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Relevant out-of-time-order correlator operators: Footprints of the classical dynamics
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The out-of-time-order correlator (OTOC) has recently become relevant in different areas where it has been
linked to scrambling of quantum information and entanglement. It has also been proposed as a good indicator
of quantum complexity. In this sense, the OTOC-RE theorem relates the OTOCs summed over a complete basis
of operators to the second Renyi entropy. Here we have studied the OTOC-RE correspondence on physically
meaningful bases like the ones constructed with the Pauli, reflection, and translation operators. The evolution is
given by a paradigmatic bi-partite system consisting of two perturbed and coupled Arnold cat maps with different
dynamics. We show that the sum over a small set of relevant operators is enough in order to obtain a very good
approximation for the entropy and, hence, to reveal the character of the dynamics. In turn, this provides us with
an alternative natural indicator of complexity, i.e., the scaling of the number of relevant operators with time.
When represented in phase space, each one of these sets reveals the classical dynamical footprints with different
depth according to the chosen basis.
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I. INTRODUCTION

There is a great interest in the out-of-time-order correlator
(OTOC) nowadays, coming from different areas like high
energy and gravity, condensed matter, many-body systems,
quantum information, and quantum chaos. This measure has
been introduced in the superconductivity context [1] where its
exponential growth as a function of time has been associated
with chaotic behavior. The OTOC is usually defined as a
four-point out-of-time order correlator,

C(t ) = 〈M̂(t )V̂ (0)M̂(t )V̂ (0)〉, (1)

where 〈·〉 = Tr[ρ·]/N , with ρ being an arbitrary initial state.
In many works 〈·〉 = Tr[·]/N is taken as the thermal aver-
age, an approach that we follow. Finally, M(t ) is an operator
evolved in the Heisenberg picture. Establishing an upper limit
to the growth rate of the OTOC in black hole models [2] has
led to a surge in the interest in this versatile measure. Ex-
amples can be found in many-body physics [3–10], quantum
chaos [11–13], high-energy physics [14], and the link between
topological gravity and quantum chaos [15]. Recently, the
OTOC behavior has been studied for bipartite systems. In
Ref. [16] it was found that for the chaotic case the scrambling
process has two phases, one in which the exponential growth
is within the subsystem and a second one which only depends
on the interaction. In Ref. [17] the OTOC has proven to be
a very good indicator of quantum complexity [18,19] when
considering all possible dynamical scenarios.

The OTOC is conceptually related to scrambling of quan-
tum information [20–22] and entanglement [17]. It is in this
respect that the OTOC–Renyi entropy (OTOC-RE) theorem

[23,24] establishes the equivalence of the linear entropy SL

with the four-point OTOC averaged over a complete operator
basis of some arbitrary partition of the system. Following the
scheme presented in Ref. [24], we can summarize the theorem
as

SL = 1 − Tr
[
ρ̂2

A

] = 1 −
∑
M̂∈B

Tr[M̂(t )ρ̂(0)M̂†(t )ρ̂(0)], (2)

where A and B are two partitions of the system, ρ̂(0) is the
initial (nonevolving) density operator of the whole system (ρ̂A

is the partial trace over subsystem B of ρ̂), and SL is the linear
entropy. In the original form of the theorem the expression
1 − e(−S(2)

A ) is used for SL in order to make a direct connection
with S(2)

A = − log Tr[ρ̂2
A], which is the second Renyi entropy.

The M̂ operators act on the subsystem B and define a complete
basis normalized according to

∑
M̂∈B Mi j (Mlm)† = δimδl j . In

Eq. (2) we have taken the second evolved operator as M̂†(t ),
being the transpose and conjugate of the first one in such a
way to extend the validity of the theorem to unitary oper-
ators. The sum running over a complete basis characterizes
the behavior of the OTOC of a given operator that belongs
to it; this is remarkable since it bridges the gap between an
inherently dynamical concept like the OTOC and an informa-
tion theoretical one like the entropy. This result prescribes an
average behavior for different OTOCs in a given basis, but
it is important to ask ourselves how meaningful this is. As a
matter of fact, is each one of the terms appearing in Eq. (2)
equally relevant, making the same contribution to the linear
entropy? In this work we determine that not all of the OTOCs
are good indicators of quantum complexity, but we are able to
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classify them in terms of the information they provide about
the dynamical features.

Our system consists of two perturbed and coupled Arnold
cat maps with different dynamics. The three possible cases
were considered, i.e., both maps being hyperbolic (chaotic)
(HH), both elliptic (regular) (EE), and a mixed scenario where
one map is hyperbolic and the other is elliptic (HE,EH)
[17]. Our objective with these choices, including the ones
we call mixed (we do not refer to mixed in the Kolmogorov
Arnold Moser (KAM) sense) is just to find the dependence
of the OTOC behavior on all possible dynamical scenarios
for each partition of the system. Also, we have considered
three different bases constructed with Pauli or SU(N ) oper-
ators, translation operators, and reflection operators on the
torus [25]. In all cases we have taken the nonevolving density
operator as a localized pure state. Our results show that when
we perform the summation in Eq. (2) with a set of only 35%
or less of the operators, in any of the chosen basis, 80% of SL

is recovered. On the other hand, this set of relevant operators
is given by those that best capture the dynamics of the system,
being suitable for complexity measures. For reflection and
translation bases, they show clear footprints of the underlying
classical dynamics in phase space.

This paper is organized as follows. In Sec. II we present our
system with a brief description of the properties of the Hilbert
space on the torus. We also describe the operator bases that we
use for the OTOC-RE theorem analysis. In Sec. III we explain
our results in detail, and in Sec. IV we state our conclusions.

II. SYSTEM AND BASES

The periodicity of the torus implies Bloch boundary condi-
tions for wave functions:

�(q + 1) = e2π iχp�(q),

�̃(p + 1) = e2π iχq�̃(p),

where

�̃(p) = 1√
2π h̄

∫
e−ipq/h̄�(q)dq,

with 2π iχp and 2π iχq being arbitrary Floquet angles that
determine the so-called prequantization. The values of χp and
χq can be chosen in the range [0,1], we take χp = χq = 0.
The previous boundary conditions can be satisfied if there is
an integer N , so that [26]

h̄ = 1

2πN
. (3)

This implies a Hilbert space, HN , of finite dimension N . We
take |qn〉 and |pm〉 with n, m = 0, 1, . . . , N − 1 as bases of
HN . The states 〈q|q j〉 are periodic Dirac δ distributions at po-
sitions q = n/Nmod(1), with n being an integer in [0, N − 1].
These bases have the following normalization conditions,

〈qm|qn〉 = 〈pm|pn〉 = δ(N )
m,n,

with δ
(N )
i, j being the N-periodic Kronecker δ defined as

δ
(N )
i, j =

∞∑
k=−∞

δi, j+kN .

The bases are exchanged with the transformation kernel:

〈pm|qn〉 = 1√
N

e
2π imn

N .

Position and momenta are then points in a discrete lattice on
the torus with separation 1/N , i.e., the quantum phase space
[27].

The quantization of the cat map [28], which is one of
the most simple paradigmatic models of chaotic dynamics,
has helped to elucidate many questions in the quantum chaos
area [28–31]. Here we consider the behavior of two coupled
and perturbed cat maps, a two degrees of freedom example,
which can have different types of dynamics. For each degree
of freedom, the map is defined on the 2-Torus as [28](

qt+1

pt+1

)
= M

(
qt

pt + ε(qt )

)
, (4)

with q and p taken as modulo 1, and the perturbation

ε(qt ) = − K

2π
sin (2πqt ).

The matrix M defines the dynamics. For the chaotic case we
have chosen the hyperbolic map

Mh =
(

2 1
3 2

)
, (5)

while for the regular behavior we have taken the elliptic map

Me =
(

0 1
−1 0

)
. (6)

The propagator in the position representation is given by the
N × N unitary matrix

Ujk = Aexp
[ iπ

NM12

(
M11 j2 − 2 jk + M22k2

) + F
]
, (7)

where

A = [1/(iNM12)]1/2

and

F = [iKN/(2π )] cos(2π j/N )

(Mi j stands for the elements of the classical cat map evolution
matrix). We can extend it to two degrees of freedom defined in
a four-dimensional phase space of coordinates (q1, q2, p1, p2)
[19] as (

q1
t+1

p1
t+1

)
= M1

(
q1

t
p1

t + ε(q1
t ) + κ (q1

t , q2
t )

)
and (

q2
t+1

p2
t+1

)
= M2

(
q2

t
p2

t + ε(q2
t ) + κ (q1

t , q2
t )

)
,

where the coupling between both maps is given by κ (q1
t , q2

t ).
Hence, the quantum evolution for this case is given by the
tensor product of the one degree of freedom maps

U 2D
j1 j2,k1k2

= Uj1k1Uj2k2Cj1 j2 ,

with the coupling matrix

Cj1 j2 = exp

{( iNKc

2π

)
cos

[
2π

N
( j1 + j2)

]}
,
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where j1, j2, k1, k2 ∈ {0, . . . , N − 1}. We fix K = 0.25 and
Kc = 0.5 (Anosov condition [29]), and N = 26 throughout
this work. We would like to underline that our map is unitary
by construction; it inherits the unitarity of the map on the
plane [28], and the perturbation and the coupling are defined
by periodic functions on the torus [29].

For the complete set of operators spanning one of the sub-
systems in Eq. (2) we have chosen three different sets. They
are the so-called computational or Pauli basis, the translation
basis, and the reflection basis [25]. The first one is relevant for
multiqubit systems (canonical in quantum computation and
information), while the translation and reflection ones define
the chord and Wigner (or center) functions [32], respectively,
allowing for a more direct comparison with classical coun-
terparts where centers and chords are canonically conjugated
variables.

Pauli basis. For qubit systems, the typical basis chosen is
{σ0, σ1, σ2, σ3}, where σ0 = 1 and the rest of the σi’s are 2 × 2
Pauli matrices. For dimensions N = 2k , we can extend this
basis by taking the complete system as a direct product of k
single qubits: {

k⊗
t=1

σ jt

}
. (8)

Translation and reflection bases. Translation operators T̂ξ

on the torus are described by the chord translation ξ =
(ξp, ξq) = (r/N, s/N ), with r and s being integer indices. This
unitary translation operators are defined in Ref. [25] by their
action on the Hilbert space HN , such that

T̂ξ(r,s) |qn〉 = ei 2π
N r(n+χq+ s

2 ) |qn+s〉 , (9)

which translates the position state in qn by a chord ξq to
the position state in qn+s = qn + ξq. Analogously, acting on
momentum states,

T̂ξ(r,s) |pm〉 = e−i 2π
N s(m+χp+ r

2 ) |pm+r〉 (10)

translates the momentum state in pm by a chord ξp to the
momentum state in pm+r = pm + ξp.

A complete basis of N2 independent translation operators
is obtained for chords performing up to one loop on the torus,
that is, for r and s belonging to the interval [0, N − 1]. The
matrix elements of the translation operators T̂ξ in the position
representation are given by

〈qi| T̂ξ(r,s) |q j〉 = ei 2π
N r( i+ j

2 +χq )δ
(N )
j,i+se

−i 2π
N ( r

2 +χp)( j−i−s). (11)

For the case of reflection operators R̂x, they are described
by their center point x = (xp, xq ) = (a/N, b/N ) with half-
integer indices a and b. The reflection operators are defined
in Ref. [25] by their action on the Hilbert space HN ,

R̂x(a,b) |qn〉 = ei 2π
N (2b−n)(a+χq ) |q2b−n〉 , (12)

which reflects the position state qn through xq to the position
state in q2b−n = 2xq − qn. Also, for momentum states,

R̂x(a,b) |pm〉 = ei 2π
N (2a−m)(b+χp) |p2a−m〉 , (13)

the operator reflects the state in pm through the center xp

to the momentum state in p2a−m = 2xp − pm. A complete

FIG. 1. In all panels we display SL [(black) dashed line] [left-
hand side of Eq. (2)] and the complete sum of OTOCs [right-hand
side of Eq. (2)] for the three different bases described in the main
text: Pauli or SU(N ) [(red) squares], translations [(blue) diamonds],
and reflections [(green) down triangles]. (a) HH case. (b) HE cases.
(c) and (d) EE cases with the coherent states at (q, p) = (0.5, 0.5)
and (q, p) = (π/4, π/4), respectively.

basis of N2 independent reflection operators is obtained with
half-integer indices a and b in [0, N−1

2 ]. That is, a quarter of
the torus contains the complete information for the reflection
basis [25].

The matrix elements in the position representation are

〈qi| R̂x(a,b) |q j〉 = ei 2π
N ( j−i)(a+χq )δ

(N )
j,2b−ie

i 2π
N a(2b−i− j). (14)

We recall that in both cases we have chosen the Floquet angles
(χq, χp) as zero.

III. RESULTS

For completeness, we first check the validity of the OTOC-
RE theorem [Eq. (2)] for all the dynamical scenarios and
all the operator bases described in Sec. II. Figure 1(a) cor-
responds to SL and all OTOCs sums as a function of the
time t (map steps), for both dynamics being hyperbolic (HH),
while in Figs. 1(b) and 1(c) we show the HE and EE cases,
respectively. We consider a coherent state located at the fixed
point (q, p) = (0.5, 0.5) on each tori. Figure 1(d) displays
the EE case where the coherent state is located at (q, p) =
(π/4, π/4) (not a fixed point). The theorem clearly holds
regardless of the dynamics or the chosen basis.

We have classified each OTOC in Eq. (2) according to its
contribution to the sum. In fact, their relevance is essentially
given by the corresponding area under the curve up to a time
t0. We proceed in the following way: For each operator M we
have calculated the area AM (t0) as

AM (t0) =
∫ t0

0
CM (t )dt, (15)

where CM (t ) is the OTOC

CM (t ) = Tr[M̂(t )ρ̂(0)M̂†(t )ρ̂(0)]. (16)

052133-3



BERGAMASCO, CARLO, AND RIVAS PHYSICAL REVIEW E 102, 052133 (2020)

FIG. 2. SL [(black) solid line with solid circles] given by the
left-hand side of Eq. (2) for the HH case with coherent states taken
at (q, p) = (0.5, 0.5). Pauli [(red) solid line with solid squares] oper-
ators’ sum considering the 263 most relevant terms in the right-hand
side of Eq. (2). Translation [(blue) solid line with solid diamonds]
and reflection [(green) solid line with solid down triangles] bases
with 166 and 697 terms, respectively. Empty symbols with dotted
lines show the contribution of the remaining terms for the Pauli [(red)
dashed line with empty squares], translation [(blue) dashed line with
empty diamonds], and reflection [(green) dashed line with empty
down triangles] bases. t0 = 10. We show the theoretical saturation
value for the entropy by means of a dot-dashed horizontal line and
the Ehrenfest time by means of a dashed vertical line.

Then, we have ordered the operators using AM (t0), which
reflects their contribution to the total area under 1 − SL(t ),
given by AS (t0) = ∫ t0

0 1 − SL(t )dt . Finally, we determine a
cutoff criterion which consists of reaching the value 0.8AS (t0)
by simply adding the areas contributed by each operator’s
OTOC like

∑
R AM (t0), where R means that the sum only runs

from the most up to the least relevant one. This provides us
with the number of OTOCs necessary to reach what we refer
to as the effective SL behavior.

We first consider the HH case with coherent states at
(q, p) = (0.5, 0.5). Due to the chaotic nature of the dynamics,
both the OTOCs and SL grow exponentially [17] at an early
stage, hence we only look up to t0 = 10. In Fig. 2 we show
SL(t0) (black lines) and the partial sum obtained with the most
relevant OTOCs (solid symbols) for each operator basis. For
the Pauli basis, only 263 from a total of 4096 terms were
needed in order to reach the effective SL behavior. Meanwhile,
for the translation and reflection bases 166 and 697 terms
were needed, respectively. The effective entropy behavior is
recovered with less than 20% of the operators. In addition, in
Fig. 2 we also show the contribution of the remaining OTOCs
(empty symbols), which is markedly lower than that of the
most relevant ones. We notice that in all figures we display
1 − ∑

R CM (t ), which is directly compared to SL, and then
the values corresponding to the empty symbols are subtracted
from the solid ones to recover the entropy. Finally, it is im-
portant to mention that the saturation value of the entropy
has been theoretically predicted with random matrix theory
(see Ref. [18] and references therein); we display it by means

FIG. 3. SL [(black) solid line with solid circles] given by the
left-hand side of Eq. (2) for the HE case with coherent states taken at
(q, p) = (0.5, 0.5). Pauli [(red) solid line with solid squares] opera-
tors’ sum considering the 199 most relevant terms in the right-hand
side of Eq. (2). Translation [(blue) solid line with solid diamonds]
and reflection [(green) solid line with solid down triangles] bases
with 110 and 1285 terms, respectively. Empty symbols with dotted
lines show the contribution of the remaining terms for the Pauli [(red)
dashed line with empty squares], translation [(blue) dashed line with
empty diamonds], and reflection [(green) dashed line with empty
down triangles] bases. t0 = 40. We show the theoretical saturation
value for the entropy by means of a dot-dashed horizontal line and
the Ehrenfest time by means of a dashed vertical line.

of a horizontal dot-dashed line. Also, we can observe that
this saturation is reached at approximately the Ehrenfest time,
which is shown by a vertical dashed line.

Next we look into the HE map where the operator basis is
taken for the regular subsystem and coherent states are placed
at (q, p) = (0.5, 0.5). In Fig. 3 we see that SL grows slower
than in the previous case (until saturation) due to the mixed
character of the dynamics, leading us to a longer integration
time (t0 = 40). To recover the effective SL behavior this time,
we needed 199 Pauli operators, 110 translation operators, and
1285 reflection operators, i.e., less than 32% of the total opera-
tors in the worst case. We also show the saturation value of the
entropy and the Ehrenfest time, but in this case the agreement
is not as good as in the previous case.

Finally, we take the EE map with coherent states at
(q, p) = (0.5, 0.5) and then at (q, p) = (π/4, π/4). The first
case is shown in Fig. 4 (t0 = 10), where the effective SL

behavior is recovered by just 81 operators in the Pauli basis,
101 operators in the translation basis, and 117 operators in the
reflection basis. In this dynamical scenario the coherent state
does not explore the entire phase space but just rotates around
the fixed point, giving a hint to explain this clear reduction
in the number of relevant operators. In this case we have
rescaled the partial sum of the most relevant OTOCs for a
better comparison with SL (the sum of the remaining ones is
left unchanged). In Fig. 5 we display the results when placing
the coherent states at (q, p) = (π/4, π/4). Since this is not at
a fixed point the entropy grows up to saturation at a slower
rate than in the HH case, leading us to consider t0 = 30.
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FIG. 4. SL [(black) solid line with solid circles] given by the
left-hand side of Eq. (2) for the EE case with coherent states taken
at (q, p) = (0.5, 0.5). Pauli [(red) solid line with solid squares] oper-
ators’ sum considering the 81 most relevant terms in the right-hand
side of Eq. (2). Translation [(blue) solid line with solid diamonds]
and reflection [(green) solid line with solid down triangles] bases
with 101 and 117 terms, respectively. Empty symbols with dotted
lines show the contribution of the remaining terms for the Pauli [(red)
dashed line with empty squares], translation [(blue) dashed line with
empty diamonds], and reflection [(green) dashed line with empty
down triangles] bases. t0 = 10.

FIG. 5. SL [(black) solid line with solid circles] given by the
left-hand side of Eq. (2) for the EE case with coherent states taken at
(q, p) = (π/4, π/4). Pauli [(red) solid line with solid squares] oper-
ators’ sum considering the 413 most relevant terms in the right-hand
side of Eq. (2). Translation [(blue) solid line with solid diamonds]
and reflection [(green) solid line with solid down triangles] bases
with 103 and 1450 terms, respectively. Empty symbols with dotted
lines show the contribution of the remaining terms for the Pauli [(red)
dashed line with empty squares], translation [(blue) dashed line with
empty diamonds], and reflection [(green) dashed line with empty
down triangles] bases. t0 = 30. We show the theoretical saturation
value for the entropy by means of a dot-dashed horizontal line and
the Ehrenfest time by means of a dashed vertical line.

FIG. 6. Number of relevant Pauli operators, for different integra-
tion times t0 and dynamics. The blue line with circles stands for the
HH case, the green line with squares stands for the EH case, the
orange line with down triangles stand for the HE case, and finally,
the red line with diamonds and the black line with crosses stand
for the EE cases with coherent states at (0.5, 0.5) and (π/4, π/4),
respectively. N = 26.

We recover the effective SL behavior with 413 operators in
the Pauli basis, 103 in the translation basis, and 1450 in the
reflection basis, i.e., about 35% of the operators in the worst
case. The saturation and Ehrenfest time values are displayed
in order to show the much slower convergence rate when
compared to the HH case. We mention that not only the
sum but also each one of the quantities 1 − CMR (t ) (where
M̂R stands for the relevant operators) approximates the linear
entropy very well (up to normalization); i.e., we claim that
SL = 1 − e(−S(2)

A ) ≈ 1 − CMR (t ). The remaining operators have
a different behavior.

On the other hand, it is interesting to investigate if the
amount of relevant operators changes as a function of the
integration time t0 and eventually how this change is. In Fig-
ures 6, 7, and 8 we show the number of relevant operators for
Pauli, translation, and reflection bases, respectively, for each
dynamics and different integration times needed to achieve
the effective SL behavior. For all bases we notice that if the
system has at least one hyperbolic degree of freedom, the
number of operators grows steeply with the integration time.
If the system is completely elliptic and the coherent states
are located at the fixed point, the number of operators is
essentially constant, while if they are not at a periodic orbit,
the number of operators grows with a rate much slower than
that in the mixed (HE and EH; we have taken both points
of view in order to better look into dynamical properties) or
totally hyperbolic (HH) cases, specially for the reflection basis
(see Fig. 8). For the HH case, if we take long integration
times, we will have that almost all operators (not all since
we only require the effective SL behavior) are relevant and
equivalent, reminding us of the underlying classical ergodicity
in this scenario. Growth in the number of relevant operators
gives us more hints on the OTOCs sensitivity for quantum
complexity, providing an alternative natural indicator of it.
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FIG. 7. Number of relevant translation operators, for different
integration times t0 and dynamics. Same color code as in Fig. 6.
N = 26.

As a final remark, from Figs. 6, 7, and 8, we see that the
number of relevant operators can be dependent on the basis.
An extreme example is given by the Kirkwood one whose
operators are defined by

K(i, j) = |qi〉 〈p j | (17)

and for which there is a clear association with phase space
representations, having a direct classical meaning [11]. For
any of the operators in this basis, it is straightforward to show
that

CK (i, j)(t ) = ρ2
A(t ); (18)

hence, all of them are equally relevant in sensing the dynam-
ics, so special care must be taken at the time of selecting
the basis if one wants to profit from the OTOCs ability to
characterize quantum complexity.

FIG. 8. Number of relevant reflection operators, for different in-
tegration times t0 and dynamics. Same color code as in Fig. 6. In this
case we have used N = 26 + 1 as the dimension of Hilbert space.

FIG. 9. Relevant translation operators in phase space, for each
dynamics as we increase the integration time t0. Each point (r, s)
represents a translation chord, where r indicates the translation in
momentum and s indicates the translation in position. The black solid
line represents the unstable manifold direction of our map. N = 26.

All the previous analysis has led us to look for an explana-
tion of the physical meaning of the operator relevance at the
time to describe the SL behavior or the quantum complexity in
general. In order to proceed, we restrict ourselves to transla-
tion and reflection operators since they can be represented in
chord and center phase space. In Eqs. (11) and (14), we identi-
fied each one of these operators with a couple of indexes, (r, s)
for translations and (a, b) for reflections, which are related to
the chord of translation and the reflection center, respectively.
These indices can be represented in a two-dimensional plot,
allowing one to visualize the different operators. Figures 9
and 10 show the most relevant translation and reflection oper-
ators for each dynamics and different integration times t0. For
reflections, we have chosen an odd Hilbert space dimension
of N = 65 in order to deploy [25] the complete basis from
the quarter torus with half-integer indices into the full one
with integer indices. This allows a clearer visualization of the
classical structures in phase space [33].

In the HH case, we see that the relevance of translation
and reflection operators grows along the unstable manifold of
our map, indicated in Figs. 9 and 10 with a black solid line.
The number of relevant operators grows with t0 and finally
extends to the entire phase space. In the HE scenario, the rele-
vant translation operators (see Fig. 9) are grouped around the
identity operator (the chord is null) because we are looking at
the elliptic degree of freedom. However, the number of them
increases with t0, reflecting the spreading of the coherent state
due to the influence of the hyperbolic map. Relevant reflec-
tions are concentrated in the center of the phase space where
the coherent state is (see Fig. 10), and when t0 increases, more
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FIG. 10. Relevant reflection operators in phase space, for each
dynamics as we increase the integration time t0. Each point (a, b)
represents a reflection center, where a indicates its momentum and
b its position. The black solid line represents the unstable manifold
direction of our map. In this case we have used N = 26 + 1 as the
dimension of Hilbert space.

operators are needed to describe the dynamics enlarging the
corresponding distribution. A similar situation arises in the
EH case (now we observe the hyperbolic subsystem); i.e.,
the number of relevant operators grows and its distribution
spreads along the unstable direction for both translations and
reflections. Finally, in the EE case for the coherent state at the
periodic point, the distributions remain localized and again the
translation operators which better capture the dynamics are
the ones closer to the identity, while the corresponding reflec-
tion operators are those at the center of the phase space. In
both cases the number of relevant operators does not change.
Finally, if we locate the coherent states out of the fixed point,
the relevant translation operators are still closer to the identity,
but the reflection ones follow the evolution of the distributions
as in Ref. [18].

In all these cases, we can observe that the set of relevant
operators follows the footprints of the classical dynamical
evolution, and this provides us with a clear interpretation of
the relevance criterion developed in this work. However, we
underline that some bases of operators are more sensitive than
others, following the footprints closer and allowing to the
classical structures and the quantum complexity to be revealed
in a clearer way. As we have previously seen in Eq. (18),
for the Kirkwood basis all of the OTOCs are equivalent in

following the linear entropy behavior. For a pure state ρ̂ with
the translation operator basis, we can see that the OTOC can
be expressed in terms of

ρξ (t ) = Tr(T̂ξ ρ̂(t )),
the chord representation of the evolved density ρ̂(t ), as

CT ξ (t ) = ρξ (t )ρ−ξ (t ). (19)

Meanwhile, for the reflection basis, the OTOC can be ex-
pressed in terms of the Wigner function

Wx(t ) = (2π h̄)Tr(R̂xρ̂(t ))

as

CRx(t ) = 1

(2π h̄)2
W 2

x (t ). (20)

This makes the OTOC in the reflection basis remarkably sen-
sitive to the classical structures in phase space, providing a
very clear link to complexity measures [19].

IV. CONCLUSIONS

Recently quantum chaos and high-energy physics have be-
come closely related through a chaoticity measure, the OTOC.
An interesting bridge towards a more general interpretation as
a complexity measure has been provided from the quantum
information perspective via the OTOC-RE theorem which
relates it to the second Renyi entropy [17,23,24]. In this work
we have deepened the study of this relation for a paradigmatic
bipartite system covering the main kinds of dynamics, i.e.,
two coupled and perturbed Arnold cat maps. We have studied
the behavior of three different bases of operators, namely the
Pauli, translation, and reflection ones.

We have defined a criterion of relevance for each operator
from these bases relying on their corresponding OTOC con-
tribution to the linear entropy SL up to time t0. Armed with
this tool we have found that less than 35% of the operators
of these widely used bases is enough to reach the effective
SL behavior. This means that to characterize the system in
terms of its complexity the whole basis of operators is not
needed in general, but a much lower fraction is needed instead
(we underline that this is basis dependent though). The least
relevant operators have been revealed as poor indicators of the
dynamical complexity of the system. Moreover, the scaling of
the number of relevant operators as a function of the time t0
proved to be an alternative indicator of complexity, much in
the same sense as the scaling of the number of operations is a
measure for algorithmic complexity.

Finally, for the translation and reflection operators which
can be directly represented in phase space, our concept of
relevance turns out to have an easy interpretation. The set
of relevant operators follows the quantum footprints of the
corresponding classical evolution (more or less closely de-
pending on the basis). In the future we will investigate this
relation even more deeply, taking into account generic density
operators.
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