
PHYSICAL REVIEW E 102, 052134 (2020)

Universality of local spectral statistics of products of random matrices
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We derive exact analytical expressions for correlation functions of singular values of the product of M Ginibre
matrices of size N in the double scaling limit M, N → ∞. The singular value statistics is described by a
determinantal point process with a kernel that interpolates between Gaussian unitary ensemble statistic and
Dirac-delta (picket-fence) statistic. In the thermodynamic limit N → ∞, the interpolation parameter is given by
the limiting quotient a = N/M. One of our goals is to find an explicit form of the kernel at the hard edge, in the
bulk, and at the soft edge for any a. We find that in addition to the standard scaling regimes, there is a transitional
regime which interpolates between the hard edge and the bulk. We conjecture that these results are universal, and
that they apply to a broad class of products of random matrices from the Gaussian basin of attraction, including
correlated matrices. We corroborate this conjecture by numerical simulations. Additionally, we show that the
local spectral statistics of the considered random matrix products is identical with the local statistics of Dyson
Brownian motion with the initial condition given by equidistant positions, with the crucial difference that this
equivalence holds only locally. Finally, we have identified a mesoscopic spectral scale at the soft edge which is
crucial for the unfolding of the spectrum.
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I. INTRODUCTION

Statistical properties of random matrix ensembles have
been intensively studied over years and a deep understanding
of the underlying principles has been achieved. Much less is
known on the principles governing random matrix dynam-
ics. There are two notable exceptions. In the early days of
random matrix theory, Dyson studied Brownian motion in
matrix spaces [1]; especially, the evolution of the eigenvalues
of Hermitian matrices were considered starting from specific
or randomized initial conditions. The evolution is given by
adding Hermitian matrices made of independently identically
normal distributed matrix entries to this initial matrix. The
kernel of the corresponding determinantal point process, de-
scribing the evolution of the eigenvalues in the bulk, with
initial condition of a fixed spectrum, was derived in Ref. [2].
Recently, also the first step towards the formulation of a
non-Hermitian version of Dyson’s Brownian motion has been
taken [3].

The second example is the Dorokhov-Mello-Pereyra-
Kumar (DMPK) equation [4,5] for the joint-probability
density function of transmission eigenvalues in a quantum
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wire. This equation has the form of a Fokker-Planck equation
describing Brownian motion of eigenvalues propagating in a
narrow wire as a function of its length, which plays the role of
time. The equation can be derived by constructing the transfer
matrix for the whole wire as a product of independent transfer
matrices for thin wire slices assuming isotropic propagation
through each thin slice. The assumption of isotropy means that
the flux in each ingoing channel is in average uniformly dis-
tributed among all outgoing channels. One obtains basically
the same equation also for a multiplicative stochastic model
in the context of May-Wigner stability [6]. A common feature
of Dyson’s Brownian motion and of quantum transport in a
quantum wire is that, mathematically, both are formulated as
evolution equations for eigenvalues in one dimension, which
is the time or the length of the system, respectively.

In this work, we study yet another example of this type.
It is an evolution of singular values of the product of ran-
dom matrices. If one interprets these individual matrices as
incremental transfer matrices for a time step �t of a system
with N degrees of freedom, the product of M matrices can be
comprehended as a transfer matrix at time M�t . We derive an
exact analytical expression for the kernels of the determinan-
tal point processes describing the local statistics of singular
values at the hard edge, in the bulk and at the soft edge for
the product of Ginibre matrices in the double scaling limit
N, M → ∞. Previous results were obtained either at fixed
M when N → ∞ (e.g., see [7–14]), leading to the Meijer
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G kernel at the hard edge [13] or the sine and Airy kernel
in the bulk and at the soft edge [14], respectively. Or, the
limit with N fixed with M → ∞ was considered (e.g., see
[10,15–21]), leading to picket fence statistics [15]. A review
on more recent developments is given in Ref. [22]. Here,
we will consider the double scaling limit M and N → ∞,
simultaneously. The results in this limit were announced in
our paper [23] and, in a parallel development, partly derived
in the mathematical work [24]. In this work, we will give a
detailed derivation of our results in Ref. [23], where we cover
the entire spectrum, including the vicinity of the hard edge
and the bulk close to the soft edge, that were not contained in
Ref. [24]. In particular, we extend previous results for standard
random matrix statistics from fixed M to N � M, as well
as previous results for picket fence statistics at fixed N to
M � N , in the respective double scaling limits. Furthermore,
we present deeper insights into these statistics, including the
issue of universality, unfolding, and what they mean. For a
first work on the complex eigenvalues statistic, we refer to
[25].

For instance, we argue that the results hold for a broader
class of multiplicative stochastic processes. This is corrob-
orated by Monte Carlo simulations, we have carried out, of
several ensembles that include non-Gaussian ensembles as
well as a certain degree of statical dependence between the
matrices that are multiplied. Indeed, in a recent work [26],
it was shown that also a product of complex Jacobi matrices
(truncated unitary matrices) leads to the same picture. What
seems to lie behind this universality, and came even more as
surprise for us, is that the local kernels are those of the addi-
tive stochastic processes such as Dyson’s Brownian motion
[2,27]. Those results of the additive processes describe the
microscopic statistics of eigenvalues from an initial condition
given by a nondegenerate deterministic matrix. The initial
condition of the Dyson Brownian motion model is the one
of the picket fence statistics (equidistant eigenvalues); for
example, the eigenvalue level density is

ρpf (y) = 1

N

N∑
j=1

δ(y − j). (1)

Interestingly, both cases, the multiplicative as well as the
additive one, yield the same limiting microscopic eigenvalue
statistics in the limit M, N → ∞. This holds not only for the
bulk, which has been computed for Dyson’s Brownian motion
in Ref. [2], but extends to the soft edge, too. The soft edge for
the Dyson Brownian motion has not been analyzed before; we
will fill this gap in this work. The correlations depend only on
the limiting value of the parameter

a = lim
N→∞

N

M(N )
, (2)

where a = 0 corresponds to the picket fence statistics
[cf. Eq. (1)] and a = ∞ corresponds to the Gaussian unitary
ensemble (GUE) local spectral statistics. The interesting and
critical scaling is when the number M of matrices multiplied
is proportional to the matrix dimension N . Hence, the ad-
ditive and multiplicative processes have the same limiting
local statistics and thus they belong to the same univer-
sality class, given by the interpolation of the picket fence

statistics and the GUE statistics. While the bulk statistics
of this interpolating kernel has been derived by Johansson
in Ref. [2], as mentioned above, the soft edge statistics has
not been done, yet. We will give a brief derivation of this
result and show that also at the soft edge the agreement of
the kernels between the multiplicative and additive process
holds.

Another insight we have already argued before in Ref. [23]
and understand now very well is that actually not the ratio
N/M is crucial but the ratio of the average width of the
distributions of individual eigenvalues about the point where
one zooms in and the local mean level spacing. With the
case of products of independent complex Ginibre matrices
one can quantify this by the broadened picket fence spectrum,
i.e., 0 < a � 1, where the level density is not any more a
sum of Dirac delta functions (1), but a sum of log-normal
distributions [15]

ρY (y) = 1

N

N∑
j=1

1√
2πσ 2

j y
exp

[
− [ln(y) − λ̄ j]2

2πσ 2
j

]
, (3)

with mean and standard deviation

λ̄ j = ψ ( j)

2
, σ j =

√
ψ ′( j)

4M
. (4)

The digamma function ψ (z) = ∂zln
(z), with 
(z) being the
gamma function, plays a crucial role for the Lyapunov expo-
nents of products of Ginibre matrices. This may change for
other matrix ensembles. Yet, it has been recently observed
[28] that the asymptotic behavior of the width σ j ≈ 1/

√
4M j

[compare (6) below] seems to be universal, as for products of
real and complex Wigner matrices the zeros of the characteris-
tic polynomial and the positions for large Lyapunov exponents
match those of the corresponding Ginibre matrices.

A consequence of (3) is that the general width-to-spacing
(WSR) ratio of two consecutive eigenvalues at the mean posi-
tions λ̄ j and λ̄ j+1 is [15,23]

WSR j = 1

2

σ j+1 + σ j

λ̄ j+1 − λ̄ j
, (5)

and Eq. (2) has, then, to be replaced by a = WSR2
j as the over-

lap of the distributions of the individual eigenvalues varies in
the position λ̄ j . Hence, the hard edge about the origin will
always exhibit picket fence statistics while for large j � 1
the transition parameter simplifies to a ≈ j/M, which follows
from the asymptotic expansions [29, 6.3.18 and 6.4.11]

ψ (z) = ln(z) − 1

2z
+ O

(
1

z2

)
and

ψ (l )(z) = (−1)l−1

[
(l − 1)!

zl
+ l!

zl+1

+ O

(
1

zl+2

)]
for |z| � 1. (6)

We will see in the derivations in the ensuing sections that
indeed j/M is highly important in the bulk and it only happens
at the soft edge that M/N takes the role of the transition
parameter.
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As a final insight, we have found that close to the soft
edge, but still in the bulk, a mesoscopic scale of spectral
statistics arises. The microscopic statistics will be not affected
and continues to agree with the bulk statistics, especially the
interpolating kernel between picket fence and GUE statistics
still applies. However, here the unfolding of the spectrum
deviates from the bulk unfolding. We have already mentioned
this observation in Ref. [23] but at that time did not find an
analytical way to derive the proper unfolding. In this work, we
have filled in this gap. This insight is valuable and important
because it gives the proper unfolding and allows for the iden-
tification of the universality of results. It has also relevance for
unraveling the conundrum that the macroscopic level density
seems to follow always the same law, and never shows a
square root behavior at the soft edge, albeit for N � M it is
known that locally one finds the Airy kernel, whose asymp-
totic form into the bulk describes a square root. This narrow
region at the soft edge comprises a tail made of a certain
number of eigenvalue contributions. In this work we estimate
the fraction of eigenvalues which contribute to be of order
N/M. When M � N , this tail is not present. The eigenvalues
in this narrow tail have been formerly not considered and
we have now derived their corresponding mesoscopic level
density.

This article is structured as follows. In Sec. II we briefly
review the determinantal point process of the product of M
complex Ginibre matrices. Especially, we give two partic-
ular representations of the kernel that will be the starting
point of our analysis. These representations are derived in
Appendix A. Before we go over to studying the local spectral
statistics in the bulk (Sec. IV), at the hard edge (Sec. V), and
at the soft edge (Sec. VI), we first derive the proper unfolding
for the various double scaling limits in Sec. III. In this section
we also unveil that there is a mesoscopic spectral regime close
to the soft edge. So, in addition to the discussion presented in
Ref. [23], we are now able to unfold the spectrum at the soft
edge analytically. Our claim that these local spectral statistics
are universal is corroborated by the Monte Carlo simulation
of several matrix ensembles including non-Gaussian as well
as correlated matrices. These simulations are explained and
discussed in Sec. VIII. Prior to that we dedicate one section
to the discussion of a puzzling duality between local statistics
for matrix products and Dyson’s Brownian motion in Sec. VII.
Therein, we also derive the result of the local soft edge kernel
for Dyson’s Brownian motion with the picket fence spectrum
as its initial condition. In Sec. IX, we summarize our findings
and give an outlook on open problems. Further technical de-
tails are collected in Appendices B–D.

II. PRELIMINARIES

Consider the discrete-time evolution of an open physical
system with N degrees of freedom. The state of the system
at time t is described by an N-dimensional state vector |v〉t

that evolves according to a recursive equation |v〉t = Xt |v〉t−1,
with a transfer matrix Xt . The map between an initial state
|v〉0 and the state |v〉M = X |v〉0 after M steps is given by the
evolution operator

X = XM . . . X1. (7)

Let us assume that the transfer matrices can be modeled by
random matrices. Since the system is open, the evolution is
nonunitary so that, e.g., the norm of a state is not conserved.

We are interested in the singular value statistics of X
or, equivalently, in the eigenvalue statistics of the associated
Hermitian operator

Y = X †X, (8)

which controls the growth of the norm 〈v|v〉M = 〈v|Y |v〉0.
The eigenvalue statistics of the product matrix Y is in one-to-
one correspondence with the statistics of the Lyapunov matrix

L = 1

2M
ln[(XM . . . X1)†XM . . . X1] = 1

2M
ln[Y ]. (9)

We concentrate on the thermodynamic limit N → ∞, but at
the same time assume that the number of matrices (time steps)
in the product is an increasing function of the matrix size M =
M(N ).

The microscopic spectral statistics of the Hermitian op-
erator Y is expected to be universal for a large class of
transfer matrices, including the case of independent matrices
Xj with independent normal random variables as entries, as
we shall argue later. Consequently, it is useful to consider
an ensemble from this class which is analytically tractable.
To be more precise, we assume that the transfer matrices Xt ,
t = 1, . . . , M, are identically distributed independent com-
plex Ginibre matrices [30] with independent and identically
distributed Gaussian elements, i.e.,

P(Xj ) = exp[−tr XjX
†
j ]

πN2 , Xj ∈ CN×N . (10)

As shown in Refs. [7,8], this ensemble is completely solvable,
in the sense that all eigenvalue correlation functions of Y
of any order k = 1, . . . , N can be given in closed, explicit
expressions for any M and N . They form a so-called deter-
minantal point process [31], with the joint probability density
of eigenvalues y1, . . . , yn > 0 of Y given by

PY,N (y1, . . . , yN ) = 1

N!
det [KY (yi, y j )]i, j=1,...,N . (11)

Its kernel KY is given by (A1) [7,8], and in Appendix A it is
shown to be equivalent to the forms (14) and (15) given below.
The k-point correlation functions of such a point process take
an elegant determinantal form [31], as well,

RY,k (y1, . . . , yk )

≡ N!

(N − k)!

∫ ∞

0
dyk+1· · ·

∫ ∞

0
dyN PY,N (y1, . . . , yN )

= det [KY (yi, y j )]i, j=1,...,k . (12)

As an example, the normalized level density is given by
ρY (y) = RY,1(y)/N = KY (y, y)/N . The first subscript in the
above quantities indicates that in this case the correlation
functions (kernel) are meant for the eigenvalues of the matrix
Y . We use this convention throughout our work to distinguish
between quantities for matrices Y , L and others that will be
discussed. We would like to underline that the correlation
functions (12) are invariant with respect to an equivalence
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transformation of the kernel

KY (x, y) → g(x)

g(y)
KY (x, y), (13)

where g(x) is a nonsingular function. We shall use this invari-
ance several times to simplify the form of the kernels.

The kernel KY can be expressed in an explicit way in terms
of Meijer G functions (see [7,8] and Appendix A for details).
Here, we use two equivalent and closely related representa-
tions which are particularly well suited for the various double
scaling limits in M, N → ∞ to be taken:

KY (x, y) = 1

y

N−1∑
j=0

∫
γt

dt

2π i

sin[π ( j − t )]

π ( j − t )
eiπ sign[Im(t )]t

× exp [−S ( j; x) + S (t ; y)] (14)

and

KY (x, y) = 1

y

∫
γt

dt

2π i

∫
γs

ds

2π i

1

s − t

sin(πt ) eiπ sign[Im(t )]t

sin(πs) eiπ sign[Im(s)]s

× exp [−S (s; x) + S (t ; y)], (15)

where

S (z; α) = −iπ sign[Im(z)]z − ln[α]z + (M + 1)

× ln[
(1 + z)] + ln[
(N − z)], (16)

with α = x, y and z = j, t, s. The term S (z; α) is called action
in the remainder of the paper. The sign function is given by
sign (χ ) = χ/|χ | for χ ∈ R \ {0} and vanishes for χ = 0.
The contour γt is an integration parallel to the imaginary axis
along c + iR, with −1 < c < 0 chosen such that it does not
cross the closed contour γs in Eq. (15). The contour γs en-
circles the closed interval [0, N − 1] counterclockwise. These
formulas are derived in Appendix A [cf. [24] for (15)].

We would like to highlight that the prefactors of the
exponentials in Eqs. (14) and (15) do not grow or shrink expo-
nentially. They have only simple poles and zeros. Hence, they
do not contribute in the saddle point equation when making an
asymptotic expansion. Moreover, we would like to emphasize
that, although the splitting into the exponents and prefactors
is nonanalytic, the integrand as a whole is a meromorphic
function [see also (A7) and (A6), respectively].

Our goal is to analyze local (microscopic) properties of the
kernel (14) in the double scaling limit M, N → ∞, depending
on how the limit is taken in terms of M = M(N ), and where
in the spectrum we zoom in. Before we discuss the local
level statistics, let us derive in detail the relevant results on
the macroscopic level density for the product of M Ginibre
matrices in Sec. III. This preparation is necessary in order to
take the local limits, where we have to unfold with respect to
the macroscopic or mesoscopic level density.

III. MACROSCOPIC AND MESOSCOPIC LEVEL
DENSITY AND UNFOLDING

In this section, we will use a saddle point analysis to de-
termine the macroscopic level density. It is a key ingredient
for the following discussion of the local statistics in the bulk
and at the edges. In the discussion we will distinguish two
cases, which differ in how the saddle point scales with M, in

Secs. III A and III B. We will also define what we mean by the
mesoscopic density and explain when it occurs in Sec. III C.
In particular, it will be used to unfold the spectrum at the soft
edge.

For the macroscopic level density we start from (15), with
x = y > 0, and perform a saddle point analysis of the action
S in Eq. (16). We look for the points zs that satisfy

∂zsS (zs; y) = −ln(y) + (M + 1)ψ (1 + zs)

−ψ (N − zs) − iπ sign [Im (zs)] = 0. (17)

A solution in the upper half-plane has a complex con-
jugate partner z∗

s in the lower half-plane. As discussed in
Appendix B, the imaginary part Im [zs] of the saddle point
solution is of the order

Im [zs] = O

(
Re [zs]

M

)
. (18)

The real part Re [zs] lies in the interval Re [zs] ∈] − 1, N[. The
lower end of the interval corresponds to the hard edge and the
upper one to the soft edge of the spectrum. We see that zs is
governed by its real part. This will be used in the following
two subsections in a case by case discussion, where Re [zs] is
taken either much larger than M, in Sec. III A, or much smaller
than or at most of the same order as M, in Sec III B. Let us
underline at this point that we have not assumed how M and
N are related in the limit M, N → ∞.

The hard edge is represented by Re [zs] = 0, while the soft
edge by Re [zs] = N − 1. Hence, for the above estimates we
require that Re [zs] ∈]0, N − 1[. While for the contour γs, this
is not difficult to satisfy, the contour γt has to be deformed
accordingly. For the analysis in the bulk we want to stay away
from the edges of the spectrum. We will thus assume for the
limiting level density that when N � 1 it holds

Re [zs] � 1 and N − 1 − Re [zs] � 1. (19)

A. Case: Re [zs] � M

In this section we derive the limiting macroscopic level
density when Re [zs] � M, and identify the proper unfolding
in two parts of the bulk of the spectrum.

We shift the contour γt parallel to the real axis, in partic-
ular we only set the parameter c = Re [zs], such that it runs
through both saddle points zs and z∗

s . As above and without
loss of generality, we assume that Im (zs) � 0. Since also
the closed contour γs has to run through these two saddle
points, both contours have to cross each other. Originally,
in the derivation of Eq. (15) in Appendix A, the contours
were chosen not to cross, in order not to pick up the pole
at 1/(s − t ). To compensate this newly created residuum we
have to subtract it whenever the integration path of t lies inside
γs, so that the kernel takes the form

KY (y, y) = 1

y

[ ∫ zs

z∗
s

dt

2π i
+
∫ Re [zs]+i∞

Re [zs]−i∞

dt

2π i

×
∫

γs

ds

2π i

1

s − t

sin(πt )eiπ sign[Im(t )]t

sin(πs)eiπ sign[Im(s)]s

× exp [−S (s; y) + S (t ; y)]

]
. (20)
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The first integral can be readily carried out, to give Im [zs]/π .
This will turn out to be the dominant contribution, as we will
argue in the following.

For the second integral in Eq. (20), we expand around the
saddle points s = s0 + δs and t = t0 + iδt with any combina-
tion of s0, t0 = zs, z∗

s . This leads to a sum of four contributions
to the integral. Notice that due to the form of γt the perturba-
tion iδt always runs parallel to the imaginary axis in the same
direction as the axis. In contrast, due to the form of γs, the
perturbation δs is real and runs antiparallel to the real axis for
zs, and parallel for z∗

s , leading to a relative minus sign. In this
expansion around the saddle point the combination of actions
will be replaced by

−S (s; y) + S (t ; y)

≈ − S (s0; y) + S (t0; y)

− (M + 1)ψ ′(1 + s0) + ψ ′(N − s0)

2
δs2

− (M + 1)ψ ′(1 + t0) + ψ ′(N − t0)

2
δt2. (21)

When s0 = t0, that is both are either zs or z∗
s , the leading

contribution cancels. In the other case, the leading part of
the exponent becomes −S (zs; y) + S (z∗

s ; y) = 2i Im S (zs; y),
or its complex conjugate.

Before we write the integrals, let us consider the prefactors.
For s0 = t0 = zs, we have

1

s − t
= 1

δs − iδt
(22)

and
sin[π (zs + iδt )] exp{iπ sign[Im(zs + iδt )]Im(zs + iδt )}

sin[π (zs + δs)] exp{iπ sign[Im (zs + δs)](zs + δs)} ≈ 1.

(23)

As follows from (18), for Re [zs] � M both real and imagi-
nary parts of zs are large and dominate over the perturbations
δs and iδt . Equations (22) and (23) obviously also hold for
zs → z∗

s .
In the mixed case s0 = t∗

0 = zs, we obtain

1

s − t
= 1

zs + δs − z∗
s − iδt

≈ 1

2i Im [zs]
(24)

or its complex conjugate for s∗
0 = t0 = zs. For the sine func-

tions we have

sin[π (zs + iδt )]eiπ sign[Im (zs+iδt )](zs+iδt )

= 1

2i
(eiπ (zs+iδt ) − e−iπ (zs+iδt ) )eiπ (zs+iδt ) ≈ − 1

2i
, (25)

as the second term dominates, recalling that Im [zs] > 0 is
large. For the same factor with zs → z∗

s we arrive at

sin[π (z∗
s + iδt )] eiπ sign[Im (z∗

s +iδt )](z∗
s +iδt )

= 1

2i

(
eiπ (z∗

s +iδt ) − e−iπ (z∗
s +iδt )

)
e−iπ (z∗

s +iδt ) ≈ + 1

2i
, (26)

as now the first term dominates. We thus have

sin[π (zs + iδt )] exp{iπ sign[Im (zs + iδt )](zs + iδt )}
sin[π (z∗

s + δs)] exp{iπ sign[Im (z∗
s + δs)](z∗

s + δs)} ≈ −1,

(27)
as well as for its complex conjugate. Therefore, we can now
write for the kernel

KY (y, y)
M,N�1≈ 1

y

{
Im [zs]

π
−
∫ ∞

−∞

dδt

2π

∫ ∞

−∞

dδs

π

1

δs − iδt
Im
[
e− 1

2 [(M+1)ψ ′(1+zs )+ψ ′(N−zs )](δs2+δt2 )
]

+
∫ ∞

−∞

dδt

2π

∫ ∞

−∞

dδs

2π i

e2i Im[S(zs;y)]− 1
2 [(M+1)ψ ′(1+zs )+ψ ′(N−zs )]δs2− 1

2 [(M+1)ψ ′(1+z∗
s )+ψ ′(N−z∗

s )]δt2

2i Im[zs]

−
∫ ∞

−∞

dδt

2π

∫ ∞

−∞

dδs

2π i

e−2i Im[S(zs;y)]− 1
2 [(M+1)ψ ′(1+z∗

s )+ψ ′(N−z∗
s )]δs2− 1

2 [(M+1)ψ ′(1+zs )+ψ ′(N−zs )]δt2

−2i Im[zs]

}
. (28)

The second integral in the first line vanishes, as one can
see in polar coordinates δs − iδt = reiϕ , where the integral
over the angle becomes

∫ 2π

0 dϕ e−iϕ = 0. In the exponents
in the second and third lines we may expand the digamma
function and its derivatives via Eq. (6). Taking into account
the dominance of the real part over the imaginary one (18),
Re [zs] � Im [zs] = O(Re [zs]/M ) � 1, we have

(M + 1)ψ ′(1 + zs) + ψ ′(N − zs) ≈ M

Re [zs]
+ 1

N − Re [zs]

≈ M

Re [zs]
, (29)

and analogously for z∗
s . Both terms on the right-hand side are

small and positive, due to the conditions Re [zs] � M and
N − Re [zs] � 1. After performing the Gaussian integrals we
thus obtain for the limiting kernel

KY (y, y)
M,N�1≈ 1

y

[
Im [zs]

π
− Re [zs]

2πM Im[zs]
cos{2 Im[S (zs; y)]}

]
.

(30)

Because Re [zs]/(2πM Im[zs]) is of order one, the second
term in Eq. (30) is subleading as compared to the first one
which is growing with Im[zs] � 1. We eventually arrive at
the following asymptotic expression for the macroscopic level
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density:

ρY (y) = 1

N
KY (y, y)

M,N�1≈ Im [zs(y)]

πNy
. (31)

Hence, the relation between the saddle point zs and the macro-
scopic level density is very simple, and a remarkable relation
to the corresponding resolvent is pointed out in Appendix C.
Let us remark that, initially, we have not imposed any relation
between N and M, apart from both M, N → ∞. However, the
condition Re [zs] � M together with the requirement to stay
away from the hard edge (19), N − 1 − Re [zs] � 1 ⇔ N �
Re [zs], implies that this case corresponds to N � M.

In order to better understand the result of the saddle point
analysis of the kernel (31), let us investigate the implications
of this scaling on the relation between the argument y ∈ R+
and the saddle point zs, as it follows directly from (17). Re-
calling our choice Im [zs] � 0, we can exploit the asymptotic
expansion (6) of the digamma function to obtain

0 ≈ −ln(y) + (M + 1)ln[1 + zs] − ln[N − zs] − iπ

⇒ y ≈ zM+1
s

N − zs
� MM+1

N − M
. (32)

The last inequality follows from Re [zs] � M. We also see
that the limit y → ∞ coincides with Re [zs]/N → 1 for the
saddle point equation (17).

B. Case: Re [zs] � O(M)

In this section, we derive the limiting macroscopic level
density and find the proper unfolding in the case Re [zs] �
O(M ), meaning Re [zs] is maximally of order M. Here, we
have to be more careful since we need to separate the mi-
croscopic from the mesoscopic and macroscopic scale. The
microscopic behavior is encoded in the poles of the term
1/ sin(πs) in the integration variable s where the integrand
(15) gets strongly peaked. They become visible in the inte-
gral because the imaginary part of the saddle point Im [zs] =
O(Re [zs]/M ) is of order one or smaller (18). For this reason,
we start from the series representation of the kernel (14), in
which these poles are explicitly evaluated. The deformation
of the t integral through the saddle point does not pose a
problem, as the preexponential factor no longer has a pole.
The index j represents now the position in the spectrum and
replaces the real part Re [zs] of the saddle point of the s
integration in Eq. (15) considered so far.

We have to be aware that in this representation the action
S ( j; y) cannot be minimized at the saddle point zs since j is
an integer, j = 0, . . . , N − 1. Therefore, we consider only the
real part of the saddle point equation (17) which is

ln(y) = (M + 1)ψ[1 + z0] − ψ[N − z0] (33)

with z0 ∈] − 1, N[. Those integers j that are closest to z0 will
contribute the most, that is why we take z0 to be real.

The uniqueness of the solution for z0 is slightly simpler
than for zs. For the known monoticity property of the digamma
function of real argument (cf. [32] Sec. 5.3(i) and see (B5) for
t = 0), it is clear that the right-hand side of (33) is strictly
increasing on ] − 1, N[ and goes to −∞ for z0 → −1 and
to +∞ for z0 → N . Therefore, there is a unique solution

which can be given in an integral form over the Heaviside step
function

z0 =
∫ N

−1
�(ln(y) − (M + 1)ψ[1 + z] + ψ[N − z])dz − 1.

(34)
Since Eq. (33) gives a one-to-one relation between y and z0

and, hence, the summation index j, we have already found
the proper unfolding in N and M, given we can show that the
contributions of the index j are tightly concentrated around
z0.

Before we come to this, let us discuss the scaling bound
of z0. It follows from Eq. (33) by expanding the digamma
function, assuming that also z0 is large, and exponentiating
the equation

y ≈ zM+1
0

N − z0
� O

(
MM+1

N − M

)
, (35)

given that not only Re [zs] � O(M ) but also z0 � O(M ) which
is consistent with (32) which was the scaling bound in the
opposite regime. We will make use of this insight in the
ensuing discussion.

To decide which summands in Eq. (14) eventually con-
tribute, we need to study the difference of the exponents

� = S ( j; y) − S (z0; y)

= (M + 1)

[
ln

(

[1 + j]


[1 + z0]

)
− ψ[1 + z0]( j − z0)

]
+ ln

(

[N − j]


[N − z0]

)
+ ψ[N − z0]( j − z0) � 0 (36)

for z0 ∈] − 1, N[ and j = 0, 1, . . . , N − 1. Here, we have in-
serted already (33). The condition to stay in the bulk of the
spectrum is

z0 � 1 and N − z0 � 1, (37)

as z0 = −1 corresponds to the hard edge at y = 0 and z0 =
N − 1 to the soft edge at y = ∞. Note that the maximal value
of j = N − 1 leads to a natural upper bound of the spectrum
which is the soft edge. This means we also consider j � 1
and N − 1 − j � 1.

We can rewrite (36) as

� = (δ j)2
∫ 1

0
dλ(1 − λ)[(M + 1)ψ ′(1 + z0 + δ jλ)

+ψ ′(N − z0 − δ jλ)], (38)

where δ j = j − z0. This equation can be readily derived
via integration by parts. In the leading order when |δ j| �
z0, we get � ≈ (δ j)2[(M + 1)ψ ′(1 + z0) + ψ ′(N − z0)]/2 ≈
(δ j)2M/2z0, for z0 far from the hard and soft edges. We have
neglected higher order terms (δ j)k , for k = 3, 4, . . . . Using
this approximation we can find out how many summands
about z0 contribute, namely,

� ≈ 1

2
(δ j)2 M

z0
� O(1) ⇔ |δ j| � O

(√
z0

M

)
< O(z0). (39)

Due to strict convexity of � we can disregard δ j � O(z0) as
they are strongly suppressed in the exponent (14).
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We can insert the scaling of δ j = j − z0 = O(
√

z0/M ) and
of t − z0 = iδt = O(

√
z0/M ) � O(z0/M ) = Im [zs] into the

action in Eq. (14), and perform a Taylor expansion

−S ( j; y) + S (t ; y)
M,N�1≈ − M

2z0
(δ j2 + δt2) − iπ sign (δt ),

(40)
where we have exploited (37). For the kernel (14) we obtain

KY (y, y)
M,N�1≈ 1

y

N−1∑
j=0

∫ ∞

−∞

dδ t

2π

sin[π ( j − z0 − iδt )]

π ( j − z0 − iδt )

× exp

[
− M

2z0
[( j − z0)2 + δt2]

]
. (41)

This integral can be evaluated by first rephrasing

sin[π ( j − z0 − iδt )]

π ( j − z0 − iδt )
=
∫ 1

−1

dr

2
eiπ ( j−z0−iδt )r, (42)

then, integrating over δt and afterward over r leading to

KY (y, y)
M,N�1≈ 1

2πy

N−1∑
j=0

Re

{
erfi

[
π

√
z0

2M
+i

√
M

2z0
( j−z0)

]}
.

(43)

The function erfi(x) = −i erf (ix) is the imaginary error func-
tion.

So far we have not separated the microscopic scale from
any scale that is larger than the local mean level spacing.
However, we established the relation of j with z0, and of
z0 with y. In this way, we know that when staying away
from the two edges at z0 = j = 0 and z0 = j = N − 1 there
are infinitely many eigenvalues on both sides. Therefore, the
kernel becomes discretely translation invariant under the shift
z0 → z0 + 1; in particular, we have

KY (y(z0), y(z0)) ≈ KY (y(z0 + 1), y(z0 + 1)), (44)

which is valid for (37). Here,

y(z0) = exp[(M + 1)ψ (1 + z0) − ψ (N − z0)]

is defined by the saddle point equation (33). Indeed, for z0 �
M the imaginary error functions in Eq. (43) become a sum of
Dirac delta functions δ(z0 − j) while for z0 ∝ M the change
of the summands in a shift z0 → z0 + 1 will be of order 1/M.

From this approximate translational invariance, we can
read off that on any scale larger than the mean level spacing,
which is one for the variable z0, the distribution in the variable
z0 is uniformly distributed on [0, N − 1]. We can also rephrase
this statement and say that the limiting distribution in the
original eigenvalue y of the product matrix Y is

ρbulk (y) = 1

N

dz0

dy
= 1

Ny

dz0

d ln(y)
= 1

Ny

1

(M + 1)ψ ′(1 + z0) + ψ ′(N − z0)

≈ z0

N (M + 1)y
=
∫ 1
−1/N �{y − exp[(M + 1)ψ (1 + Nŷ) − ψ (N − Nŷ)]}dŷ − 1/N

(M + 1)y

(45)

when Re [zs] ≈ z0 � O(M ). The unfolded variable is given by
ŷ = z0/N and therefore for finite N and M we have

y = exp[(M + 1)ψ (1 + Nŷ) − ψ (N − Nŷ)]. (46)

As a final remark, we would like to emphasize that there
are various spectral scales encoded in Eq. (46). For example,
when Nŷ ∝ M, the last equation can be approximated by

y = ŷ

1 − ŷ
(Nŷ)M exp

[
1

2

M

Nŷ

]
(47)

which unfolds the spectrum in the bulk. Depending on how
Nŷ scales with respect to M, one has to go to higher orders in
the asymptotic series (6). The scaling discussed in this section
corresponds to a fraction O(M/N ) of eigenvalues, which lie
close to the hard edge.

Let us conclude this section with a remark, that the ex-
pansion about the point z0 is fully justified as it covers the
contributions from the saddle point zs, as discussed in Ap-
pendix D.

C. Case: Re [zs] � M revisited: Unfolding

In Sec. III A, we took a double scaling limit where both
N, M → ∞, without specifying the rate M = M(N ). By
assuming that Re [zs] � M and considering a part of the
spectrum away from the soft and hard edges, it emerged that

N � M. It is useful to look at the regime N � M from a
slightly different perspective by exploiting a known result for
the limiting level density ρ (M )(ζ ) of the matrix Y/NM for
N → ∞ [33] at fixed M. This approach was also taken in
Ref. [14,24]. For the bulk, as we shall see, we recover the
results that we have discussed in Sec. III A. However, we
additionally find an unfolding map close to the soft edge that
is very useful for the analysis of the soft edge statistics, that
we carry out in Sec. VI.

The eigenvalue density ρ (M )(ζ ) is given by the following
parametrization [33]:

ρ (M )(ζ ) = 1

πζ

sin[φ/(M + 1)] sin[φ]

sin[Mφ/(M + 1)]
, with

ζ = sinM+1 [φ]

sin[φ/(M + 1)] sinM[Mφ/(M + 1)]
and

φ ∈ ]0, π [. (48)

It has a support ζ ∈ [0, (M + 1)M+1/MM]. Note that we have
rescaled the parameter φ by 1/(M + 1) compared to [33]. The
hard edge located at ζ = 0 corresponds to φ = π , whereas
the soft edge at ζ = (M + 1)M+1/MM corresponds to φ = 0.
It is convenient to consider two different limits of the level
density (48), that we call deep bulk (db) and soft bulk (sb).
The corresponding unfolded variables will be specified for
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FIG. 1. The macroscopic level density (49) obtained in the limit
N → ∞ for various values of a fixed number of matrices M multi-
plied. For increasing M the spectrum concentrates at φ̃ = π − φ =
0 which constitutes the deep bulk of the spectrum. Yet, the tail
supported inside the interval ]0, π [ still comprises roughly N/M
eigenvalues which is finite when N = O(M ) and even creates a meso-
scopic, soft bulk of eigenvalues when N � M. We have reflected the
angle so that the hard edge lies at the origin which agrees with the
picture of the hard edge of the product matrix Y .

these two limits in the next two subsections. This can be
made transparent when we give (48) in terms of the angle φ,
instead of the eigenvalue ζ of the matrix Y/NM . In particular
we consider

ρ (M )(φ) = 1

π

sin[φ/(M + 1)] sin[φ]

sin[Mφ/(M + 1)]

×
[

1

(M + 1) tan[φ/(M + 1)]

+ M2

(M + 1) tan[Mφ/(M + 1)]
− M + 1

tan[φ]

]
with

φ ∈ ]0, π [, (49)

where we have multiplied the Jacobian from the transforma-
tion ζ → φ. In Fig. 1, we reflected this density so that the hard
edge is again at the origin on the left of the plot.

1. Macroscopic level density and unfolding in the deep bulk

As it can be seen from Fig. 1, the macroscopic density
concentrates at φ ≈ π for large M. In order to take the large
M limit and derive a properly scaled level density, one needs
to magnify the scale close to π . We do this by introducing a
new variable θ as follows: φ = π − θ/M with θ ∈ [0, πM].
A straightforward but lengthy calculation using a Taylor ex-
pansion of (49) in 1/M leads to

1

M
ρ (M )

(
π − θ

M

)
M�1≈ π

(θ + π )2
= ρdb(θ ). (50)

This scaling limit is called deep bulk limit (db) because almost
all eigenvalues for N � M � 1 are described by the density
ρdb (50). Obviously, the part of the spectrum captured by this
level density does not include the soft edge. As we shall see,
it does not actually include the hard edge, either.

The corresponding unfolding in N and M, starting from
our original eigenvalues of the matrix Y and expanding the
variable ζ in Eq. (48) to higher order in 1/M, leads to
y = NMζ

= NM sinM+1[π−θ/M]

sin[(π−θ/M )/(M + 1)] sinM[(Mπ−θ )/(M + 1)]

M�1≈ e θ

π

(
N

θ

π + θ

)M

. (51)

Thus, unfolding is given by the change of variables ŷ = 1 −
π/(θ + π ) = θ/(θ + π ) ∈]0, M/(M + 1)[. In terms of y it
reads as

y = e
ŷ

1 − ŷ
(Nŷ)M � MM+1

N − M
⇒ ŷ � M/N. (52)

The scaling bound of y in Eq. (32) implies a scaling bound for
the unfolded spectral variable ŷ, given in the last inequality. A
similar scaling as in Eq. (52) has been found in Ref. [23], apart
from the prefactor êy/(1 − ŷ). Note also that the unfolding
(52) differs by an exponential factor from the unfolding (47)
as the scale of Re [zs] is different. The origin of this break-
down lies in the difference of z0 and zs which are not close any
more when Re [zs] � M such that the full unfolding formula
(46) breaks down. However, the factor becomes irrelevant for
the macroscopic spectral statistics in the limit M → ∞. Such
prefactors do not have any impact on the resulting unfolding
of the kernel in the double limit M, N → ∞ because, in order
to take this limit, one first has to take the Mth root and then
rescale it by 1/N , i.e., y1/M/N = [êy/(1 − ŷ)]1/Mŷ. So we see
that the root of the prefactor converges to 1 as long as we
stay away from the hard edge at ŷ = 0 and from the soft edge
ŷ = 1. Nevertheless, the fact that something different happens
at the edges is a hint that a new mesoscopic scale may appear.

Let us quantify this by computing the normalization of the
macroscopic density (50):∫ πM

0
dθ ρdb(θ ) = − π

θ + π

∣∣∣∣πM

0

= 1 − 1

M + 1
. (53)

Hence, we are missing a fraction of the order of 1/(M + 1)
eigenvalues, which clearly vanishes only when M → ∞. The
missing eigenvalues are located close to the soft edge because
θ cannot become arbitrarily large, as φ = π − θ/M ∈ [0, π ].
This is the reason why we have to separately study a meso-
scopic scaling regime close to the soft edge. We will do this
in the next subsection.

There are also missing eigenvalues close to the hard edge
at ŷ = θ = 0. Indeed, the derivation above breaks down when
the condition Re [zs] � M is violated. To see this we translate
the scaling bound (52) to θ ,

θ � πM

N − M
. (54)

Therefore, θ cannot become too small. The fraction we are
missing is given naively by M/N , as follows from∫ πM

πM/(N−M )
dθ ρdb(θ ) = − π

θ + π

∣∣∣πM

πM/(N−M )

= N − M

N
− 1

M + 1

= 1 − M

N
− 1

M + 1
, (55)
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where we have corrected the integral (53) by modifying its
lower bound. This also nicely highlights that for M � N the
entire spectrum has to be dealt with in a different way than it
is done in this section.

2. Mesoscopic level density and unfolding close to the soft edge

The aim of this section is to work out an unfolding map
close to the soft edge. To that end we take a pointwise limit
of ρ (M )(φ) (49) with φ fixed and M → ∞. This leads us to
define a level density ρsb for the soft bulk (sb). By expanding
(49) in 1/M, we obtain

ρ (M )(φ)
M�1≈ 1

Mπ

[
1 − 2φ

tan[φ]
+ φ2

sin2[φ]

]
+ O

(
1

M2

)
= ρsb(φ) + O

(
1

M2

)
. (56)

First of all, the density ρsb vanishes like 1/M. Second, it is not
integrable at the hard edge φ = π because it diverges there
like 1/(π − φ)2, from the last term. However, the hard edge
is not of our interest in this section.

The corresponding parametrization in N and M of the
original eigenvalues y of the matrix Y follows from expanding
ζ in Eq. (48) in powers of 1/M:

y = NMζ
M�1≈ (M + 1)NM sin(φ)

φ
exp

[
φ

tan(φ)

]
. (57)

The corresponding level density reads as

ρY (y) = ρsb(φ)

∣∣∣∣∂φ

∂y

∣∣∣∣ = φ(y)

π (M + 1)y
, (58)

which follows easily by first computing ∂y/∂φ from (57).
We can also go back to the deep bulk by letting φ → π .

When we scale this limit like φ = π − (π + θ )/M, due to the
divergence of ρsb(φ) ∼ π/[M(π − φ)2], we can recover the
density in the deep bulk (50). The shift of θ by π is a relict
hinting to the order of the limits. Since we can go back to the
deep bulk regime in this way, we can exclude that we have
missed any other intermediate mesoscopic scaling regime.

The unfolding in the mesoscopic regime is given by

ŷ =
∫ φ(y)

0
dφ′ρsb(φ′) = 1

(M + 1)π

(
φ(y) − φ(y)2

tan (φ(y))

)
.

(59)
For the dependence on the original eigenvalue y we need to
invert the relation (57) for φ = φ(y). Formally one can write
the solution as

φ(y) =
∫ π

0
dφ �

{
(M + 1)NM sin(φ)

φ
exp

[
φ

tan(φ)

]
− y

}
(60)

by noticing that the function on the right-hand side of (57)
is strictly decreasing on the interval [0, π ]. We shall use this
unfolding in Secs. VI and VIII while discussing the soft edge
local statistics.

Finally, when combining (57) and (58) one finds that the
density has a square root behavior at the upper edge y+ =
NM (M + 1)M+1/MM ≈ e(M + 1)NM of the support

ρY (y)
y+−y�y+=

√
2

π (M + 1)y+

√
1 − y

y+
. (61)

This square root behavior describes a substantial portion of
the spectrum when M � O(N ), namely, about N/M eigen-
values. For instance for N � M, this number is infinitely
large, indicating the onset of bulk statistics but with respect
to the unfolding pointed out in this section which is evidently
different from the one in Sec. III C 1.

IV. BULK STATISTICS

The local statistics are always defined by choosing a base
point y0 ∈ R+ and zooming into the vicinity of this point.
Zooming in means here unfolding and this implies that the
macroscopic level density becomes flat. Therefore, we first
compute the saddle point zs (with Im [zs] � 0) with respect
to the base point y0 with the aid of Eq. (17).

A. Sine kernel

As we have seen, the corresponding level density is for
Re [zs] � M given by (31). This already tells us what the
correct unfolded variables are for the two spectral variables
in the kernel (15),

x=y0 exp

[
π

Im[zs]
x̂

]
and y=y0 exp

[
π

Im[zs]
ŷ

]
with x̂, ŷ=O(1)

(62)
because their corresponding density is flat, i.e.,

Nρ(y)dy = Im [zs]

πy0 exp [π ŷ/ Im[zs]]
d

{
y0 exp

[
π

Im[zs]
ŷ

]}
≈ dŷ.

(63)
The dependence of zs(y) on ŷ is vanishing due to Im[zs] =
O(Re [zs]/M ) � 1. Thus, we can replace zs(y) by zs(y0)
which is the reason why we drop its argument.

The microscpic bulk statistics can be readily obtained by
plugging the change of variables (62) into the kernel (15):

KY (x, y)
dy

dŷ
= π

Im[zs]

∫
γt

dt

2π i

∫
γs

ds

2π i

1

s − t

sin(πt )eiπ sign[Im(t )]t

sin(πs)eiπ sign[Im(s)]s
exp

[
π x̂

Im[zs]
s − π ŷ

Im[zs]
t

]
exp [−S (s; y0) + S (t ; y0)]. (64)
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The factor dy/dŷ is the resulting Jacobian of the change of variable. As for the level density we shift the contour γt to Re [zs] + iR
while the contour γs runs through zs and z∗

s . Hence, we obtain a residuum which leads to

KY (x, y)
dy

dŷ
= π

Im[zs]

∫ zs

z∗
s

dt

2π i
exp

[
π (̂x − ŷ)

Im[zs]
t

]
+ π

Im[zs]

∫ Re [zs]+i∞

Re [zs]−i∞

dt

2π i

∫
γs

ds

2π i

1

s − t

sin(πt )eiπ sign[Im(t )]t

sin(πs)eiπ sign[Im(s)]s
exp

[
π x̂

Im[zs]
s − π ŷ

Im[zs]
t

]
e−S(s;y0 )+S(t ;y0 ). (65)

The first term is the one we are looking for since it evaluates to
π

Im[zs]

∫ zs

z∗
s

dt

2π i
exp

[
π (̂x − ŷ)

Im[zs]
t

]
= exp

[
π

Re [zs]

Im [zs]
(̂x − ŷ)

]
sin[π (̂x − ŷ)]

π (̂x − ŷ)
. (66)

We exploit the invariance (13) to get rid of the exponential factor in the expression on the right-hand side by multiplying it by
exp [−π Re [zs](̂x − ŷ)/Im [zs]].

The second term multiplied by this new factor vanishes then in the large N, M limit. This can be seen by expanding the
integration variables s = s0 + δs and t = t0 + iδt about the two saddle points s0, t0 = zs, z∗

s . In particular, we employ (21) for
the spectral variable y0. The integrals are indeed bounded because for s0 = t0 = zs (and similarly for s0 = t0 = z∗

s , with i → −i),
and we have

exp

[
π x̂

Im[zs]
s − π ŷ

Im [zs]
t − π

Re [zs]

Im [zs]
(̂x − ŷ)

]
= exp

[
i(̂x − ŷ) + π x̂

Im[zs]
δs − i

π ŷ

Im[zs]
δt

]
M,N→∞−→ ei(̂x−ŷ). (67)

Note that δs, δt = O(
√

Im [zs]) because of the scaling of the quadratic terms (21). For s0 = t∗
0 = zs (and similarly for s0 = t∗

0 =
z∗

s , with i → −i), we have

exp

[
π x̂

Im[zs]
s − π ŷ

Im[zs]
t − π

Re [zs]

Im [zs]
(̂x − ŷ)

]
= exp

[
i(̂x + ŷ) + π x̂

Im[zs]
δs−i

π ŷ

Im[zs]
δt

]
M,N→∞−→ ei(̂x+ŷ). (68)

Since these double contour integrals are multiplied by 1/Im [zs] = O(M/Re [zs]) = o(1) the terms vanish so that we find the
celebrated sine kernel [34]

Ksin (̂x, ŷ) = lim
M,N→∞

exp

[
−π

Re [zs]

Im [zs]
(̂x − ŷ)

]
KY (x, y)

dy

dŷ
= sin[π (̂x − ŷ)]

π (̂x − ŷ)
(69)

for all cases when the base point y0 satisfies the scaling bounds y0 � MM+1/(N − M ) and 1 − y0/[e(M + 1)NM] � (M/N )2/3.
This extends the result of [14] obtained when M is fixed. The first bound shows the transition to the other double scaling limits.
The latter bound at the soft edge follows from the fact that it always vanishes like a square root, particularly the mesoscopic level
density has at the soft edge the form (61).

Satisfying both bounds implies the double scaling N � M � 1. Therefore, the sine kernel cannot always be found.

B. Picket fence statistics in the bulk

For this regime, we require the stricter condition Re[zs(y0)] = o(M ), rather than Re[zs(y0)] � O(M ) which was the scaling in
Sec. III B. We choose an unfolding of the form

x = y0 exp [(M + 1)ψ ′(1 + z0 )̂x] and y = y0 exp [(M + 1)ψ ′(1 + z0 )̂y] with x̂, ŷ = O(1) (70)

with z0 given by (33) with y → y0. This change indeed flattens the bulk density (45) in the present scaling limit.
As we have seen in Appendix D, the saddle point zs is infinitesimally close to the real point z0. The contributing summands

are those with an index j that satisfies the scaling | j − z0| = O(
√

Re[zs]/M ). Because of Re[zs] ≈ z0 � M, the kernel does not
vanish only when z0 = 0, 1, . . . , N − 1. Indeed, the Gaussian approximation (40) of the action for the sum representation of the
kernel (14) simplifies to a sum of Dirac delta functions. One can show this by the following computation. The kernel in the new
variables is

KY (x, y)
dy

dŷ
= (M + 1)ψ ′(1 + z0)

N−1∑
j=0

∫
γt

dt

2π i

sin[π ( j − t )]

π ( j − t )
eiπ sign[Im(t )]t exp [(M + 1)ψ ′(1 + z0)(̂x j − ŷt )]

× exp [−S ( j; y0) + S (t ; y0)]

≈ (M + 1)ψ ′(1 + z0)
N−1∑
j=0

∫ ∞

−∞

dδ t

2π

sin[π ( j − z0 − iδt )]

π ( j − z0 − iδt )
exp{Mψ ′(1 + z0)[̂x j − ŷ(z0 + iδt )]}

× exp

[
−Mψ ′(1 + z0)

2
[( j − z0)2 + δt2]

]
. (71)
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First, we shift the integration variable δt → δt − îy:

KY (x, y)
dy

dŷ
≈ (M + 1)ψ ′(1 + z0) exp

[
Mψ ′(1 + z0)

2
([̂x + z0]2 − [̂y + z0]2)

]

×
N−1∑
j=0

∫ ∞

−∞

dδ t

2π

sin[π ( j − z0 − ŷ − iδt )]

π ( j − z0 − ŷ − iδt )
exp

[
−Mψ ′(1 + z0)

2
([ j − z0 − x̂]2 + δt2)

]
. (72)

In the next step, we can replace the two Gaussians by two Dirac delta functions where we can evaluate the integral over δt . This
leads to the result

KY (x, y)
dy

dŷ
≈ exp

[
Mψ ′(1 + z0)

2
([̂x + z0]2 − [̂y + z0]2)

] N−1∑
j=0

sin[π ( j − z0 − ŷ)]

π ( j − z0 − ŷ)
δ( j − z0 − x̂). (73)

The factor in front of the sum can be skipped on virtue of the invariance (13) of the kernel. Additionally, we consider the bulk
which means that z0 − 1, N − 1 − z0 � 1 so that we can extend the sum into both directions to ±∞ in the limit N, M → ∞
when splitting j − z0 = ĵ + ν with ĵ ∈ Z and ν ∈] − 0.5, 0.5]. The parameter |ν| is thus the distance of z0 to its closest integer.
Hence, we eventually arrive at

Kpf (̂x, ŷ) = lim
M,N→∞

exp

[
−Mψ ′(1 + z0)

2
([̂x + z0]2 − [̂y + z0]2)

]
KY (x, y)

dy

dŷ

=
∞∑

ĵ=−∞

sin[π ( ĵ + ν − ŷ)]

π ( ĵ + ν − ŷ)
δ( ĵ + ν − x̂).

(74)

This is the kernel of an equidistant spectrum which looks like a picket fence in both directions, thus, the name picket fence
statistics (pf). The sine function in the summand is essential since it guarantees that no two eigenvalues lie at the same position.
For instance, for the microscopic one- and two-point functions we get

R1(̂y) =
∞∑

ĵ=−∞

sin[π ( ĵ + ν − ŷ)]

π ( ĵ + ν − ŷ)
δ( ĵ + ν − ŷ) =

∞∑
ĵ=−∞

δ( ĵ + ν − ŷ) (75)

and

R2 (̂x, ŷ) = R1(̂x)R1(̂y) −
∞∑

ĵ ,̂l=−∞

sin[π ( ĵ + ν − ŷ)]

π ( ĵ + ν − ŷ)

sin[π (̂l + ν − x̂)]

π (̂l + ν − x̂)
δ( ĵ + ν − x̂)δ (̂l + ν − ŷ)

= R1(̂x)R1(̂y) −
∞∑

ĵ ,̂l=−∞
δ ĵ̂l δ( ĵ + ν − x̂)δ (̂l + ν − ŷ)

=
∑
ĵ �=̂l

δ( ĵ + ν − x̂)δ (̂l + ν − ŷ), (76)

respectively.
Let us underline that the kernel (74) always holds when the real part of the saddle point solution satisfies 1 � Re [zs] =

z0 � M and N − Re [zs] � 1. This translates into the original eigenvalue y0 of the product matrix Y into the form ln(Ny0) � M
and (M + 1)ψ[N] − ψ[1] − ln(y0) � max{M/N, 1} meaning that one stays away from the hard and soft edge, respectively, as
well as y0 � (M + 1)M+1/[N − M] which represents the regime where the distributions of the individual eigenvalues do not
overlap anymore. The condition (M + 1)ψ[N] − ψ[1] − ln(y0) � max{M/N, 1} follows from Eq. (33) at the maximal value
z0 = N − 1 and taking the difference of this equation for z0 − δ j with δ j of order one. Namely, for δ j = O(1) one still sees the
upper boundary of the spectrum.

From these scaling boundaries we see that there is always a part of the spectrum of Y whose spectral statistics follows the
kernel (74) regardless of the relation between M and N in the double scaling limit. For M � N the entire bulk is governed by
the picket fence local spectral statistics. This extends the results of [15] where this was shown for fixed N only.

C. Critical regime in the bulk

The two bulk statistics above have a transition regime which is given by the fact that Re [zs] ≈ z0 = O(M ), which is included
in the scaling Re [zs] � O(M ) in Sec. III B. In this regime, we unfold the variables like in Eq. (70) since the level density is the
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same [see (45)]. Replacing ψ ′(1 + z0) by its asymptotic behavior 1/z0 + 1/(2z2
0 ) + · · · , Eq. (6), we have

x = y0 exp

[
M + 1

z0
x̂

]
and y = y0 exp

[
M + 1

z0
ŷ

]
with x̂, ŷ = O(1). (77)

The term M/z0 is of order one for z0 = O(M ). All other terms can be neglected. The next-to-leading one is of order M/z2
0 ∼

O(1/M ) so it vanishes in the limit M → ∞.
We can already start from the intermediate result (72), which was derived for Re [zs] = o(M ) but still holds here as it only

takes into account the computations in Sec. III B which hold for Re [zs] � O(M ). It reads now

KY (x, y)
dy

dŷ
≈M + 1

z0
exp

[
M

2z0
([̂x + z0]2 − [̂y + z0]2)

]

×
N−1∑
j=0

∫ ∞

−∞

dδ t

2π

sin[π ( j − z0 − ŷ − iδt )]

π ( j − z0 − ŷ − iδt )
exp

[
− M

2z0
([ j − z0 − x̂]2 + δt2)

]
.

(78)

This time we cannot replace the two Gaussians by Dirac delta functions since their variance is of order one. To carry out the δt
integral, nevertheless, we exploit the same trick as in Eq. (42) and arrive at the result

Kcb (̂x, ŷ) = lim
M, N → ∞
z0/M → a

exp

[
− M

z0
(ν + z0)(̂x − ŷ)

]
KY (x, y)

dy

dŷ

= 1

2πa

∞∑
ĵ=−∞

Re

{
erfi

[
π

√
a

2
+ i

√
1

2a
( ĵ + ν − ŷ)

]}
exp

[
1

a
(̂x − ŷ) ĵ

]
. (79)

The subscript cb stands for critical bulk. We used the invariance (13) to introduce the prefactor in the last expression. As in the
picket fence case the index j is closely bound to z0, j − z0 = ĵ + ν must be of order one. This in combination with the fact that
1 + z0, N − 1 − z0 � 1 has allowed us to extend the sum to Z.

The result (79) holds for those y0 which are of the order (M + 1)M+1/[N − M] which is the scale where the single eigenvalues
start to feel their neighboring eigenvalues. Additionally, we need to stay away from the soft edge so that it is also (M + 1)ψ[N] −
ψ[1] − ln(y0) � max{M/N, 1}. This condition is, however, of relevance only when N = O(M ). Only then this critical regime
reaches the soft edge.

The result (79) was already presented in Ref. [23]. In Sec. VII, we give a detailed derivation showing that the same kernel is
obtained from Dyson’s Brownian motion. There is also an alternative version of this kernel shown in Ref. [24] which is expressed
in terms of the Jacobi theta function

ϑ (z; τ ) =
∞∑

j=−∞
exp[π i j2τ + 2π i jz]. (80)

For this purpose, we do not carry out the r integral resulting from the trick (42) so that the kernel has the form

Kcb (̂x, ŷ) =
√

1

8πa

∞∑
ĵ=−∞

∫ 1

−1
dr exp

[
− 1

2a
ĵ2 + i

(
πr − i

1

a
(−ν + x̂)

)
ĵ + a

2

(
πr − i

1

a
(−ν + ŷ)

)2]
. (81)

In this expression one can identify the series with the Jacobi theta function (80) which yields [24]

Kcb (̂x, ŷ) =
√

1

8πa

∫ 1

−1
dr ϑ

(
r

2
− i

1

2πa
(−ν + x̂); i

1

2πa

)
exp

[
a

2

(
πr − i

1

a
(−ν + ŷ)

)2]
. (82)

Let us finally mention that the kernel (79) exhibits again a discrete translation symmetry (̂x, ŷ) → (̂x + 1, ŷ + 1) as does the
picket fence statistics. It reflects the fact that we have indeed properly unfolded the spectrum since the averaged mean level
distance is one. When taking the ratio a = z0/M → 0 we indeed regain the picket fence kernel (74). This can be easiest seen in
Eq. (81) where the Gaussian in ĵ can be replaced by a Dirac delta function and the remaining integral in r is a simple exponential
function leading to the sinus cardinalis in Eq. (74).

The sine-kernel result (69) can be found when sending a = z0/M → ∞. Then, the sum (81) in ĵ becomes quasicontinuous
and, hence, a simple Gaussian. Carrying out this Gaussian integral in ĵ leads again to an exponential integrand in r giving the
sinus cardinalis in Eq. (69).

V. HARD EDGE

For the hard edge, the digamma function ψ[1 + z0] as well as its derivatives cannot be approximated by the asymptotic (6)
while the digamma function ψ[N − z0] is essentially ln(N ) and its derivatives are subleading. Therefore, the reduced saddle
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point equation (33) simplifies to

ψ[1 + z0] = ln(Ny)

M + 1
. (83)

Hence, the spectral variable scales like y = exp[(M + 1)ψ (1 + z0)]/N . When comparing this result with those in Ref. [23] one
can easily notice a difference by a factor exp[ψ (1 + z0)]. As long as ln(z0) � M, this term always vanishes in the unfolding
because its Mth root goes to one. Yet, there will be eventually corrections when ln(z0) � O(M ). This latter regime is not the
case for the hard edge scaling. As we will see, the variable z0 has to be still very close to an integer, so that the smooth part of
the level density for y follows:

ρhard(y) = 1

N (M + 1)y ψ ′(1 + ∫∞
0 ds �{y − exp[(M + 1)ψ (1 + s)]/N}) . (84)

In principal, one can also consider this density as the mesoscopic part of the density (45) close to the hard edge. Therefore, the
unfolding is given by

x = exp [(M + 1)ψ[1 + x̂]]/N and y = exp [(M + 1)ψ[1 + ŷ]]/N with x̂, ŷ = O(1). (85)

Essentially, we can make use of the analysis of Secs. III B and IV B since the present discussion does not differ much from
it. The only but essential difference is that x̂ and ŷ are already the solutions of (33) so that we expand the summation index j
about x̂ and the integration variable t about ŷ. Here, we begin with the sum representation of the kernel (14). The actions can be
approximated then by

−S ( j; x) + S (t ; y)
M,N�1≈ − S (̂x; x) + S (̂y; y) − (M + 1)ψ ′(1 + x̂)

2
( j − x̂)2 − (M + 1)ψ ′(1 + ŷ)

2
δt2 − iπ sign (δt ) (86)

with t = ŷ + iδt . Plugging this into the kernel (14), we obtain

KY (x, y)
dy

dŷ
= (M + 1)ψ ′(1 + ŷ) exp [−S (̂x; x) + S (̂y; y)]

×
N−1∑
j=0

∫ ∞

−∞

dt

2π

sin[π ( j − ŷ − iδt )]

π ( j − ŷ − iδt )
exp

[
− (M + 1)ψ ′(1 + x̂)

2
( j − x̂)2 − (M + 1)ψ ′(1 + ŷ)

2
δt2

]
. (87)

The Gaussian can be anew replaced by Dirac delta functions since their variance shrinks like 1/M. Moreover, we can take the
limit of the upper boundary of j to infinity because it has to be close to x̂ which is of order one. Multiplying the kernel with the
factor

√
ψ ′(1 + x̂)/ψ ′(1 + ŷ) exp [S (̂x; x) − S (̂y; y)] [see (13)] leads us to the final result of this section

K+
pf (̂x, ŷ) = lim

M,N→∞

√
ψ ′(1 + x̂)

ψ ′(1 + ŷ)
exp [S (̂x; x) − S (̂y; y)]KY (x, y)

dy

dŷ
=

∞∑
j=0

sin[π ( j − ŷ)]

π ( j − ŷ)
δ( j − x̂). (88)

This kernel agrees with (74), apart from the shift ν, and, indeed, it is the spectral statistics of a picket fence spectrum with a
lower bound, hence the superscript +. The sine function again ensures that no two eigenvalues sit at the same position.

We would like to emphasize that this part of the spectrum always shows up regardless how M and N are sent to infinity as
only the relation between Re [zs] and M has been important for the derivation.

VI. SOFT EDGE

We start again from (14) and exploit the knowledge that the action is convex on the interval ] − 1, N[. At the soft edge the
spectral variable y grows so strongly in the large N, M limit (see Sec. IV), that z0, which is defined by (33), is close to the value
N − 1, in particular N − 1 − z0 = O(1). The question is again how many summands can contribute. To solve this problem, we
consider the scaling bound on � � O(1) [Eq. (39)] defined in Eq. (38). It has been obtained from the difference of the action at
j and z0 which has to be of order one or less to be contributing, as � � 1 will be exponentially suppressed in the sum. In the
present case we have to replace z0 by N − 1 − ẑ0 with ẑ0 = O(1) such that we consider

|δ j| � O

⎛⎝ 1√∫ 1
0 dλ(1 − λ)[(M + 1)ψ ′(N − ẑ0 + δ jλ) + ψ ′ (̂z0 + 1 − δ jλ)]

⎞⎠ (89)

with δ j = j − N + 1 + ẑ0. When assuming that |δ j| < O(N ) and plugging this into (89), we get the new tighter bound

|δ j| � O

(
min

{√
N

M
,
√

|δ j|
})

. (90)
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We can combine this inequality with the knowledge that the smallest nonvanishing |δ j| is equal to 1. This leads to |δ j| � O(1)
which is immediate for N � M. For N � M, we can plug |δ j| � O(

√
N/M ) back into (90) which shows |δ j| � O(

√|δ j|) and,
thus, |δ j| � O(1).

For the integration variable t = z0 + iδt , we are looking for the maximum tmax of Re [S(z0 + iδt, y)] with respect to δt . Its
derivative yields the imaginary part of the saddle point equation (17) with the fixed real part Re (zs) → z0. The upper bound
(B10) for the positions of the maxima still holds so that we have still the scaling bound tmax � O(z0/M ) = O(N/M ). The lower
bound in Eq. (B10) is not useful anymore because z0 can be very close to N − 1.

Let us point out that Im[S′(z0 + iδt, y)] is strictly decreasing for δt ∈ R− and for δt ∈ R+, separately. Thus, Re [S(z0 + iδt, y)]
is concave on both of the two half-axes R− and R+ so that the maxima are unique on each of the two parts. What we have to
check is the width of the maximum which is given by the second derivative of Re [S(z0 + iδt, y)] with respect to δt at tmax:

−Re [S′′(z0 + itmax, y)] = −(M + 1)Re [ψ ′(1 + z0 + itmax)] + Re [ψ ′(N − z0 − itmax)] = O

(
max

{
M

N
, 1

})
, (91)

where we have used tmax � O(N/M ) and the asymptotic expansion (6). Hence, when expanding about δt = 0 it is safe to say
that we choose δt of order O(max{N/M, 1}). It is very important that we take N/M and not the width of the maximum

√
N/M

since for the case N � M the maximum might be further away from the real axis than the width of the maximum is covering.
In summary, we choose j = N − 1 − ĵ with ĵ being of order one and also shift the integration variable as follows: t =

N − 1 − ĵ + ît . Then, the kernel becomes(
y

x

)N−1

KY (x, y) = 1

y

N−1∑
ĵ=0

∫ ∞

−∞

dt̂

2π

sinh[π t̂]

π t̂

x− ĵ

yît− ĵ

(

[N − ĵ + ît]

(N − 1 − ĵ)!

)M+1

[1 + ĵ − ît]

ĵ!

= 1

y

N−1∑
ĵ=0

∫ ∞

−∞

dt̂

2π îtyît

⎧⎨⎩
[N + ît]

(N − 1)!
exp

⎡⎣−
ĵ∑

l=1

ln

(
1 + i

t̂

N − l

)⎤⎦⎫⎬⎭
M+1

(−y/x) ĵ

ĵ!
[ît − ĵ]
. (92)

In the second line we have exploited Euler’s reflection formula (A8) for 
[1 + ĵ − ît]. We will remove a factor (y/x)N−1 from
this intermediate result by the invariance (13) out of convenience as we will see below.

In the next step, we can approximate the exponential

exp

⎡⎣−(M + 1)
ĵ∑

l=1

ln

(
1 + i

t̂

N − l

)⎤⎦ M,N≈ exp

[
−i(M + 1)

t̂

N
ĵ

]
(93)

because t̂ is of order N/M or smaller so that all higher order terms in the expansion above vanish in the limit regardless how M
and N are related. Afterward, the sum over ĵ can be extended to a series over N0 since all terms which are not of order one will
be suppressed in the large N, M limit as we have noticed in the previous discussion. The benefit of this extension is the binomial
series which can be carried out now, i.e.,

N−1∑
ĵ=0

(−e−i(M+1)̂t/N y/x) ĵ

ĵ!
[ît − ĵ]
≈

∞∑
ĵ=0

(−e−i(M+1)̂t/N y/x) ĵ

ĵ!
[ît − ĵ]
= 1


[ît]

(
1 − y

x
e−i(M+1)̂t/N

)ît−1

. (94)

We eventually arrive at the following intermediate result:(
y

x

)N−1

KY (x, y)
M,N�1≈ 1

y

∫ ∞

−∞

dt̂

2π

y−ît


[1 + ît]

(

[N + ît]

(N − 1)!

)M+1(
1 − y

x
e−i(M+1)̂t/N

)ît−1

. (95)

This representation is ideal to perform the three different double scaling limits in the ensuing subsections.

A. Airy kernel: N � M

As we have seen for the double scaling N � M, we may have to go in the integration over t̂ up to the scale N/M. This is
certainly a rough estimate, but it at least covers the contributing parts of the integrand. Indeed, we will see that the scale where t̂
is contributing is actually smaller.

In Sec. III C 2 we have seen that the soft edge lies at y0 = y+ = e(M + 1)NM . Moreover, it vanishes like the square root (61),
so that the local scale is additionally multiplied by (M/N )2/3. Therefore, we consider the change of variables

x = e(M + 1)NMe(M/N )2/3χ and y = e(M + 1)NMe(M/N )2/3ζ with χ, η = O(1). (96)

The coordinates χ and ζ are not yet properly unfolded, and they will need to be corrected for the square root behavior. The
kernel will, however, exhibit the well-known form of the Airy kernel [35]. To see this we expand the logarithm of the integrand
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of (95) about t̂ = 0, apart from 
[1 + ît] where the argument t̂ is large compared to 1, so that we use Stirlings formula for this
term. In particular, we employ the expansions

−ln(
[1 + ît]) = − ît ln(ît ) + ît − 1

2
ln(ît ) − ln(2π )

2
+ O

(
1

|̂t |
)

,

(M + 1)ln

(

[N + ît]

(N − 1)!

)
= (M + 1)

(
iln(N )̂t − 1

2N
t̂2

)
+ O

(
M |̂t |

N
+ M |̂t |2

N2
+ M |̂t |3

N2

)
, (97)

and

(ît − 1)ln(1 − e(M/N )2/3(ζ−χ )−i(M+1)̂t/N )

= (ît − 1)

[(
M

N

)2/3

(ζ − χ ) + ln(1 − e−i(M+1)̂t/N ) + ln

(
1 + e−(M/N )2/3(ζ−χ ) − 1

1 − e−i(M+1)̂t/N

)]
= (ît − 1)ln

(
i
M + 1

N
t̂

)
+ 1

2

M

N
t̂2 − i

24

(
M

N

)2

t̂3 + i
1

2

(
M

N

)2/3

(ζ − χ )̂t + i

2

(
N

M

)2/3 (ζ − χ )2

t̂

−
(

N

M

)1/3

(ζ − χ ) + O

[
M

N
|̂t | +

(
N

M

)1/3 1

|̂t | +
(

M

N

)5/3

|̂t |2 +
(

M

N

)3

|̂t |4 + N

M

1

|̂t |2
]
. (98)

Combining these three terms with y−ît , the kernel takes the form

yN−1 exp [(N/M )1/3ζ ]

xN−1 exp [(N/M )1/3χ ]
KY (x, y)

dy

dζ
=
(

N

M

)1/3 ∫ ∞

−∞

dt̂

(2π ît )3/2
exp

[
− i

24

(
M

N

)2

t̂3 − i

2

(
M

N

)2/3

(ζ + χ )̂t + i

2

(
N

M

)2/3 (ζ − χ )2

t̂

]
× exp

{
O

[
M

N
|̂t | +

(
N

M

)1/3 1

|̂t | +
(

M

N

)5/3

|̂t |2 +
(

M

N

)3

|̂t |4 + |̂t |2
N

]}
. (99)

When t̂ scales like (N/M )2/3 the first part of the exponential is of order one while the corrections are all smaller than one and,
hence, vanish in the large N, M limit. This is the aforementioned scaling that is smaller than the crude approximation by N/M.
Therefore, we choose t̂ = (N/M )2/3δt with δt = O(1).

Finally, we arrive at the limiting soft edge kernel for N � M which is the Airy kernel

KAiry(χ, ζ ) = lim
N,M→∞

yN−1 exp [(N/M )1/3ζ ]

xN−1 exp [(N/M )1/3χ ]
KY (x, y)

dy

dζ

=
∫ ∞

−∞

dδ t

[2π (c + iδt )]3/2
exp

[
1

24
(c + iδt )3 − 1

2
(ζ + χ )(c + iδt ) − 1

2

(ζ − χ )2

c + iδt

]
, (100)

where c > 0 is a positive shift to guarantee the convergence. The integration can be made absolutely integrable by tilting the two
half-axes.

The integral above is none of the standard representations of the Airy kernel. That can be obtained by introducing a Gaussian
integral for the last term in the exponential. After additionally rescaling c + iδt → 2(c + iδt ) we have

KAiry(χ, ζ ) =
∫ ∞

−∞

dδ t

2π (c + iδt )

∫ ∞

−∞

dδ s

2π
exp

[
(c + iδt )3

6
− ζ (c + iδt ) + (c + iδt )(c − iδs)2 − (χ − ζ )(c − iδs)

]
=
∫ ∞

−∞

dδ t

2π (c + iδt )

∫ ∞

−∞

dδ s

2π
exp

[
(c + iδt )3

6
+ (c − iδs)3

6
− ζ (c + iδt ) − χ (c − iδs)

]
= 21/3

∫ ∞

0
dr Ai[21/3(ζ + r)] Ai[21/3(χ + r)]. (101)

In the second step we have shifted, first, c + iδt → (2c + iδt − iδs), and in the final one we have introduced the integral 1/(2c +
iδt − iδs) = ∫∞

0 dr exp[−(2c + iδt − iδs)r]. Moreover, we have rescaled (c + iδt ) → 21/3(c + iδt ) and (c − iδs) → 21/3(c −
iδs) and used the integral representation [32] of the Airy function Ai. The final line of (101) is one of the common representations
of the Airy kernel.

As already mentioned, the coordinates (96) are not properly unfolded. When going into the bulk, the level spacing will
shrink, due to the square root increase. This is quite unfortunate while connecting these statistics with the uniform picket fence
spectrum, which we will derive in the next subsection for the opposite scaling relation M � N . To amend this problem, we
change variables,

x = e(M + 1)NM

{
1 + sign (̂x)

[
3π (M + 1)√

8N
|̂x|
]2/3}

and y = e(M + 1)NM

{
1 + sign (̂y)

[
3π (M + 1)√

8N
|̂y|
]2/3}

(102)
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with x̂, ŷ = O(1) instead of (96), that follows from the mesoscopic level density (61) very close to the soft edge. The unfolding
outside the support of the mesoscopic level density is somewhat artificial, but in this way one can still catch the tail of the largest
eigenvalue. There is certainly one disadvantage, that we get a coordinate singularity at the origin, which is chosen to be the edge
of the mesoscopic level density.

The kernel in the new coordinates can be readily obtained by noticing that

ζ =
(

N

M

)2/3

ln

{
1 + sign (̂y)

[
3π (M + 1)√

8N
|̂y|
]2/3}

≈ sign (̂y)
(3π |̂y|)2/3

2
(103)

and similarly for the relation between x̂ and χ . Hence, we have after unfolding

K̂Airy (̂x, ŷ) = KAiry(χ, ζ )
dζ

dŷ

= 22/3

3|̂y|1/3

Ai(sign (̂x)(3π |̂x|/2)2/3)Ai′(sign (̂y)(3π |̂y|/2)2/3) − Ai′(sign (̂x)(3π |̂x|/2)2/3)Ai(sign (̂y)(3π |̂y|/2)2/3)
sign (̂x)|̂x|2/3 − sign (̂y)|̂y|2/3

.

(104)

The limit x̂ → ŷ yields the unfolded microscopic level density which is equal to

ρ̂Airy (̂y) =
(

2π2

3|̂y|
)1/3

{[
Ai′
(

sign (̂y)

(
3π

2
|̂y|
)2/3)]2

− sign (̂y)

(
3π

2
|̂y|
)2/3[

Ai

(
sign (̂y)

(
3π

2
|̂y|
)2/3)]2}

. (105)

As can be easily checked, the local mean level spacing equals one even for the largest eigenvalues (mapped to the origin here).

B. Picket fence at the soft edge: N � M

For the other extreme case M � N , the maxima of the action are very close to the origin, where the soft edge is located. The
properly unfolded scaling variables are

x = exp [(M + 1)ψ (N ) + Mψ ′(N )̂x] and y = exp [(M + 1)ψ (N ) + Mψ ′(N )̂y] with x̂, ŷ = O(1), (106)

in particular it is z0 ≈ N − 1. This unfolding is essentially the same as in Eq. (70) up to the scaling of z0. This is the reason why
we can still use the intermediate result (73) because the arguments still hold. The only difference is that j = N − 1 − ĵ has to
be in the vicinity of N − 1, i.e., ĵ = O(1). This means that we can extend the sum over ĵ from −∞ to 0. This leads to the result

K−
pf (̂x, ŷ) = lim

M,N→∞
exp

[
−Mψ ′(N )

2
([̂x + N − 1]2 − [̂y + N − 1]2)

]
KY (x, y)

dy

dŷ

=
0∑

ĵ=−∞

sin[π (− ĵ + ŷ)]

π (− ĵ + ŷ)
δ(− ĵ + x̂)

= K+
pf (−x̂,−ŷ). (107)

We see that up to a reflection it agrees with the one at the hard edge (88). It is not very surprising since we are at the upper edge
of the picket fence spectrum. Therefore, it is also properly unfolded, implying the mean level spacing is one.

C. Critical regime at the soft edge: N ∝ M

In the critical regime when M = O(N ), the integration variable in t̂ in Eq. (95) is of order one. Hence, we only need to expand
the term ln(
[N + ît]) in t̂ and choose the variables

x = NM+1eχ and y = NM+1eζ with χ, ζ = O(1). (108)

We would like to mention that the new variables χ and ζ are again not properly unfolded, yet, since they show a transition
between the uniformly distributed picket fence spectrum at M � N and the square root behavior for N � M (see Sec. IV). The
kernel in this critical regime at the soft edge (cs) is then

Kcs(χ, ζ ) = lim
M, N → ∞
N/M → a

(
y

x

)N−1

KY (x, y)
dy

dζ
=
∫ ∞

−∞

dt̂

2π

(1 − exp[ζ − χ − ît/a])ît−1


[1 + ît]
exp

[
− 1

2a
t̂2 − i

(
ζ + 1

2a

)̂
t

]
. (109)

We have only approximated (
[N + ît]/
[N])M+1 ≈ Ni(M+1)̂t exp[−(M + 1)̂t2/(2N ) − iMt̂/(2N )] and a = N/M. Apart from
some rescaling this is the result in Ref. [23].
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Another representation of this kernel has been derived in Ref. [24] and has the form of a double contour integral

Kcs(χ, ζ ) =
∮
C

ds

2π i

∫ ∞

−∞

dt

2π

1

1 + it − s


[s]


[1 + it]

exp[1/(2a)(1 + it )2 − (ζ + 1/(2a))(1 + it )]

exp[1/(2a)s2 − (χ + 1/(2a))s]
, (110)

where the contour C encircles the poles at s = 0,−1,−2, . . . of 
[s]. One can readily show that both expressions agree by taking
the residues at s = 0,−1,−2 . . ., yielding

Kcs(χ, ζ ) =
∞∑
ĵ=0

∫ ∞

−∞

dt

2π

1

1 + it + ĵ

(−1) ĵ

ĵ!
[1 + it]

exp{1/(2a)(1 + it )2 − [ζ + 1/(2a)](1 + it )}
exp{1/(2a) ĵ2 + [χ + 1/(2a)] ĵ} . (111)

Next, we shift it = ît − ĵ − 1 and perform the resulting binomial series with the help of (94). Then, we arrive at (109).
Let us see how we get the other scaling limits from Secs. VI A and VI B. When we rescale χ = Mx̂/N and ζ = Mŷ/N and

take the limit N/M = a → 0, we can regain the result (107). To this aim, we expand the bracket in Eq. (109) via reading (94)
backward and then shift t̂ → t̂ − i( ĵ + ŷ + 1/2). This leads to four Gaussian terms:

M

N
Kcs

(
M

N
x̂,

M

N
ŷ

)
= M

N

∞∑
ĵ=0

∫ ∞

−∞

dt̂

2π
(−1) ĵ exp

[− t̂2

2 − M
N ĵ (̂x − ŷ) − M

2N

(
ĵ + ŷ + 1

2

)2]
( ĵ + ŷ + 1/2 + ît ) ĵ!
[̂y + 1/2 + ît]

≈ M

N

∞∑
ĵ=0

∫ ∞

−∞

dt̂

2π
(−1) ĵ exp

[− M
2N t̂2 − M

2N

(
ĵ + x̂ + 1

2

)2 + M
2N

(̂
x + 1

2

)2 − M
2N

(̂
y + 1

2

)2]
( ĵ + ŷ + 1/2 + ît ) ĵ!
[̂y + 1/2 + ît]

. (112)

The Gaussians for t̂ and ĵ can be replaced by Dirac delta functions as their variance shrinks with N/M → 0:

M

N
Kcs

(
M

N
x̂,

M

N
ŷ

)
≈ exp

[
M

2N

(̂
x + 1

2

)2

− M

2N

(̂
y + 1

2

)2] ∞∑
ĵ=0

(−1) ĵ δ( ĵ + x̂ + 1/2)

( ĵ + ŷ + 1/2) ĵ!
[̂y + 1/2]
. (113)

For the gamma function 
[̂y + 1/2] we apply Euler’s reflection formula (A8) and combine it with the sign (−1) ĵ . Additionally,
we can replace ĵ! by 
[1/2 − x̂], which leads us to the final result

lim
M/N → ∞

M

N


[1/2 − x̂] exp
[− M

2N

(̂
x + 1

2

)2]

[1/2 − ŷ] exp

[− M
2N

(̂
y + 1

2

)2]Kcs

(
M

N
x̂,

M

N
ŷ

)
= K−

pf

(̂
x + 1

2
, ŷ + 1

2

)
. (114)

The shift by 1
2 results from the fact that the square root behavior in the other double scaling limits pushes the largest eigenvalue

slightly into the bulk, away from the edge of the mesoscopic support of the level density.
In the opposite limit N/M = a → ∞, we choose

χ = 1 − ln

(
N

M

)
+
(

M

N

)2/3

χ ′ and ζ = 1 − ln

(
N

M

)
+
(

M

N

)2/3

ζ ′. (115)

We need to expand only the ratio in the integral (109) by using the expansions in Eq. (97) and (98). This directly leads to the
limit

lim
N/M→∞

(
M

N

)2/3 exp
[− ( N

M

)1/3
ζ ′]

exp
[− ( N

M

)1/3
χ ′]Kcs

(
1 − ln

(
N

M

)
+
(

M

N

)2/3

χ ′, 1 − ln

(
N

M

)
+
(

M

N

)2/3

ζ ′
)

= KAiry(χ ′, ζ ′). (116)

As both limits need a rescaling, we immediately notice that the choice (108) has not been the proper unfolding, otherwise, the
mean level spacing would have been the same. As for the Airy kernel in Sec. VI A, we employ the unfolding on the mesoscopic
scale, Eq. (59). Despite the fact that it has been derived for N � M it still works out for N = O(M ) because the number of
eigenvalues that sit in the tail which is suppressed by 1/M is of order N/M = O(1). In Fig. 2, we show that the scaling

φ (̂y) =
∫ π

−π

�

[̂
y − N

Mπ

(
φ′ − φ′2

tan(φ′)

)]
dφ′ − π with ζ = ln

(
M

N

)
+ 1 + sign (̂y)

[
ln

(
sin[φ (̂y)]

φ (̂y)

)
+ φ (̂y)

tan[φ (̂y)]
− 1

]
(117)

yields indeed a properly unfolded microscopic level density

ρ̂cs (̂y) = Kcs(ζ , ζ )

∣∣∣∣dζ

dŷ

∣∣∣∣ = Mπ

N |φ(ζ (̂y))|Kcs(ζ (̂y), ζ (̂y)). (118)

In this figure, we notice that the true soft edge is slightly shifted inside by 1
2 , when going from the Airy statistics to the picket

fence statistics. The deeper reason for this is that the width of the distributions of the individual eigenvalues becomes increasingly
narrow, and the mean of the largest eigenvalue was always inside the bulk of the spectrum. This is a rather fascinating effect,
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which is shared with a nonzero vacuum energy of the harmonic oscillator. The question is whether there is some deeper physical
meaning behind this observation.

VII. DUALITY BETWEEN LEVEL STATISTICS FOR PRODUCTS AND BROWNIAN MOTION

The evolution of eigenvalues of a Gaussian matrix whose elements perform independent Brownian motions is known
as Dysonian Brownian motion. The problem of Dysonian Brownian motion with the initial condition given by equidistant
eigenvalues was solved in Ref. [2]. The statistics of eigenvalues at time T is identical as for the matrix

H = H0 +
√

T H1, (119)

where H0 = diag (0, 1, 2, . . . , N − 1) and H1 is an N × N matrix from the Gaussian unitary ensemble, with the second moment
〈tr H2

1 〉 = N2. The joint probability density of the eigenvalues E = diag (E1, . . . , EN ) of H is given by

PH (E ) = exp
[−∑N−1

j=0 j2/(2T )
]

N!
∏N−1

j=0 (
√

2πT j!)
�N (E )�N (eE/T ) exp

[
− tr E2

2T

]
, (120)

where �N (E ) = det[Eb−1
a ]a,b=1,...,N is the Vandermonde determinant. The probability density (120) can be expressed as a

determinant of the kernel [see Eq. (3.14) in Ref. [2]]

K (N )
H (E1, E2) =

N−1∑
j=0

e−( j−E1 )2/(2T )
∫ ∞

−∞

dw

2πT
e(iw−E2 )2/(2T )

∏
l �= j

iw − l

j − l

=
N−1∑
j=0

∫ ∞

−∞

dw

2πT

sin[π ( j − iw)]

π ( j − iw)
e(iw−E2 )2/(2T )−( j−E1 )2/(2T ) 
[N − iw]
[iw + 1]


[N − j]
[ j + 1]
. (121)

We would like to mention that in Ref. [2] the initial conditions were symmetrically chosen about the origin while in our case the
origin is at the position of the lowest eigenvalue. Apart from this trivial shift, the kernel (121) is the one in Ref. [2].

One can study the limiting forms of the kernel in the local scale at the edges and in the bulk. In particular, it was shown in
Ref. [2] that the kernel takes the following form in the bulk:

K̃cb (̂x, ŷ) = 1

π

∞∑
m=−∞

Re

[
exp {−2π2am(m − 1) + iπ [(ν − ŷ) + (2m − 1)(ν − x̂)]}

2πma + i(̂x − ŷ)

]
. (122)

The simplest way to derive this result from the kernel (121) is to zoom in at the center of the spectrum where it is locally
flat. One can do this by setting N = 2n + 1 and choosing the base point close to n, i.e., E1 = n + ν + x̂, E2 = n + ν + ŷ, and
ν ∈] − 0.5, 0.5[. Employing the expansion w = n + δw and j = n + m for δw, m = O(1) and the identity (42), one arrives after
some manipulations at (122) as was already done in Ref. [2].

It has been surprising for us to discover that the kernel for Dyson’s Brownian motion (122) is equivalent to the kernel for
the product of Ginibre matrices (81) that we discussed in Sec. IV C. The equivalence can be derived by applying the Poisson
summation formula to (79). Writing

F (h) =
∫ ∞

−∞
ds erfi

[
π

√
a

2
+ i

√
1

2a
(s + ν − ŷ)

]
exp

[
1

a
(̂x − ŷ)s − ihs

]

= 2

h + i(1/a)(̂x − ŷ)
exp

[
−a

2

(
h + i

1

a
(̂x − ŷ)

)2

+ a

(
h + i

1

a
(̂x − ŷ)

)(
π + i

1

a
(ν − ŷ)

)]
, (123)

we have

Kcb (̂x, ŷ) = 1

2πa

∞∑
m=−∞

Re [F (2πm)]

= 1

πa

∞∑
m=−∞

Re

[
exp

{− a
2

[
π (2m − 1) + i 1

a (̂x − ν)
]2 + a

2

[
π + i 1

a (ν − ŷ)
]2}

2πm + i(1/a)(̂x − ŷ)

]

= exp
[

1
2a (̂x − ν)2 − 1

2a (ν − ŷ)2
]

π

∞∑
m=−∞

Re

[
exp {−2π2am(m − 1) + iπ [(ν − ŷ) + (2m − 1)(ν − x̂)]}

2πma + i(̂x − ŷ)

]

= exp

[
1

2a
(̂x − ν)2 − 1

2a
(ν − ŷ)2

]
K̃cb (̂x, ŷ). (124)

We see that up to an irrelevant factor exp [(̂x − ν)2/(2a) − (ν − ŷ)2/(2a)] see (13), the two kernels are identical. The identifi-
cation of time T in the Dysonian Brownian motion with the parameter M/z0 is rather straightforward, namely, T = a = z0/M.
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The number of matrices M in the product is proportional to time, if one interprets the product as a transfer matrix, but we also
see that it is inversely proportional to time when one maps the kernel to that of Brownian motion. It is a sort of duality. For
increasing M the picket fence statistics crystallizes [23]. The duality manifests also as a map between real space modes in one
picture and Fourier modes in the other one which is provided by the Poisson summation formula.

It is worth mentioning that a relation between the Dysonian random walk and a multiplicative stochastic process can be found
also in Ref. [6] where the joint probability density for singular values of a product matrix is identical to (120).

As we have demonstrated above, the local statistics of the singular values of the random matrix product in the bulk is described
by the same kernel for Dysonian Brownian motion with the initial condition given by a picket fence. We can extend that statement
even to the soft edge. For this purpose, we study the behavior of the kernel (121) for energy levels near the upper edge of the
spectrum

E1 = T [χ + ln(N )] and E2 = T [ζ + ln(N )] with χ, ζ = O(1). (125)

We choose the summation index j = N − 1 − ĵ and the integration variable is iw = N − 1 − ĵ + ît , with ĵ, t̂ = O(1), in
Eq. (121). The ratio of the gamma functions can be approximated like 
[N − ĵ + ît]/
[N − ĵ] ≈ Nit which cancels with
the logarithmic shift in the spectral variables [cf. Eq. (125)]. The other gamma function 
[1 + ĵ − ît] can be rewritten as
(−1) ĵπ/(
[ît − ĵ] sin[iπ t̂]) via Euler’s reflection formula (A8) which also cancels the resulting sine function. The binomial
series (94) leads to

lim
N→∞

T
exp{[χ + ln(N ) − (N − 1)/T ]2}
exp{[ζ + ln(N ) − (N − 1)/T ]2} K (N )

H (T [χ + ln(N )], T [ζ + ln(N )]) = Kcs

(
χ − 1

2T
, ζ − 1

2T

)
(126)

showing that the Dyson Brownian motion with T = a = N/M gives the same limiting result at the soft edge as the multiplicative
model discussed here. The critical behavior at the soft edge shown above was not discussed in Ref. [2].

VIII. NUMERICAL SIMULATIONS AND UNIVERSALITY

It is tempting to conjecture that the local statistics is uni-
versal, which means that it holds not only for the product
of independent Gaussian matrices, but for a wider class of
multiplicative stochastic processes in matrix space. In order to
support this conjecture we have performed Monte Carlo sim-
ulations of six different kinds of products of random matrices.
They are listed below.

(1) The product of independent and identically distributed
complex Ginibre matrices [see (10)] has been the main object
of interest for our analytical study. Thus, it is most natural
to consider it as our first ensemble to simulate, meaning we
compute the squared singular values of the product matrix

FIG. 2. The properly unfolded level density (118) at the soft edge
for various ratios a = N/M. The bulk of eigenvalues is to the left.
The peak of the distributions at the origin is the price we have to
pay for unfolding, which generates a coordinate singularity since
the mesoscopic level density vanishes there. Note that the individual
eigenvalues are shifted by 1

2 and do not lie on the integers.

X (M ) that is recursively defined by

X ( j) = XjX
( j−1) with X (1) = X1 for j = 2, . . . , M,

(127)
and each Xj is drawn from the Gaussian distribution (10).

(2) As a second product matrix, we generate X (M ) as in
Eq. (127), except that each Xj is itself a product

Xj = X̃ jD j, (128)

where X̃ j are independent Ginibre matrices drawn from (10)
and Dj are independent diagonal matrices whose diagonal
matrix entries are independently and uniformly drawn from
the interval [0.5,1.5]. Hence, X (M ) is an alternating product
of complex Ginibre matrices and real diagonal matrices, that
would alone yield Poisson spectral statistics.

(3) The next matrix product X (M ), that as a first example
involves correlations, is constructed via the recursive relation

X ( j) = (Xj + Xj−1)X ( j−1) with

X (1) = X1 for j = 2, . . . , M, (129)

with independent Xj drawn from (10). We call it a short ranged
memory model since the consecutive matrices in the product
Xj + Xj−1 and Xj+1 + Xj are correlated through Xj , which
contributes to both of them.

(4) A longer ranged memory model is the one with

X ( j) =
(

j∑
l=1

2l− jXl

)
X ( j−1) with

X (1) = X1 for j = 2, . . . , M, (130)

and independently distributed Xj drawn from (10). The factor
2l− j exhibits an exponential decay of the correlation of the
new matrix multiplied with respect to the past ones.
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FIG. 3. The total eigenvalue counts (histogram values are proportional to the level density) of the six ensembles. The bin size is equal to
0.1 and has been chosen to be significantly smaller than the peaks’ widths in order to see local fluctuations of the level density. Each ensemble
consists of 104 configurations of a product of M = 500 matrices of size 60 × 60. Therefore, each histogram comprises 6 × 105 eigenvalues.
We have slightly rescaled the eigenvalues to be able to apply the same bin size.

(5) To emphasize that also non-Gaussian ensembles share
the same limiting statistics, we employed the recursion (127),
but now with independent complex Bernoulli matrices Xj ,
meaning each matrix entry of Xj is independently and uni-
formly drawn from the set {0,±1} + i{0,±1}.

(6) Another ensemble which now destroys the indepen-
dence of the matrix entries, but not the one between the
matrices Xj , is the Jacobi ensemble. Such a Jacobi ensem-
ble can be generated by taking a sub-block, which is Xj ,
of a Haar-distributed unitary random matrix Uj ∈ U (L) with
L > N . In the present case, we have chosen L = 2N . We
have anew exploited the recursion (127) and have drawn M
independent Uj ∈ U (2N ) so that also the sub-blocks Xj , that
are multiplied, are independent. Recently, this product has
been analytically studied in Ref. [26].

The level density (times the number of matrices generated)
of the six ensembles is drawn in Fig. 3. For all ensembles we
have set M = 500 and N = 60, and generated 104 product ma-
trices. In some ensembles, we have rescaled the eigenvalues
by a constant factor. In this way, we could choose the same
bin size.

The peaks of each single eigenvalue can be nicely seen in
each plot in Fig. 3. This picture is very natural and shows
that the macroscopic and mesoscopic level densities are not
approached uniformly, when being in the critical [a = O(1)]
or in the subcritical (a � 1) regime. The oscillations are per-
sistent.

Additionally, it is evident that the hard edge about the
origin always converges to picket fence statistics, regardless
whether the matrices are Gaussian or non-Gaussian, and un-
correlated or correlated. The distributions of the individual
eigenvalues only start to overlap significantly when departing
from the origin and have the strongest overlap at the soft edge.

It is the soft edge result (118) that we fit to the numerics,
with an effective a that has not necessarily to be N/M for
the non-Ginibre ensembles. This is particularly seen for the
product of complex Jacobi matrices, where a ≈ 0.2 while M
and N are still the same as the Ginibre case. Albeit we have
chosen the soft edge and not the bulk, the fitting with the
soft edge result highlights also the agreement with the bulk
statistics (79). The transition from the soft edge to the bulk
statistics is rapid, as we know from the transition between the
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FIG. 4. The unfolded microscopic level density of the six ensembles 1–6 of product matrices at the soft edge (symbols) compared to the
analytical result (118) in combination with (109) (smooth curves), with a fitted effective value a that replaces the ratio N/M. Even for the
Ginibre case (upper left plot), for which we have analytically studied the double scaling limits, we cannot rely completely on the relation
a = N/M, which would be a = 60/500 = 0.12 (blue dashed curve) in the present case. Due to the finite matrix size, some deviations show
up for smaller eigenvalues. Therefore, we have additionally plotted the result for a = 50/500 = 0.1 (brown curve) which fits the 10th largest
eigenvalue best. Certainly, similar deviations for the other ensembles can be explained by finite size effects, and should be always taken into
account when comparing with empirical data. The matrix size is N = 60, the number of matrices multiplied is M = 500, and the ensemble
size is 104 for all six ensembles.

Airy kernel and the sine kernel. Already after three or four
eigenvalues the statistical error of the empirical data is larger
than the actual deviation between the two statistics.

When fitting empirical data with our analytical result in
Fig. 4, one has to be aware of two things. First, the finite
size effects can be significant and visible. This can be easily
observed in the Ginibre case (upper left plot in Fig. 4) where
the parameter a is for the largest eigenvalue a = N/M =
60/500 = 0.12 while for the 10th largest eigenvalue we have
a = j/M = 50/500 = 0.1. These deviations have to be taken
into account, especially when there are no analytical formulas
at hand for the macroscopic or mesoscopic level density.

The next problem to solve is to fix the position of the
largest eigenvalue. While the distributions of the other eigen-
values can be relatively easily fixed by enforcing that the

mean level spacing of each pair of consecutive eigenvalues is
equal to one, we have no straightforward information about
the position of the largest eigenvalue. We have solved this
problem by fixing the tail, by rescaling the distribution of
the largest eigenvalue with a fixed constant. This very crude
method works rather well when considering the results shown
in Fig. 4.

IX. SUMMARY

In this work we have delivered the details of the deriva-
tion for the results for the double scaling limits of a product
of Ginibre matrices, presented by us in Ref. [23]. Further-
more, we gained more insights in the mechanisms behind
the transition of the local spectral statistics from picket fence
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(equidistant eigenvalues) to GUE statistics. One of these in-
sights is the exact equivalence of the kernel with those that can
be obtained from Dyson’s Brownian motion, with the picket
fence statistics as its initial condition, which we have proven
in this work for the bulk as well as the soft edge statistics. The
main difference of the additive process of Dyson’s Brownian
motion and of its multiplicative counterpart considered here,
is that the transition of the statistics is not uniform for the
whole spectrum. In general, different parts of the spectrum
of such a product matrix correspond to different times in
the Dyson Brownian motion. This time parameter is equal to
a = j/M, where j stands for the jth smallest eigenvalue, or in
general equal to the squared width to spacing ratio a = WSR2

j
[cf. Eq. (5)].

This kind of universality between additive and multiplica-
tive stochastic processes on matrix spaces was substantiated
with Monte Carlo simulations of product matrices, that also
comprise correlations between the matrices multiplied and
non-Gaussian ensembles. We have fitted the analytical results
at the soft edge to the empirical data, finding very good agree-
ment. In doing so, we have exploited another insight which
concerns an emerging mesoscopic spectral scale interpolating
between the bulk and the soft edge. Albeit the microscopic
statistics in this very narrow part close to the largest eigen-
value is the same as the bulk statistics, its averaged level
density does not follow the one from the bulk. It is exactly
the mesoscopic level density that is needed to properly unfold
the spectrum at the soft edge since it always exhibits a square
root behavior. This square root edge is not seen any more,
regardless whether and how the matrix dimension N and the
number M of matrices multiplied are related. An open ques-
tion is whether the mesoscopic wide correlators will be also
very different from those of the macroscopic scale.

Several generalizations of products of Ginibre matrices
have been studied such as products of non-Gaussian ensem-
bles [9–11,26] as well as of products of rectangular matrices

[7,12,13]. Regarding the first, there was recently a study [26]
on products of Jacobi ensembles (truncated unitary matrices)
where the authors found similar effects as we have seen (see
also Sec. VIII). We also expect that this carries over to a
product over rectangular matrices where in the end only the
average of the rectangularity ν (difference of the two matrix
sizes) of the matrices multiplied may enter the game. We have
not considered those two generalizations in this work so as
to keep the technical level of our results as transparent as
possible.

Another direction in which one can try to extend the ideas
presented in our work is to consider products of real and
quaternionic Ginibre matrices. Do those ensembles yield local
spectral statistics that still follow those of Dyson’s Brownian
motion but now for the Gaussian orthogonal and symplectic
ensemble, respectively? It is also interesting to study complex
eigenvalues (instead of singular values) of the product of
Ginibre matrices using the tools developed in Ref. [36], where
we refer to [25] for first results. Due to its two-dimensional
nature one should expect a different but related behavior
due to the equivalence of the eigenvalue and singular value
statistics for biunitarily invariant random matrix ensembles
that was proven in Ref. [37]. Products of Ginibre ensembles
surely satisfy the requirements that are needed for this kind of
equivalence.
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APPENDIX A: DERIVATION OF THE KERNEL REPRESENTATION

In this Appendix, we derive the kernel given in Eqs. (14) and (15). As a starting point we use the representation of the kernel
in terms of Meijer G functions given in Ref. [7]:

KY (x, y) =
N∑

j=1

G1, 0
1, M+1

( j
0, . . . , 0

∣∣∣ x)GM, 1
1, M+1

( − j + 1
0, . . . , 0

∣∣∣ y). (A1)

While for the general definition of Meijer G functions we refer to [32], in this particular case the two functions in the last
equation are given by the following complex contour integral representations:

KY (x, y) =
N∑

j=1

∫
γ ′

s

ds

2π i
xs 
(−s)


M (1 + s)
( j − s)

∫
γt

dt

2π i
yt 
( j + t )
M (−t )


(1 + t )
. (A2)

The contour γ ′
s in the first integral encloses all poles of the integrand, given by the non-negative integers, in clockwise direction.

The second contour γt is a straight line parallel to the imaginary axis c + iR, with − j < c < 0 in-between the poles of the
integrand for the jth term. In order to make the contour j independent we have chosen −1 < c < 0.

It is convenient to first evaluate the sum over j. To that end, we regroup the terms as follows:

KY (x, y) =
∫

γ ′
s

ds

2π i
xs 
(−s)


M (1 + s)

∫
γt

dt

2π i
yt 
M (−t )


(1 + t )

N∑
j=1


( j + t )


( j − s)
, (A3)
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and apply the following telescopic property from [13], valid for general integers n+ � n−:

n+∑
n=n−


(z + n)


(w + n)
= 1

z − w + 1

(

(z + 1 + n+)


(w + n+)
− 
(z + n−)


(w − 1 + n−)

)
. (A4)

It enables us to carry out the sum over j in Eq. (A3):

KY (x, y) =
∫

γt

dt

2π i
yt 
M (−t )


(1 + t )

∫
γ ′

s

ds

2π i
xs 
(−s)


M (1 + s)

1

t + s + 1

{

(N + t + 1)


(N − s)
− 
(1 + t )


(−s)

}
. (A5)

The second term in the curly brackets cancels all residua coming from 
(−s). Hence, the corresponding integral over s vanishes
if the pole at t + s + 1 is not included in the contour γ ′

s . Under this condition, the remaining part can be written as

KY (x, y) =
∫

γt

dt

2π i
yt 
M (−t )


(1 + t )

∫
γ ′

s

ds

2π i
xs 
(−s)


M (1 + s)

1

t + s + 1


(N + t + 1)


(N − s)
. (A6)

This is the starting point for the two integral representations in Eqs. (14) and (15).
The first representation is obtained as follows. The integral over s picks up the contributions from the residua Res 
(z)|z=− j =

(−1) j/
(1 + j) of the poles at s = j for j = 0, 1, . . . , N − 1, yielding

KY (x, y) =
∫

γt

dt

2π i
yt 
M (−t )


(1 + t )

N−1∑
j=0

(−1) jx j


(1 + j)M+1

1

t + j + 1


(N + t + 1)


(N − j)
. (A7)

We employ Euler’s reflection formula [32]


(z)
(1 − z) = π

sin(πz)
, z /∈ Z (A8)

to replace 1/
(1 + t ) by −
(−t ) sin(πt )/π . Finally, we change the variable −t ↔ t + 1 and we arrive at

KY (x, y) = 1

y

N−1∑
j=0

x j
∫

γt

dt

2π i
y−t sin[π ( j − t )]

π ( j − t )

(

(1 + t )


(1 + j)

)M+1

(N − t )


(N − j)
, (A9)

after making the contours j independent by choosing γt again. The last equation can be cast into (14),

KY (x, y) = 1

y

N−1∑
j=0

∫
γt

dt

2π i

sin[π ( j − t )]

π ( j − t )
eiπ sign[Im(t )]t exp [−S ( j; x) + S (t ; y)], (A10)

when defining the action as

S (z; α) = −iπ sign[Im(z)]z − ln[α]z + (M + 1)ln[
(1 + z)] + ln[
(N − z)]. (A11)

This representation (A10) is a good starting point when the local statistics show either picket fence statistics or are in the
interpolating regime.

The second representation (15) can be obtained from (A6), by appling the reflection formula (A8) to the two gamma functions

(1 + t ) and 
(−s). After substituting t + 1 → −t and s → −s we arrive at

KY (x, y) = 1

y

∫
γt

dt

2π i

∫
γs

ds

2π i

1

s − t

sin(πt ) eiπ sign[Im(t )]t

sin(πs) eiπ sign[Im(s)]s
exp [−S (s; x) + S (t ; y)]. (A12)

Notice that the contour γs now runs in counterclockwise direction and has been contracted, to only enclose the interval [0, N − 1].
This is because the remaining poles at larger positive integers of the sine function in the denominator are canceled by 
(N − z)
from the action.

A similar representation has been derived in Ref. [24]. It will become useful in the case where the local statistics follow
the sine or Airy kernel. But, we employ it also to obtain the macroscopic level density that is required to properly unfold the
spectrum in Sec. III.

APPENDIX B: SADDLE POINT ANALYSIS

The digamma function ψ (z) = 
′(z)/
(z) has the following series representation [32, 5.76] away from its poles z =
0,−1,−2, . . .:

ψ (z) = −γ +
∞∑

l=0

(
1

l + 1
− 1

l + z

)
. (B1)
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FIG. 5. The real (left plot) and imaginary (right plot) parts of the digamma function (B2) in the upper right quadrant of the complex
plane. Note that we have mapped the whole quarter plane to a square by the monotonicity preserving map (k, t ) �→ (k/[1 + k], t/[1 + t]). The
black curve is defined by Im [ψ (k + it )] = π/2 and the dashed black line at k = 1

2 indicates when the Im [ψ (k + it )] < 0 is satisfied for all
positive t > 0. The height of the real and imaginary parts is color coded in a density plot where purple and red are either −∞ and +∞ for
Re [ψ (k + it )] or 0 and π/2 for Im [ψ (k + it )]. The vectors highlight the local steepest ascent of the function, in particular, they show our
claim that Im [ψ (k + it )] is increasing in t and Re [ψ (k + it )] is increasing in k in this regime.

Here, γ is the Euler-Mascheroni constant. The solutions zs of (17) obviously come in complex conjugate pairs, due to ψ (z)∗ =
ψ (z∗), unless zs ∈ R. We will now show that we have a unique solution in the upper half-plane of the complex plane, and thus
also in the lower half-plane.

Let us split z = k + it into its real and imaginary parts. First, we fix the real part Re (z) = k > 0 of a complex solution and
assume from now on that Im (z) = t � 0. From (B1), it follows for the imaginary part of the digamma function

Im [ψ (k + it )] =
∞∑

l=0

t

(k + l )2 + t2
, k, t ∈ R. (B2)

It is a strictly increasing function in t > 0 as long as 0 � Im [ψ (k + it )] � π/2 [see Fig. 5 (right plot)]. For k � 1
2 the restriction

Im [ψ (k + it )] � π/2 holds for all t ∈ R+. Unfortunately, we do not have any analytical proof for the monotonicity of the
imaginary and real parts of the digamma function in this regime but only a strong numerical evidence. The condition Im [ψ (k +
it )] � π/2 is important because the imaginary part of (17) at the saddle point zs = k + it ,

0 = Im
[
∂zsS (zs; y)

] = (M + 1)
∞∑

l=0

t

(1 + k + l )2 + t2
+

∞∑
l=0

t

(N − k + l )2 + t2
− π for 0 < k < N, (B3)

can only be satisfied in this regime. Indeed, both sums, representing the imaginary part of the two digamma functions involved,
are positive for t > 0. Hence, there is a unique solution t0(k) > 0 for each fixed k ∈]0, N[ as both sums are strictly increasing in
t > 0. Let us insert this function t0(k) into the real part of the saddle point equation (17):

0 = Re
[
∂zsS (zs; y)

] = − ln(y) + (M + 1)
∞∑

l=0

(l + k + 1)(k + 2) + t2

(l + k + 1)2 + t2
−

∞∑
l=0

(l + N − k)(N − k + 1) + t2

(l + N − k)2 + t2
(B4)

using

Re [ψ (k + it )] = −γ +
∞∑

l=0

[
1

l + 1
− l + k

(l + k)2 + t2

]
= −γ +

∞∑
l=0

(l + k)(k − 1) + t2

(l + 1)[(l + k)2 + t2]
. (B5)

The latter is also strictly increasing for a strictly increasing function in k > 1
2 for t � 0 (see left plot in Fig. 5), and thus we

obtain also a unique solution for k0 along t0(k).
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Equation (B2) is also ideal to get an idea of what order the imaginary part of zs is in N and M. Since the summand in Eq. (B2)
is a strictly decreasing function in the summation index l for t > 0, we can give the upper and lower limits for the sum∫ ∞

0
du

t

(k + u)2 + t2
�

∞∑
l=0

t

(k + l )2 + t2
�
∫ ∞

−1
du

t

(k + u)2 + t2
. (B6)

After evaluating these integrals and using arctan(1/x) = arccot(x) = π
2 − arctan(x) for x > 0, we have (B2),

arctan

(
t

k

)
� Im [ψ (k + it )] � arctan

(
t

k − 1

)
, (B7)

with k > 1 for the upper bound and k > 0 for the lower one. Inserting the lower and the upper bounds of (B7) into (B3), we
obtain

(M + 1) arctan

(
t

1 + k

)
+ arctan

(
t

N − k

)
− π � 0 (B8)

and

(M + 1) arctan

(
t

k

)
+ arctan

(
t

N − k − 1

)
− π � 0, . (B9)

respectively. Simple manipulations of (B8) and (B9) lead to

Im [zs] � (1 + Re [zs]) tan

{
1

M + 1

[
π − arctan

(
Im (zs)

N − Re [zs]

)]}
� [1 + Re (zs)] tan

[
π

M + 1

]
,

Im [zs] � Re [zs] tan

{
1

M + 1

[
π − arctan

(
Im (zs)

N − 1 − Re [zs]

)]}
� Re [zs] tan

[
π

2(M + 1)

]
, (B10)

where we have reinserted k = Re [zs] and t = Im (zs) � 0. For the inequalities on the right-hand sides we have used the
monotonicity of arctan, and the fact that it is bounded by 0 and π/2 for positive arguments.

APPENDIX C: RESOLVENT: SADDLE POINT RELATION FOR Re [zs] � M

The saddle point zs can be related to the limiting resolvent GY using (31). It is defined as an integral of the limiting normalized
density ρY over its support σ :

GY (w) = lim
N→∞

∫
w/∈σ

du ρY (u)

w − u

|w|�1≈ 1

w
. (C1)

The large argument asymptotic follows from the normalization of the density. The limiting density is recovered via

ρY (y) = − 1

2π i
lim
ε↘0

[GY (y + iε) − GY (y − iε)] = 1

π
lim
ε↘0

Im GY (y − iε). (C2)

Comparing with the relation (31), this suggests to identify

zs(y)
M,N�1≈ N

y

NM
lim
ε↘0

GY

(
y

NM
− iε

)
(C3)

with the resolvent for the matrix Y/NM , where we have inserted the scaling implied by (32). The large argument behavior of
zs(y) found above is consistent with that of the resolvent in Eq. (C1) and fixes all constants.

The scaling considered here is for N � M, as follows from Sec. III A. Let us therefore make contact with previous results for
ρY obtained in the limit N → ∞ with fixed M, as here the limiting density and resolvent are known [33,38]. We denote by G(M )

the limiting Green function of the product matrix Y/NM when we take N → ∞ for a fixed M, i.e.,

G(M ) (̂z) =
∫ (M+1)M+1/MM

0

ρ (M )(ζ )dζ

ẑ − ζ
. (C4)

The limiting density fulfils the equation [38]

ẑM (G(M ) (̂z))M+1 − ẑ G(M ) (̂z) + 1 = 0. (C5)

The corresponding limiting level density ρ (M )(ζ ) was found analytically in Ref. [33], which is given in Eq. (48).
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APPENDIX D: DISTANCE BETWEEN z0 AND zs WHEN Re[zs] � O(M)

In a similar fashion as in Eqs. (36) and (38), one can also estimate the real part of the difference of the action at z0 and at the
original saddle point zs in the complex plane, i.e.,

�̃ =Re [S (zs; y) − S (z0; y)] = Re

[
(�z)2

∫ 1

0
dλ(1 − λ)[(M + 1)ψ ′(1 + z0 + �zλ) + ψ ′(N − z0 − �zλ)]

]
, (D1)

with �z = zs − z0. The value of the quantity �̃ will tell us whether the approximation of the original saddle point by z0 is
legitimate.

In order to get a feeling whether �z is large or small, we start with the initial saddle point equation (17) and show that �z is
maximally of order one. Making use of (18), meaning Im [zs] = O(Re [zs]/M ), we assume that we can expand the saddle point
equation (17) in Im [zs] � O(1), and then take the real part. The first term in the Taylor expansion vanishes since it is imaginary,
so that we arrive at

−ln(y) + (M + 1)ψ (1 + Re [zs]) − ψ (N − Re [zs]) + O

(
[(M + 1)ψ ′′(1 + Re [zs]) − ψ ′′(N − Re [zs])]

[
Re [zs]

M

]2)
= 0.

(D2)
Our assumption has been that we stay far away from the hard edge and soft edge, i.e., 1 + Re [zs] � 1 and N − 1 − Re [zs] � 1,
respectively [see (19)]. Thus, we are allowed to approximate the digamma functions and its derivatives by their leading terms
[see (6)]. Then, the correction of the saddle point equation in Eq. (D2) is of order

O

(
[(M + 1)ψ ′′(1 + Re [zs]) − ψ ′′(N − Re [zs])]

[
Re [zs]

M

]2)
= O

(
max

{
1

M
,

Re [zs]2

M2(N − Re [zs])2

})
� 1. (D3)

Here, we have exploited Re [zs] � O(M ) in the current situation, and that M is large.
Let us come back to the question of how far away we are with z0 from the true saddle point zs. The solution of (33) is uniquely

given by z0, without any correction term. Expanding the first term in Eq. (D2) in the difference Re [�z] = Re [zs] − z0, which
is small compared to z0, we need to enforce that the leading correction in Re [�z] has to cancel the second term shown in
Eq. (D2). Consequently, we get the following scaling relation from setting both orders to be equal:

[(M + 1)ψ ′(1 + z0) + ψ ′(N − z0)]Re [�z] ≈
[

M

z0
+ 1

N − z0

]
Re [�z] = O

(
max

{
1

M
,

Re [zs]2

M2(N − Re [zs])2

})
. (D4)

Equivalently, it holds

|Re [�z]| = O

(
max

{
z0

M2
,

z0Re [zs]2

M3(N − Re [zs])2

})
� 1 (D5)

since M is large, Re [zs] � O(M ), z0/M � O(1), and we are in the bulk (19). This implies |�z| = |zs − z0| = O(|Im [zs]|)
because the real part Re [zs] always dominates the imaginary part Im [zs] [cf. (18)]. Furthermore, the imaginary part Im [zs] =
O(Re [zs]/M ) is always bigger than |Re [�z]|, and thus it determines the order of �z.

Summarizing, we have not only found that the true saddle point zs is close to z0, but also that the real part Re [zs] converges to
z0 when M, N → ∞. Next, we evaluate the difference �̃ in Eq. (D1). This can be done by expanding the original difference (36)
with the replacement j → zs, and inserting zs = �z + z0 to expand in �z. The logarithms just give an expansion in the digamma
function and its derivatives, and after the cancellation in the first order we obtain

�̃ ≈ (M + 1)
1

2
(�z)2ψ ′(1 + z0) + 1

2
(�z)2ψ ′(N − z0) ≈ 1

2
(�z)2

(
M

z0
+ 1

N − z0

)
. (D6)

Due to the condition (37), we can exploit the asymptotic formulas (6) for the derivative of the digamma function in the second
step. Clearly, the first term in the brackets on the right-hand side is larger than or equal to the order O(1) and the second term is
much less than one so we obtain

|�̃| = O(z0/M ) � O(1) (D7)

agreeing with the order of |Im [zs]|. Hence, the expansion about z0 for the t integral as well as for the summation index j in
Eq. (14) about the point z0 instead of zs is justified because we cover all contributions from the saddle point.

[1] F. J. Dyson, J. Math. Phys. 3, 1191 (1962).
[2] K. Johansson, Commun. Math. Phys. 252, 111 (2004).

[3] Z. Burda, J. Grela, M. A. Nowak, W. Tarnowski, and P. Warchoł,
Phys. Rev. Lett. 113, 104102 (2014).

052134-26

https://doi.org/10.1063/1.1703862
https://doi.org/10.1007/s00220-004-1186-4
https://doi.org/10.1103/PhysRevLett.113.104102


UNIVERSALITY OF LOCAL SPECTRAL STATISTICS … PHYSICAL REVIEW E 102, 052134 (2020)

[4] O. N. Dorokhov, Pis’ma Zh. Eksp. Teor. Fiz. 36, 259 (1982)
[JETP Lett. 36, 318 (1982)].

[5] P. A. Mello, P. Pereyra, and N. Kumar, Ann. Phys. 181, 290
(1988).

[6] J. R. Ipsen and H. Schomerus, J. Phys. A: Math. Theor. 49,
385201 (2016).

[7] G. Akemann, J. R. Ipsen, and M. Kieburg, Phys. Rev. E 88,
052118 (2013).

[8] G. Akemann, M. Kieburg, and L. Wei, J. Phys. A: Math. Theor.
46, 275205 (2013).

[9] G. Akemann and E. Strahov, Ann. Henri Poincaré 19, 2599
(2018).

[10] M. Kieburg and H. Kösters, Ann. Inst. Henri Poincaré 55, 98
(2019).

[11] M. Kieburg, A. B. J. Kuijlaars, and D. Stivigny, Int. Math. Res.
Not. 2016, 3392 (2016).

[12] A. B. J. Kuijlaars and D. Stivigny, Random Matrices: Theor.
Appl. 3, 1450011 (2014).

[13] A. B. J. Kuijlaars and L. Zhang, Commun. Math. Phys. 332, 759
(2014).

[14] D.-Z. Liu, D. Wang, and L. Zhang, Ann. Inst. Henri Poincaré
52, 1734 (2016).

[15] G. Akemann, Z. Burda, and M. Kieburg, J. Phys. A: Math.
Theor. 47, 395202 (2014).

[16] H. Furstenberg and H. Kesten, Ann. Math. Statist. 31, 457
(1960).

[17] M. Isopi and C. M. Newman, Commun. Math. Phys. 143, 591
(1992).

[18] C. M. Newman, Commun. Math. Phys. 103, 121
(1986).

[19] D. S. P. Richards, J. Multivariate Anal. 29, 326 (1989).
[20] N. K. Reddy, Int. Math. Res. Not. 2019, 606 (2019).

[21] V. V. Sazonov and V. N. Tutubalin, Theor. Probab. Its Appl. 11,
1 (1966).

[22] G. Akemann and J. R. Ipsen, Acta Phys. Pol. B 46, 1747 (2015).
[23] G. Akemann, Z. Burda, and M. Kieburg, Europhys. Lett. 126,

40001 (2019).
[24] D. Z. Liu, D. Wang, and Y. Wang, arXiv:1810.00433.
[25] D. Z. Liu, and Y. Wang, arXiv:1912.11910.
[26] A. Ahn, arXiv:1910.00743.
[27] Z. Burda, Acta Phys. Pol. 51, 1641 (2020).
[28] G. Akemann, F. Götze, and T. Neuschel, arXiv:2006.15180.
[29] M. Abromowitz and I. A. Stegun, Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables,
National Bureau of Standards Applied Mathematics Series 55,
10th printing (Dover, New York, 1972).

[30] J. Ginibre, J. Math. Phys. 6, 440 (1965).
[31] K. Johansson, in Mathematical Statistical Physics, edited by

A. Bovier et al., Vol. 83, Les Houches Summer School 2005,
Session LXXXIII (Elsevier, Amsterdam, 2006).

[32] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark
(eds.), NIST Handbook of Mathematical Functions (Cambridge
University Press, Cambridge, 2010), http://dlmf.nist.gov/

[33] T. Neuschel, Random Matrices Theory Appl. 3, 1450003
(2014).

[34] M. L. Mehta, Random Matrices, 3rd ed. (Elsevier, Amsterdam,
2004).

[35] P. J. Forrester, Nucl. Phys. B 402, 709 (1993).
[36] G. Akemann and Z. Burda, J. Phys. A: Math. Theor. 45, 465201

(2012).
[37] M. Kieburg and H. Kösters, Random Matrices: Theor. Appl. 05,

1650015 (2016).
[38] Z. Burda, G. Livan, and A. Swiech, Phys. Rev. E 88, 022107

(2013).

052134-27

http://www.jetpletters.ac.ru/ps/1335/article_27160.shtml
https://doi.org/10.1016/0003-4916(88)90169-8
https://doi.org/10.1088/1751-8113/49/38/385201
https://doi.org/10.1103/PhysRevE.88.052118
https://doi.org/10.1088/1751-8113/46/27/275205
https://doi.org/10.1007/s00023-018-0691-5
https://doi.org/10.1214/17-AIHP877
https://doi.org/10.1093/imrn/rnv242
https://doi.org/10.1142/S2010326314500117
https://doi.org/10.1007/s00220-014-2064-3
https://doi.org/10.1214/15-AIHP696
https://doi.org/10.1088/1751-8113/47/39/395202
https://doi.org/10.1214/aoms/1177705909
https://doi.org/10.1007/BF02099267
https://doi.org/10.1007/BF01464284
https://doi.org/10.1016/0047-259X(89)90031-6
https://doi.org/10.1093/imrn/rnx134
https://doi.org/10.1137/1111001
https://doi.org/10.5506/APhysPolB.46.1747
https://doi.org/10.1209/0295-5075/126/40001
http://arxiv.org/abs/arXiv:1810.00433
http://arxiv.org/abs/arXiv:1912.11910
http://arxiv.org/abs/arXiv:1910.00743
https://doi.org/10.5506/APhysPolB.51.1641
http://arxiv.org/abs/arXiv:2006.15180
https://doi.org/10.1063/1.1704292
http://dlmf.nist.gov/
https://doi.org/10.1142/S2010326314500038
https://doi.org/10.1016/0550-3213(93)90126-A
https://doi.org/10.1088/1751-8113/45/46/465201
https://doi.org/10.1142/S2010326316500155
https://doi.org/10.1103/PhysRevE.88.022107

