Boltzmann equation but with an additional term related to
initial correlations. In the case of small interparticle inter-
action, we obtain from this equation the linear equation for
one-particle correlation function in the second order in the
interaction and discuss its connection to the Landau equation.

The suggested approach, although valid only for an initial
equilibrium state for the full system (which, however, looks
more natural than the factorized state), is not restricted to
the derivation of the closed equations for correlation func-
tions. The same type of exact closed homogeneous equations
for the conventional reduced s-particle distribution functions
(marginals), considered in classical statistical physics, can be
obtained in the case, when the system is driven from the
equilibrium state by an external force [16]. These equations,
however, differ by the terms caused by an external force. The
results, obtained in this paper and those of [16], complement
each other.

II. PROJECTION OPERATOR FORMALISM FOR
s-PARTICLE EQUILIBRIUM CORRELATION FUNCTION

We consider an N-particle (N � 1) system of interacting
classical particles. Let us select the subsystem s, i.e., the
complex of s (s < N) particles (s complex), which interacts
with the environment � of remaining N − s particles. Note
that the particles, making up a subsystem, can be different
from the environment particles’ sort. Then, we assume that
the Hamilton function of the full system can be presented as

H = Hs + H� + H̃s�, (1)

where Hs, H� , and H̃s� are the Hamilton functions of the sub-
system s, the environment �, and the subsystem-environment
interaction H̃s� , respectively. More specific forms of these
functions will be considered later.

We consider a two-time equilibrium correlation function
for the subsystem’s dynamic functions As and Bs, which de-
pend on the set of variables characterizing the subsystem, i.e.,
on xi = (ri, pi ), i = 1, 2, . . . , s, where xi is the coordinate of
the ith particle in the phase space. The time dependence of
dynamic functions is given by As(t ) = exp(Lt )As(0), Bs(t ) =
exp(Lt )Bs(0), where L is the Liouville operator L = Ls +
L� + L̃s� related to the Hamilton function (1) and defined
by the Poisson bracket. Thus, we consider the correlation
function

ϕAB(t ) = 〈As(t )Bs(0)〉 = 〈As(0)Bs(−t )〉 =
∫

. . .

∫
dxsAs(0)

[∫
. . .

∫
dx�GN (t, β )

]
,

GN (t, β ) = ρ(β ) exp(−Lt )Bs(0), dxs = dx1 . . . dxs, dx� = dxs+1 . . . dxN . (2)

Here,

ρ(β ) = Z−1 exp(−βH ), Z =
∫

. . .

∫
dxN exp(−βH ), β = 1/kBT, dxN = dxsdx�,

LCN = {H,CN }p =
N∑

i=1

[
∂CN

∂ri

∂H

∂pi
− ∂CN

∂pi

∂H

∂ri

]
, (3)
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{H,CN }p is the Poisson bracket, CN is some dynamic function
defined on the full phase space of the N-particle system under
consideration. We see that the dynamics of correlation func-
tion (2) is defined by the function GN (t, β ), which depends on
the whole set of variables x1, . . . , xN and obeys the Liouville-
type equation

∂

∂t
GN (t, β ) = −ρ(β )L exp(−Lt )Bs(0) = −LGN (t, β ), (4)

where we used that ρ(β ) commutes with L [more gener-
ally ρ(β ) commutes with exp(−Lt )]. The formal solution to
Eq. (4) is

GN (t, β ) = U (t, 0)GN (0, β ),

U (t, 0) = exp(−Lt ), GN (0, β ) = ρ(β )Bs(0). (5)

However, one can see from the definition (2) that dynamics
of the subsystem fluctuations is governed by the function
dependent on much smaller number of variables x1, . . . , xs

than the whole set of N variables x1, . . . , xN , i.e., by the
function GN (t, β ) integrated over the environment variables
xs+1, . . . , xN :

Fs(t, β ) =
∫

. . .

∫
dx�GN (t, β ). (6)

From (2) and (6) one can see that Fs(t, β ) can be viewed as
the distribution function for As(0).

In order to obtain the equation for the reduced dis-
tribution function Fs(t, β ) [Eq. (6)], it is convenient to
employ the projection operator technique [17–19] and to
break GN (t, β ) by some projection operators P and Q =
1 − P (with the properties P2 = P, Q2 = Q, P + Q = 1,
PQ = 0) into the relevant RN (t, β ) and irrelevant IN (t, β )
parts

GN (t, β ) = RN (t, β ) + IN (t, β ),

RN (t, β ) = PGN (t, β ),

IN (t, β ) = QGN (t, β ) = GN (t, β ) − RN (t, β ). (7)

We note that the relevant and irrelevant parts generally depend
on coordinates and momenta of all N particles in contrast
to the reduced function Fs(t, β ). The relevant part RN (t, β )
is conveniently defined in such a way that it comprises the
reduced function of interest Fs(t, β ) as a multiplier. Thus, we
consider the projection operators of the form

P = �s�

∫
. . .

∫
dx�, (8)

where the function �s� generally depends on the coordinates
of a subsystem and an environment and normalized as∫

. . .

∫
�s�dx� = 1. (9)

Then, it is easily seen that for projectors given by (8) and
(9), the correlation function (2) is completely defined by the
relevant part of GN (t, β ):

ϕAB(t ) =
∫

. . .

∫
dxs

∫
. . .

∫
dx�As(0)RN (t, β ). (10)

If, e.g.,

�s� = ρ� = Z−1
� exp(−βH� ),

Z� =
∫

. . .

∫
dx� exp(−βH� ), (11)

then we have the “standard” projectors (see, e.g., [7])

P = P� = ρ�

∫
. . .

∫
dx�, Q� = 1 − P� (12)

conventionally used for such types of problems (interaction of
a subsystem with a reservoir). Note that the formal introduc-
tion of the distribution function ρ� does not necessarily mean
that the environment of N − s particles is in the equilibrium
state.

By application of operators (12) to Eq. (4), we obtain the
equations for the relevant and irrelevant parts of GN (t, β ):

∂

∂t
RN (t, β ) = −P�L[RN (t, β ) + IN (t, β )],

∂

∂t
IN (t, β ) = −Q�L[RN (t, β ) + IN (t, β )], (13)

where now

RN (t, β ) = P�GN (t, β ) = Gr
N (t, β ) = ρ�Fs(t, β ),

IN (t, β ) = GN (t, β ) − ρ�Fs(t, β ) = Gi
N (t, β ). (14)

Finding Gi
N (t, β ) from the second equation (13) as a func-

tion of Gr
N (τ, β ) and Gi

N (0, β ) and inserting it in the first
equation (13), we arrive at the conventional exact time-
convolution generalized master equation (TC-GME) known
as the Nakajima-Zwanzig equation for the relevant part of
Gr

N (t, β ) [17,18]:

∂

∂t
Gr

N (t, β ) = −P�LGr
N (t, β ) +

∫ t

0
P�LUQ�

(t, τ )Q�LGr
N

× (τ, β )dτ − P�LUQ�
(t, 0)Gi

N (0, β ),

UQ�
(t, τ ) = exp[−Q�LQ� (t − τ )]. (15)

Equation (15), which, in fact, gives the equation for the re-
duced function Fs(t, β ), is quite general and formally closed.
Serving as a basis for many applications [7], this equation,
nevertheless, contains the undesirable and non-negligible in-
homogeneous initial condition term [the last term in the
right-hand side of (15)]

Gi
N (0, β ) = GN (0, β ) − P�GN (0, β ) = [ρ(β ) − ρsρ�]Bs(0),

ρs =
∫

. . .

∫
dx�ρ(β ) (16)

[see (2) and (12)]. This term is not equal to zero due to initial
(at t = 0) correlations [ρ(β ) �= ρsρ�]. Therefore, Eq. (15)
does not provide for a complete reduced description of a
multiparticle system in terms of the relevant (reduced) func-
tion Fs(t, β ). Applying Bogoliubov’s principle of weakening
of initial correlations, allowing to eliminate the influence of
initial correlations on the large enough timescale t � tcor (tcor

is the time for damping of initial correlations) or using a fac-
torized initial condition, when ρ (β ) = ρsρ� , one can achieve
the desirable goal and obtain the homogeneous GME for
Fs(t, β ), i.e., Eq. (15) with no initial condition term. However,
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obtained in such a way homogeneous GME is either approx-
imate and valid only on a large enough timescale (when all
initial correlations vanish) or applicable only for a rather arti-
ficial (actually unreal, as pointed in [8]) initial conditions (no
correlations at an initial instant of time). In addition, Eq. (15)
poses the problem to deal with due to its time nonlocality.
However, it is possible to obtain the time-local equation for
the relevant part Gr

N (t, β ) [7,20,21] which also contains the
inhomogeneous source term.

III. COMPLETELY CLOSED (HOMOGENEOUS) GMEs
FOR s-PARTICLE CORRELATION FUNCTION

Let us now introduce the following projection operators Ps

and Qs:

P = Ps = ρs
�

∫
. . .

∫
dx�, Q = Qs = 1 − Ps,

ρs
� = 1

Zs
�

exp[−β(H� + H̃s� )],

Zs
� =

∫
. . .

∫
dx� exp[−β(H� + H̃s� )]. (17)

It is not difficult to see that P2
s = Ps, Q2

s = Qs, PsQs = 0.
Then, we can divide GN (t, β ) into the relevant gr

N (t, β ) and
irrelevant gi

N (t, β ) components as

GN (t, β ) = gr
N (t, β ) + gi

N (t, β ),

gr
N (t, β ) = PsGN (t, β ) = ρs

�FS (t, β ),

gi
N (t, β ) = QsGN (t, β ) = GN (t, β ) − ρs

�FS (t, β ). (18)

It is not difficult to see that the dynamics of the correlation
function (2) is completely defined by the relevant part gr

N (t, β )
of GN (t, β ), i.e.,

ϕAB(t ) =
∫

. . .

∫
dxsAs(0)Fs(t, β )

=
∫

. . .

∫
dxN As(0)gr

N (t, β ). (19)

The projection operator Ps, Eq. (17), has an interesting prop-
erty, namely,

Psρ(β ) = ρ(β ), QsGN (0, β ) = 0. (20)

Thus, by applying the introduced projection operators Ps

and Qs, Eq. (17), to Eq. (4), we arrive at the following exact
homogeneous time-convolution GME [compare with (15)]:

∂

∂t
gr

N (t, β ) =−PsLgr
N (t, β )+

∫ t

0
PsLUQs (t, τ )QsLgr

N (τ, β )dτ,

UQs (t, τ ) = exp[−QsL(t − τ )]. (21)

Equation (21) is a completely closed equation which
defines the evolution in time of the relevant part of the cor-
relation function that we are looking for. It shows that in
the considered case, the dynamics of correlation function (2)
can be exactly projected on the dynamics within its relevant
subspace. It follows that the dynamics of fluctuations of the
selected complex of s particles can be described by the linear
equation in the subspace of the corresponding coordinates
xi = (ri, pi ) (i = 1, . . . , s). To make it more clear, we rewrite

Eq. (21) as the equation for an s-particle function Fs(t, β )
[Eq. (6)] governing the subsystem’s fluctuations in time [see
also (2) and (18)]:

∂

∂t
Fs(t, β ) = −

[∫
. . .

∫
dx�Lρs

�

]
Fs(t, β )

+
[∫

. . .

∫
dx�L

∫ t

0
dτUQs (t, τ )QsLρs

�

]
× Fs(τ, β ). (22)

Generally, the evolution equation (21) poses some problem to
deal with due to its time nonlocality. It is possible, however,
to obtain the exact homogeneous time-local equation for the
relevant part of the correlation function. The idea is to take
advantage of the evolution of GN (t, β ), defined by (5), which
leads to the relation

GN (τ, β ) = U −1(t, τ )GN (t, β ),

U −1(t, τ ) = exp[L(t − τ )]. (23)

Using (23) and the conventional projection operator (12), the
well known time-convolutionless equation for the relevant
part Gr

N (t, β ) of GN (t, β ), which contains the undesirable
inhomogeneous term (16) comprising the initial correlations,
can be obtained (see [7,20,21]).

We will show now that the use of the projector (17) in-
stead of (12) leads to the completely closed homogeneous
time-convolutionless GME for the relevant part of the corre-
lation function. We will briefly conduct the derivation which
is rather a standard one. First, we apply the projector (17) to
(23) and obtain additional equation connecting the relevant
and irrelevant parts of GN (t, β ):

gr
N (τ, β ) = PsU

−1(t, τ )
[
gr

N (t, β ) + gi
N (t, β )

]
. (24)

We also have the equation for the irrelevant part gi
N (t, β )

which follows from the solution of the second equation (13)
with the projection operator (17):

gi
N (t, β ) = −

∫ t

0
UQs (t, τ )QsLgr

N (τ, β )dτ, (25)

where UQs (t, τ ) is given by (21) and the property (20) was
used. From two equations (24) and (25) one finds that

gi
N (t, β ) = [1 − α(t )]−1α(t )gr

N (t, β ),

α(t ) = −
∫ t

0
UQs (t, τ )QsLPsU

−1(t, τ )dτ. (26)

Substituting gi
N (t, β ), Eq. (26), into the projected by Ps,

Eq. (4),

∂

∂t
gr

s(t, β ) = −PsL
[
gr

N (t, β ) + gi
N (t, β )

]
, (27)

we finally obtain

∂

∂t
gr

N (t, β ) = −PsL[1 − α(t )]−1gr
N (t, β ). (28)

If it is possible to expand the operator [1 − α(t )]−1 into the
series in α(t ), then the first two terms of this expansion result
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in the following time-local equation [compare with (21)]:

∂

∂t
gr

N (t, β ) = − PsLgr
N (t, β )

+ PsL
∫ t

0
dτUQs (t, τ )QsLPsU

−1(t, τ )gr
N (t, β ).

(29)

Equations (21) and (28) present the main results of this
section. They show that the projector (17) allows for select-
ing the relevant part gr

N (t, β ) of the multiparticle function
GN (t, β ) governing the dynamics of correlation function (2)
which satisfies the completely closed linear time-convolution
and time-convolutionless equations. They, in fact, describe
the evolution of the s-particle marginals (6) on the arbitrary
timescale. Thus, one remains in the scope of the linear evolu-
tion given by the Liouville equation (4) but should pay for this
simplification by accounting for initial correlations, which are
conventionally ignored, but now are included in the kernels of
Eqs. (21) and (28) by means of the new projection operator
(17). It is also worth noting that the developed formalism only
works in the framework of classical physics [when the terms
of the Hamilton function (1) commute with each other]. For
quantum physics a different approach is needed (see [14,15]).

IV. EQUATIONS FOR A MORE SPECIFIC CASE

Let us specify the Hamilton function H [Eq. (1)] for the
case of the identical particles with the two-body interparticle
interaction Vi j as

H = Hs + H� + H̃s�,

Hs =
s∑

i=1

p2
i

2m
+

∑
1�i< j�s

Vi j (|ri − r j |) + 〈Hs�〉�,

H� =
N∑

i=s+1

p2
i

2m
+

∑
s+1�i< j�N

Vi j (|ri − r j |),

H̃s� = Hs� − 〈Hs�〉�, Hs� =
s∑

i=1

N∑
j=s+1

Vi j (|ri − r j |).

(30)

Here, for convenience, we introduce the energy of the mean
field 〈Hs�〉� acting on the s complex by the “equilibrium”
environment

〈Hs�〉� =
∫

. . .

∫
dx�ρ�Hs�, (31)

where ρ� is given by (11). Note that 〈Hs�〉� depends only on
the coordinates of s selected particles ri (i = 1, . . . , s).

The corresponding to (30) Liouville operator L is

L = Ls + L� + L̃s�,

Ls =
s∑

i=1

[
vi · ∇i − (∇i〈Hs�〉� ) · ∂

∂pi

]
−

∑
1�i< j�s

(∇iVi j ) ·
(

∂

∂pi
− ∂

∂p j

)
,

L� =
N∑

i=s+1

vi · ∇i −
∑

s+1�i< j�N

(∇iVi j ) ·
(

∂

∂pi
− ∂

∂p j

)
,

L̃s� = −
s∑

i=1

N∑
j=s+1

(∇iVi j ) ·
(

∂

∂pi
− ∂

∂p j

)
+

s∑
i=1

(∇i〈Hs�〉� ) · ∂

∂pi
,

vi = pi/m, ∇i = ∂

∂ri
, Vi j = Vi j (|ri − r j |). (32)

Equations (21) and (28) can be rewritten in the simplified form if we take into account the following operator properties:

PsLs = PsLsPs = ρs
�Ls

∫
. . .

∫
dx�, PsLsQs = 0, QsLsPs = LsPs − ρs

�Ls

∫
. . .

∫
dx�,

PsL� = 0, PsL�Qs = 0, QsL�Ps = L�Ps, PsL̃s�Ps =
s∑

i=1

[〈Fi〉s
� − 〈Fi〉�

] · ∂

∂pi
Ps, (33)

where

Fi = −
N∑

j=s+1

(∇iVi j ), 〈. . .〉s
� =

∫
. . .

∫
dx� (. . . ρs

� ), (34)

i.e., Fi is the force acting on the i particle (i = 1, . . . , s) from the “environment” of N − s particles. Here and further on, we
use, as usual, that all functions �(x1, . . . , xN ; t ), defined on the phase space, and their derivatives vanish at the boundaries of the
configurational space and at pi = ±∞.
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Now, Eq. (21) can be presented as

∂

∂t
Fs(t, β ) = −

[
Ls +

s∑
i=1

(〈Fi〉s
� − 〈Fi〉�

) · ∂

∂pi

]
Fs(t, β ) + C(t, β ), (35)

where the collision term C(t, β ) is defined by

C(t, β ) =
∫ t

0
dτ

∫
· · ·

∫
dx� L̃s�UQs (τ, 0)

[
L̃s�ρs

� + (
Lsρ

s
�

) + L�ρs
� −

s∑
i=1

(〈Fi〉s
� − 〈Fi〉�

) · ρs
�

∂

∂pi

]
Fs(t − τ, β ), (36)

and (Lsρ
s
� ) means that Ls acts only on ρs

� . Note that if we use in (35) and (36) the standard projector (12), i.e., substitute ρs
�

with ρ� , then Eq. (35) will acquire the “standard” form

∂

∂t
Fs(t, β ) = −LsFs(t, β ) +

∫ t

0
dτ

∫
. . .

∫
dx� L̃s�UQs (τ, 0)L̃s�ρ�Fs(t − τ, β ) (37)

if we neglect in (15) the inhomogeneous source term. Thus, we see that the extra terms in Eq. (35) are due to initial correlations
which are “hidden” in the projector (17).

V. EVOLUTION EQUATION FOR ONE-PARTICLE CORRELATION FUNCTION
IN THE FIRST APPROXIMATION IN THE PARTICLE DENSITY

For what follows, we consider the equation for F1(t, β ) = F1(r1, p1; t, β ). One can see that for s = 1 the Hamilton function
(30) and the Liouville operator (32) have more simple form. In order to expand the kernel of Eq. (35) in the density of particles
n = N/V (V is the system’s volume), we need the expansion for the distribution function ρ1

� . In order to do that, it is convenient
to express exp(−βH� ) and exp(−βH1� ) in terms of the Mayer functions fi j [22]. Then,

ρ1
� = exp(−βH� ) exp(−βH1� )∫

. . .
∫

dx� exp(−βH� ) exp(−βH1� )
= ρ� (p)

∏
2�i< j�N (1 + fi j )

∏N
j=2(1 + f1 j )∫

. . .
∫

dr�
∏

2�i< j�N (1 + fi j )
∏N

j=2(1 + f1 j )
, dr� = dr2 . . . drN ,

(38)

where

fi j = e−βVi j − 1, Vi j = V (|ri − r j |), ρ� (p) = exp[−βH� (p)]

/∫
. . .

∫
dp� exp[−βH� (p)],

H� (p) =
N∑

j−2

p2
j/2m, dp� = dp2 . . . dpN , (39)

and we used that exp(β〈H1�〉� ) does not depend on the “environment” � variables and is canceled out of ρ1
� .

Let us consider the denominator of ρ1
� :∫

. . .

∫
dr�

∏
2�i< j�N

(1 + fi j )
N∏

j=2

(1 + f1 j )

=
∫

dr2 . . .

∫
drN (1 + f23 + f24 + f34 + · · · + fN−1,N + f23 f24 + · · · )(1 + f12 + f13 + · · · + f12 f13 + · · · )

= V N−1 + (N − 1)V N−2
∫

f12dr2 + N (N − 1)V N−3
∫

dr2

∫
dr3( f23 + f12 f13) + · · ·

= V N−1

[
1 + n

∫
dr2 f12 + n2

∫
dr2

∫
dr3( f23 + f12 f13) + · · ·

]
, N � 1. (40)

One can see that the terms with one integration over the particle coordinate is proportional to n, while the terms with integration
over coordinates of two, three, and more particles are proportional to n2, n3, and higher powers of n, respectively. In what
follows, we will restrict ourselves to the linear in n approximation to the kernel of Eq. (35) and, therefore, only the terms with
one integration over the particle coordinate should be taken into consideration. The products of terms with one integration over
the particle coordinate will also be (naturally) disregarded. Thus, within the linear in n accuracy,

ρ1
� = 1

V N−1
ρ� (p)

(
1 +

N∑
j=2

f1 j

)(
1 − n

∫
dr2 f12

)
, (41)
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where we approximated
∏N

j=2(1 + f1 j ) by 1 + ∑N
j=2 f1 j for the above-mentioned reasons (in view of the further integration over

the environment N − s particle coordinates). In the same way we can consider the difference between ρ1
� and ρ� . In the linear

in n approximation

ρ1
� − ρ� = 1

V N−1
ρ� (p)

[(
N∑

j=2

f1 j

)(
1 − n

∫
dr2 f12

)
− n

∫
dr2 f12

]
, (42)

where we used that in this approximation ρ� = 1
V N−1 ρ� (p). Then, applying

∫ · · · ∫ dx� to (42), we see that in the adopted
approximation

〈F1〉1
� − 〈F1〉� = −n

∫
dr2 f12(∇1V12). (43)

Thus, Eq. (35) for s = 1 in the linear in n approximation acquires the form

∂

∂t
F1(t, β ) = −

[
v1 · ∇1 − (∇1〈H1�〉� ) · ∂

∂p1
− n

∫
dr2 f12(∇1V12) · ∂

∂p1

]
F1(t, β ),+Ccol(t, β ) + Cic(t, β ), (44)

where Ccol(t, β ) is the collision term

Ccol(t, β ) = n
∫ t

0
dτ

∫
dr2

∫
dp2L′

12 exp[−(L12τ )]L′
12ρ

0(p2)e−βV12 F1(t − τ, β )

= n
∫ t

0
dτ

∫
dr2

∫
dp2∂12 · F12 exp[−(L12τ )]F12 · ∂12ρ

0(p2)e−βV12 F1(t − τ, β )

L12 = L0
1 + L0

2 + L′
12, L0

1 = v1 · ∇1, L0
2 = v2 · ∇2,

L′
12 = F12 · ∂12, F12 = −(∇1V12), ∂12 = ∂

∂p1
− ∂

∂p2
,

ρ0(p2) = exp
( − βp2

2/2m
)/ ∫

dp2 exp
( − βp2

2/2m
)
, (45)

and Cic(t, β ) is the additional term due to initial correlations

Cic(t, β ) = n
∫ t

0
dτ

∫
dr2

∫
dp2L′

12 exp[−(L12τ )]g12 · (∇1 f12)ρ0(p2)F1(t − τ, β )

= nβ

∫ t

0
dτ

∫
dr2

∫
dp2∂12 · F12 exp[−(L12τ )]F12 · g12ρ

0(p2)e−βV12 F1(t − τ, β ),

g12 = v1 − v2. (46)

Here, we used Eqs. (30)–(32) and (41) and that in the linear in n approximation

〈H1�〉� = n
∫

dr2V12, (47)

and also that ∇1 f12 = −∇2 f12.
Obtained Eq. (44) is the main result of this section and can be considered as a generalized linear Boltzmann equation

accounting for initial correlations. The term (45) is the generalized linear version of the Boltzmann collision term. We see
that the tagged particle 1, the evolution of which we follow by means of obtained equation, collides with the tagged second
particle in the equilibrium state described by ρ0(p2)e−βV12 .

In the space-homogeneous case when F1(t, β ) = F1(p1; t, β ), ∇1〈H1�〉� = 0, and
∫

dr2 f12(∇1V12) = 0, Eq. (44) reduces to

∂

∂t
F1(p1; t, β ) = Ccol(t, β ) + Cic(t, β ), (48)

where Ccol(t, β ) and Cic(t, β ) are given by (45) and (46) but with F1(t − τ, β ) = F1(p1; t − τ, β ).
We see that the evolution in time in Eqs. (45) and (46) is defined by the exact two-particle propagator which satisfies the

integral equation

exp[−(L12τ )] = U12(τ ) = U 0
12(τ ) +

∫ τ

0
dτ1U

0
12(τ − τ1)L′

12U12(τ1), (49)

where U 0
12(τ ) = exp[−(L0

1 + L0
2 )τ ] is a “free” two-particle propagator.
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VI. CONNECTION TO THE BOLTZMANN EQUATION

Note that Eqs. (44) and (48) are the reversible in time ones. They become irreversible if it is possible to extend in them the
upper limit of integration over τ to infinity (and this limit exists). It can be the case of the short time interparticle interaction τcor,
when

τcor � t ∼ τrel, (50)

where τrel is the timescale on which the F1(t, β ) changes (see also below). Then, in the obtained equations we can approximate
the one-particle function as F1(t − τ, β ) ≈ F1(t, β ) and simultaneously extend the upper limit of integration to infinity. The latter
can be done, e.g., if the time-dependent force-force correlation function in Eqs. (45) and (46)∫

dr2F12 · exp[−(L12τ )]F12 (51)

quickly vanishes on the timescale τcor ∼ rcor/v � τrel (rcor is a radius of the interparticle interaction Vi j and v is the average
particle velocity), i.e., when the interaction is rather a short-range one. Thus, in this case, Eqs. (44) and (48) on the timescale
t ∼ τrel become Markovian (time local) and irreversible.

Let us consider (following the approach of [4]) in this approximation and in the space-homogeneous case the collision term
(45), which in the new convenient variables vi = pi/m, r = r2 − r1, and g = v1 − v2 can be written as

Ccol(v1; t, β ) = n
∫

dv2J (v1, v2), J (v1, v2) =
∫

dr
∫ ∞

0
dτ L′U (τ )L′ϕ(v1, v2, r; t, β ),

L′ = −[∇V (r)] · ∂, ∇ = ∂

∂r
, ∂ = 2

m

∂

∂g
,

ϕ(v1, v2, r; t, β ) = ρ0(v2)e−βV (r)F1(v1; t, β ), ρ0(v2) = exp
( − βmv2

2/2
)/ ∫

dv2 exp
( − βmv2

2/2
)
, (52)

where we assumed that in the space-homogeneous case B1(0), hidden in F1(v1; t, β ), depends only on v1 and dropped for brevity
the indices 12 in (45), which cannot lead to misunderstanding because we deal in the adopted first order in n approximation only
with a tagged pair of particles. It can be easily shown that the integral over τ in (52) can be presented as [see (49)]

Z = G + GL′Z, G = lim
p→+0

∫ ∞

0
dτ e−pτU 0(τ ), Z = lim

p→+0

∫ ∞

0
dτ e−pτU (τ ). (53)

In the matrix form, Z (r, g; r′, g′) satisfies the equation

{g · ∇−[∇V (r)] · ∂}Z (r, g; r′, g′) = δ(r − r′)δ(g − g′), (54)

i.e., it is the Green’s function of the two-particle Liouville equation [see (32)], whereas the matrix G(r, g; r′, g′) is diagonal
with respect to velocity indices G(r, g; r′, g′) = G0(r − r′)δ(g − g′) and G0(r, g; r′, g′) is Green’s function of the unperturbed
Liouville equation

g · ∇G0(r − r′) = δ(r − r′). (55)

If we introduce the function

f (r, g;t, β ) = ϕ(v1, v2, r; t, β ) +
∫

dr′
∫

dg′Z (r, g; r′, g′)[∇′V (r′)] · ∂ ′ϕ(v′
1, v′

2, r′; t, β ), (56)

then it is not difficult to show, using (54), that

{g · ∇−[∇V (r)] · ∂} f (r, g;t, β ) = g · ∇ϕ(v1, v2, r; t, β ), lim
V (r)→0

f (r, g;t, β ) = ρ0(v2)F1(v1; t, β ). (57)

Thus, it is easy to verify that the function f (r, g;t, β ), presented as

f (r, g;t, β ) = ϕ(v1, v2, r; t, β ) +
∫

dr′G0(r − r′)[∇′V (r′)] · ∂ f (r′, g;t, β ), (58)

satisfies the equation (57).
Now we can write the function J (v1, v2), defining the collision term (52), as

J (v1, v2) =
∫

dr[∇V (r)] · ∂[ f (r, g;t, β )−ϕ(v1, v2, r;t, β )] =
∫

dr g · ∇V (r) f (r, g;t, β ). (59)

Here, we used (56) and (57) and that ϕ(v1, v2, r;t, β ) depends on the relative distance r as exp[−βV (r)] and, therefore,∫
dr[∇V (r)] exp[−βV (r)] = −β−1

∫
dr ∇{exp[−βV (r)]} = 0 in the space-homogeneous case.
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Let us select the coordinate system in which axis z is directed along vector g. Then, the Green’s function G0(r − r′) has the
form

G0(r − r′) = g−1δ(x − x′)δ(y − y′)θ (z − z′), θ (x) = 1, x > 0 θ (x) = 0, x < 0 (60)

which is in agreement with Eq. (55). Inserting (60) in (58), we obtain

f (r, g;t, β ) = ϕ(v1, v2, r; t, β ) +
∫ z

−∞
dz′g−1[∇′V (x, y, z′)] · ∂ f (x, y, z′, g; t, β )

= ϕ(v1, v2, r; t, β ) +
∫ z

−∞
dz′

(
∂

∂z′

)
[ f (x, y, z′, g; t, β ) − ϕ(v1, v2, z′; t, β )]

= ϕ(v1, v2, r; t, β ) +
∫ z

−∞
dz′

(
∂

∂z′

)
f (x, y, z′, g; t, β )

= ϕ(v1, v2, r; t, β ) + �(x, y, z, g; t, β ), �(x, y, z, g,β ) =
∫ z

−∞
dz′

(
∂

∂z′

)
f (x, y, z′, g; t, β ). (61)

Finally, introducing (61) in (59), we obtain

J (v1, v2) =
∫

dr g · ∇V (r) f (r, g; t, β ) =
∫ ∞

−∞
dz g

(
∂

∂z

)
�(x, y, z) = g[�(x, y,∞, g; t, β ) − �(x, y,−∞, g; t, β )]

= g
∫ ∞

−∞
dz′

(
∂

∂z′

)
f (x, y, z′, g; t, β ) = g[ f (x, y,+∞, g; t, β ) − f (x, y,−∞, g; t, β )]. (62)

It is then evident from (62) that function f (x, y,−∞, g; t, β ) can be identified with the distribution function (52)
ϕ(v1, v2,−∞; t, β ) prior to collision, i.e.,

ϕ(v1, v2,−∞; t, β ) = ρ0(v2)F1(v1; t, β ), (63)

where we used that exp[−βV (±∞)] = 1 [V (±∞) = 0]. Function f (x, y,+∞, g; t, β ) can be considered as the distribution
function of particles after collision with the relative velocity g. But due to Liouville-type dynamics given by Eq. (4), this
distribution function is equal to the distribution function before collision with velocities v′

1, v′
2 which correspond to the velocities

v1, v2 (the Liouville-type theorem), i.e.,

f (x, y,+∞, g; t, β ) = ρ0(v′
2)F1(v′

1; t, β ), v1 + v2 = v′
1 + v′

2, v2
1 + v2

2 = v′2
1 + v′2

2 . (64)

Taking into account that in the adopted coordinate system with g directed along the z axis

dx dy = bdbdϕ, (65)

where b is the impact parameter and ϕ is the azimuth angle. As a result, we arrive at the linear Boltzmann collision term in
Eq. (48):

Ccol(v1; t, β ) = n
∫

dv2

∫
dϕ db bg[ρ0(v′

2)F1(v′
1; t, β ) − ρ0(v2)F1(v1; t, β )], (66)

i.e., the Boltzmann collision term with the Maxwell distribution function for the second tagged particle. Making in (66) the
substitutions

F1(v1; t, β ) = ρ0(v1)W (v1, t ), F1(v′
1; t, β ) = ρ0(v′

1)W (v′
1, t ), (67)

the collision term for the function W can be rewritten as (see, e.g. [23])

Ccol(v1; t, β ) = ρ0(v1)n
∫

dv2

∫
dϕ db bgρ0(v2)[W (v′

1, t ) − W (v1, t )], (68)

where we used that according to definition (45) for ρ0(v) and the conservation of energy (64)

ρ0(v1)ρ0(v2) = ρ0(v′
1)ρ0(v′

2). (69)

Note that ρ0(v1) can be canceled out in Eq. (48) written for function W (v1, t ) with no initial correlation term Cic( t, β ).
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VII. CONNECTION TO THE LANDAU EQUATION

It is interesting to consider Eq. (44) for the case of a weak interparticle interaction when〈
p2

i

/
2m

〉
� kBT � Vi j, (70)

i.e., the interparticle interaction is small as compared to the average particle’s kinetic energy. Then, in the second order in the
small parameter, defined by inequality (70), the collision term (45) can be rewritten as

Ccol( t, β ) = n
∫ t

0
dτ

∫
dr2

∫
dp2F12 · ∂12 exp[−(v1 · ∇1 + v2 · ∇2)τ ]F12 · ∂12ρ

0(p2)ev1·∇1τ F1( t, β ). (71)

Here, in order to remain within adopted accuracy, we took F1(t − τ, β ) in the zero in the interaction approximation [see (44)]

F1(t − τ, β ) = exp[−v1∇1(t − τ )]F1(0, β ) = ev1∇1τ F1( t, β ). (72)

In the same approximation

Cic( t, β ) = nβ

∫ t

0
dτ

∫
dr2

∫
dp2F12 · ∂12 exp[−(v1∇1 + v2∇2)τ ]F12 · g12ρ

0(p2)ev1∇1τ F1( t, β ). (73)

Then, we have for any function of the particles coordinates �(r1, r2, . . . , rN )

exp[−(v1∇1 + v2∇2)τ ]�(r1, r2, . . . , rN ) = �(r1 − v1τ, r2 − v2τ, r3, . . . , rN ). (74)

If we also take into account the commutation rule

[exp[−(v1∇1 + v2∇2)τ ], ∂12] = exp[−(v1∇1 + v2∇2)τ ]
τ

m
(∇1 − ∇2), (75)

the collision term acquires the final form

Ccol( t, β ) = n
∫ t

0
dτ

∫
dp2∂12GL(x1, g12;τ )

(
∂12 + τ

m
∇1

)
ρ0(p2)F1(x1; t, β ),

GL(r1, g12;τ ) =
∫

dr2F12(0)F12(τ ), F12(τ ) = −∇1V (r1 − r2 − g12τ ). (76)

Using (74), the initial correlation term (73) can be rewritten as

Cic( t, β ) = nβ

∫ t

0
dτ

∫
dp2∂12GL(r1, g12;τ )g12ρ

0(p2)F1(x1; t, β ). (77)

The collision integral (76) coincides with the corresponding
collision integral in the nonlinear equation for inhomogeneous
system of weakly interacting classical particles (see [4]) if in
the latter, the distribution function for the particle, with which
the tagged particle collides, is replaced by the equilibrium
distribution function for this particle ρ0(p2). In addition, for
such a coincidence, the integral over dτ should be extended to
infinity. It can be done, if the interaction is rather a short-range
one and if for the timescale (50) the force acting on the particle
vanishes [F12(t ) = 0].

In the space-homogeneous case, Eq. (48) for a small inter-
particle interaction reads as

∂

∂t
F1(p1; t, β ) = n

∫ t

0
dτ

∫
dp2∂12GL(r1, g12;τ )(∂12 + βg12)

× ρ0(p2)F1(p1; t, β ). (78)

The first (collision) term in the right-hand side of Eq. (78)
coincides with the Landau collision integral if it is possible to
extend the integral over τ to infinity (short-range interparticle
interaction) and to replace the distribution function for the
second tagged particle with ρ0(p2) [which seems natural for
considered second order in interaction approximation for the
kernel governing evolution of F1(p1; t, β )]. The second term

in the right-hand side of (78) is caused by initial correlations
and is formally of the same order as the first term.

VIII. CONCLUSION

We have rigorously derived the exact completely closed
(homogeneous) generalized master equations governing the
evolution in time of an equilibrium two-time correlation func-
tion for dynamic variables of a selected group of s (s < N)
particles of an N-particle (N � 1) system of classical parti-
cles. These time-convolution and time-convolutionless GMEs
differ from known equations (such as Nakajima-Zwanzig
equation) by the absence of undesirable inhomogeneous terms
containing the correlations of all N particles in the initial
moment of time. Such closed reduced description has become
possible through the use of a special projection operator (17).

This projection operator (comprising initial correlations)
can be expanded into a series in the density of particles
or in the weak interparticle interaction. In the linear in n
approximation for the kernel governing the evolution of a
one-particle correlation function, the generalized linear Boltz-
mann equation accounting for initial correlations and valid at
any timescale has been rigorously obtained. At the timescale
t ∼ τrel � τcor and for a short-range interaction, this equation
becomes irreversible with the collision integral of the linear
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Boltzmann equation (for the space-homogeneous case) but
with an additional term due to initial correlations.

If in addition the interparticle interaction is weak, the
generalized linear Boltzmann equation converts into the
generalized linear Landau equation accounting for initial cor-
relations and valid on all timescales. Again, at the timescale
t ∼ τrel � τcor and for a short-range interaction this equation
becomes irreversible. For the space-homogeneous case, the
collision integral coincides with the Landau collision inte-
gral in which the distribution function of the second tagged
particle is replaced with the equilibrium Maxwell distribution
function. But, there is also an additional term in the kernel
governing the evolution of a one-particle correlation function
caused by initial correlations.

The approach suggested in this paper with no traditional
approximations (molecular chaos, propagation of chaos, Bo-
goliubov principle of weakening of initial correlations) works
only for the initial equilibrium state for the full system, which
in the considered case of equilibrium correlation function
(2) can be conveniently taken in the form ρ(β )Bs(0) [see
(5)]. This approach is not restricted only to the case of equi-
librium correlation functions (2). It is easily seen that for
the case when a system is driven from an initial (at t = t0)
Gibbs equilibrium state ρ(β ) by an external force (applied at
t > t0), the same method works and the similar completely
closed (homogeneous) GMEs (but with the additional external
force terms) can be obtained for the conventional reduced
s-particle distribution functions (see recently published work
[16], where, as an application, a small interparticle interaction
case was considered, which resulted in the linear generalized
Landau equation).

Thus, the natural initial equilibrium state for the full sys-
tem allows for rigorous derivation of the generalized linear

Boltzmann and Landau equations with the terms caused by
initial correlations. Note that the known linear Boltzmann
and Landau equations are conventionally derived using the
above-mentioned unproven approximations (i.e., in fact by ne-
glecting the initial correlations) [6] as well as the conventional
nonlinear Boltzmann and Landau equations. The linearity of
the obtained in this paper equations naturally follows from the
linear Liouville equation.

In summary, the long-standing problem of the rigorous
derivation of the completely closed evolution equations for
s-particle marginals from the Liouville equation seems to be
resolved in the case of equilibrium initial state for the full N-
particle (N > s) classical system (at least on the level of rigor
adopted in this paper). The obtained homogeneous GMEs
are the linear ones. The rigorous derivation of the nonlinear
(Boltzmann-type) closed equations for arbitrary timescale is
still an open problem. The linear Boltzmann and Landau
equations, which follow from the obtained in this paper homo-
geneous GMEs, differ from the known equations by additional
terms due to accounting for initial correlation between the s-
particle subsystem and environment of N − s particles. These
additional terms can contribute to the kinetic properties of the
system under consideration, as it was demonstrated for the
polaron mobility in the papers [14,15], in which the initial cor-
relations for the quantum mechanical problem of interaction
of a subsystem with a heat bath were taken into account by
different method.

It should also be noted that the application of the ob-
tained equations to a specific calculation of the measurable
values for realistic potentials may lead to some mathematical
problems, as it is, e.g., in the case of the Landau equa-
tion, applied to a plasma, when a cutoff has to be included
[4].
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