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We study a one-dimensional classical stochastic kinetically constrained model (KCM) inspired by Rydberg
atoms in their “facilitated” regime, where sites can flip only if a single of their nearest neighbors is excited.
We call this model “XOR-FA” to distinguish it from the standard Fredrickson-Andersen (FA) model. We
describe the dynamics of the XOR-FA model, including its relation to simple exclusion processes in its domain
wall representation. The interesting relaxation dynamics of the XOR-FA is related to the prominence of large
dynamical fluctuations that lead to phase transitions between active and inactive dynamical phases as in other
KCMs. By means of numerical tensor network methods we study in detail such transitions in the dynamical large
deviation regime.
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I. INTRODUCTION

Systems with constraints often display interesting coop-
erative dynamics [1–4]. This is true both in classical and
quantum settings. Broadly speaking there are three classes
of constrained systems. One is that of problems where state
space is constrained. The canonical example is lattice cover-
ings, for example dimers on a square lattice [5–11]. In such
systems, the constrained nature of configuration space im-
plies constraints in the allowed transitions, making both their
classical and quantum dynamics very rich. A second class
encompasses systems where constraints in the dynamics are
emergent, such as in classical and quantum “fracton” models
where the motion of certain effective excitations is severely
impeded [12–16]. A third class comprises systems known
as kinetically constrained models (KCMs) with explicit con-
straints in the allowed dynamical transitions. Here we focus
on KCMs.

KCMs were first introduced [1,2] in the 1980s as models of
classical glasses. The ones studied most throroughly, such as
the Fredrickson-Andersen (FA) [1] and East models [3], are
stochastic lattice spin systems with the interesting combina-
tion of a trivial thermodynamics and a strongly fluctuating co-
operative dynamics (under appropriate conditions—typically
low temperatures and/or high densities) due to the constraints.
For reviews on classical KCMs, see, e.g., Refs. [17–19].
Like their classical counterparts, quantum KCMs also display
complex nonequilibrium dynamics, both under closed unitary
[20–22] or open dissipative [23] evolution.

Modeling dynamics via KCMs can be motivated in
many different areas. For example, in classical soft matter,

specifically for glasses [24,25], kinetic constraints are meant
to encode the local steric interactions of dense fluids. Another
application is in the context of ensembles of Rydberg atoms
in optical lattices, modeled as a collection of local two-level
systems (representing for each atom their ground and some
high-lying Rydberg state). When driven on resonance, due
to “Rydberg blockade” [26], their dynamics is subject to a
kinetic constraint where an atom can change state only if
all their nearest neighbors are in their ground state. In a
one-dimensional lattice such constraint gives rise to the much
studied PXP model [27–30], the quantum counterpart of the
classical “two-spin facilitated” FA model [17].

Here we study a one-dimensional classical KCM which to
our knowledge has not been considered in the past. We call
it the XOR-FA model to distinguish it from the standard FA
model (i.e., the “one-spin facilitated” FA model). The kinetic
constraint in the XOR-FA is such that a spin can flip only
if one of its nearest neighbors is in the excited state, but
not if both are (which is allowed in the FA). Such condition
makes the XOR-FA more constrained than the standard FA
model. Conversely, the XOR-FA is less constrained than the
PXP, whose transitions require the two neighboring sites to be
simultaneously down. The constraint in the XOR-FA model
can be motivated by Rydberg atoms in their “facilitated” (or
“antiblockade”) regime [31–41]: When driven out of reso-
nance, specifically when blue-detuned, conditions can be such
that an atom may change state only if a single neighbor is in
the excited state, but not both.

The paper is organized as follows. In Sec. II we intro-
duce the XOR-FA model and discuss its connection to simple
exclusion processes. In Sec. III we consider the relaxation
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dynamics of the model. In Sec. IV we study the dynamical
large deviations by means of numerical tensor networks, and
show the existence of a phase transition between active and
inactive dynamical phases. In Sec. V we draw comparisons
between the FA, XOR-FA, and PXP models. In Sec. VI we
give our conclusions.

II. MODEL

We consider a system of binary variables n j = 0, 1 (we
call these states down/up or unexcited/excited) on the sites
i = 1, . . . , N of a one-dimensional lattice (with boundary con-
ditions to be specified below). Similar to other KCMs [17,42]
the dynamics will be that of singe-spin flips subject to a
constraint. Specifically, the allowed transitions are

001 → 011 rate = c,
011 → 001 rate = 1 − c,
100 → 110 rate = c,
110 → 100 rate = 1 − c,

(1)

where c ∈ (0, 1). That is, a site can flip only if both nearest
neighboring sites are in different states. This means that the
constraint is a boolean XOR operation on the nearest neigh-
bors of the site that is attempting to flip. We therefore call this
model the XOR-FA (short for XOR-Fredrickson-Andersen) to
distinguish it from the standard Fredrickson-Andersen (FA)
model, where a site can flip if either of its nearest neighbors
is up, which in this nomenclature would correspond to the
OR-FA (while the PXP would be the AND-FA).

The generator of the continuous-time Markov dynamics is
the operator

W =
N∑

j=1

P j[cσ
+
j + (1 − c)σ−

j − c(1 − n j ) − (1 − c)n j],

(2)
where σ±

j are Pauli operators acting on site j, n j = σ+
j σ−

j ,
and the kinetic constraint P j on site j reads

P j = (n j−1 + n j+1 − 2n j−1n j+1) = 1
2

(
1 − σ z

j−1σ
z
j+1

)
, (3)

where σ z
j = 2n j − 1. The operator Eq. (3) enforces the im-

possibility of the transitions ruled out in Eq. (1). Note that
Eq. (2) has an explicit symmetry between up/down spins
and is unchanged under the transformation c → 1 − c and
nj → 1 − n j .

Dynamics with the kinetic constraint Eq. (3) is naturally
motivated [39] in quantum many-body systems, specifically in
the context of Rydberg atoms in their facilitated/antiblockade
regime [31–41], whereby an up (down) spin represents an
atom in its excited Rydberg (ground) state, and the drive is
such that an atom can get excited resonantly only when one
of its nearest neighbors is also excited, but not both (as that
would make the transition off resonant). The constraint Eq. (3)
has also been studied in certain quantum spin chains [43,44] in
particular in relation to “quantum scars” (special nonthermal
states in constrained quantum systems [30,45,46]) [47–49],
and additionally in the context of quantum cellular automata
[50]. Our aim here is to consider the classical stochastic dy-
namics of a system with such a constraint, thus extending the
set of known KCMs.

Conservation of the number of domain walls and relation to
simple exclusion processes

The dynamical rules Eq. (1) impose a conservation law in
the dynamics, that of the total number of domain walls (DWs)
[39,43]. Consider two neighboring domains of, say, up and
down spins

· · · 11110000 · · · .

Due to the constraint Eq. (3) the only allowed changes are
to the spins next to the DW, since inside the domains both
neighbors to every spin are the same. This means that the
possible moves are

· · · 11100000 · · ·
· · · 11110000 · · · ↗

↘
· · · 11111000 · · ·

,

where we have underlined the sites that changed in each
allowed transition.

We can perform a duality transformation to have an explicit
DW representation of the problem. We write

σ x
j = XjXj+1, (4)

σ
y
j = (−1) j+1

j−1∏
k=1

ZkYjXj+1, (5)

σ z
j = (−1) j+1

j∏
k=1

Zk, (6)

where Xj,Yj, Zj are Pauli operators for the DW between sites
j − 1 and j. Notice that this is a canonical (rather than unitary)
transformation that preserves the commutation relations be-
tween the Pauli operators. The generator in this representation
is then

W DW =
N∑

j=1

PDW
j

[
1

2
XjXj+1

− i

(
1

2
− c

)
(−1) j+1

j−1∏
k=1

ZkYjXj+1

−
(

1

2
− c

)
(−1) j+1

j∏
k=1

Zk − 1

2

]
, (7)

where the constraint is

PDW
j = 1

2 (1 − ZjZ j+1), (8)

and we have used the superscript “DW” to indicate operators
in the domain wall representation. Combining the factors we
can simplify the generator to

W DW =
N∑

j=1

1

2

[
1

2
(XjXj+1 + YjYj+1)

− i

(
1

2
− c

)
(−1) j+1

j−1∏
k=1

Zk (YjXj+1 − XjYj+1)
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+ 1

2
(ZjZ j+1 − 1)

−
(

1

2
− c

)
(−1) j+1

j−1∏
k=1

Zk (Zj − Zj+1)

]
. (9)

The conservation law is now explicit, as the kinetic term
simply corresponds to DW hopping. That is, we conserve
the quantity NDW = 1

2

∑
j I + Zj . For the special case of c =

1/2, the generator simplifies to that of the symmetric simple
exclusion process (SEP) [51,52],

W DW
c=1/2 =

N∑
j=1

1

4
(XjXj+1 + YjYj+1 + ZjZ j+1 − 1). (10)

In the XOR-FA language this is the “infinite temperature
limit,” where the cost of creating and destroying an excitation
is the same. Away from c = 1/2, the dependence of c in
the DW-representation generator Eq. (9) encodes the fact that
moving left or right a DW depends on whether it is energet-
ically favorable to extend or contract the corresponding spin
domain.

For c �= 1/2 the generator Eq. (9) corresponds to a SEP
with particles with alternating asymmetries in their hopping
rates. That is, we have a model where particles (DWs) can
hop to neighboring sites if the sites are not already occupied:
the odd particles (DWs) hop left with rate c and right with
rate 1 − c, while the even particles hop left with rate 1 − c and
right with rate c. Since particles (DWs) cannot cross due to the
exclusion, these rates are maintained. This is a special case of
the general model introduced in Ref. [53], where each particle
is given an individual hopping rate which is maintained under
the dynamics. Independently from Ref. [53], this exclusion
process was studied in Ref. [54]. In that paper the authors
use a transformation onto a representation which coincides to
our spin model, allowing them to find a hydrodynamic limit
with a nontrivial diffusion rate for the exclusion process with
alternating hopping rates.

III. EQUILIBRIUM AND RELAXATION

A. Equilibrium properties

We consider the XOR-FA with N sites, NDW domain walls
and periodic boundary conditions (PBC), which formally
corresponds to setting n0 = nN . The dynamics generated by
Eq. (2) obeys detailed balance and therefore any initial con-
dition eventually relaxes to an equilibrium state. Since the
dynamics conserves the number of DWs, there is one such
equilibrium probability for each DW sector. For PBC the num-
ber of DWs is even, and the sectors can be classified by the
number p of up/down (one/zero) domains, p = NDW/2. One
can then construct the equilibrium state within each sector in
the following way.

Consider a configuration for fixed p where the zero (or
down) domains and the one (or up) domains have lengths dm

and um, respectively, for m = 1, . . . , p, with the first domain
being a down one,

∣∣0..0d1 1..1u1 . . . 0..0dp1..1up

〉
.

Note that the total length of the domains must be equal to the
system size, so in the state above we have

p∑
m=1

(dm + um) = N, (11)

and each domain must have at least one site, so that

dm, um � 1 ∀m. (12)

We now define a state which is the translationally invariant
superposition of all possible translations of the state above,

|d1, u1, . . . , dp, up〉 =
N∑

m=1

Tm
∣∣0..0d1 1..1u1 . . . 0..0dp1..1up

〉
,

where the operator T shifts the chain by a single site.
The equilibrium probability vector for the sector with 2p

DWs is given by

|eqp〉 = N
γ∑

d1=1

· · ·
γ∑

dp=1

γ∑
u1=1

· · ·
γ∑

up=1

δ(d1 + · · · + up − N )

(1 − c)
∑

m dm c
∑

m um |d1, u1, . . . , dp, up〉 ,

(13)

where γ = N − 2p + 1 and N is a normalization constant.
One can check that the state Eq. (13) is annihilated by all
terms of the generator Eq. (2). This state corresponds to
the equilibrium state with noninteracting energy E = ∑

j n j

(i.e., each up spin costs a unit of energy) at temperature T
such that c = e−1/T /(1 + e−1/T ), and subject to the conditions
Eqs. (11) and (12).

We now study the basic properties of the equilibrium
state Eq. (13). In Fig. 1 we show two average observables
in equilibrium. The first one is the average excitation den-
sity, 〈n〉 = N−1 ∑

i 〈−|ni|eqp〉, where 〈−| = ∑
n 〈n| is the flat

state and 〈n| = 〈n1, . . . , nN |, see Fig. 1(a). We show 〈n〉 for
several values of the filling fraction defined as nDW = 2p/N
(note that the mean domain length is 1/nDW). The symbols
are numerical results from standard Monte Carlo simulations.
Note that in contrast to the FA or East models [17,42], 〈n〉 is
not just equal to c, due to the conservation of the number of
DWs. Figure 1(a) shows the agreement of the numerics with
an analytical prediction in the N → ∞ limit described in the
Appendix.

The second observable coincides with the average dynam-
ical activity (per site) in equilibrium, 〈k〉. While the activity
is an observable at the level of trajectories (see Sec. IV for
further details), its average in equilibrium is given by the
average escape rate per site, which is a static observable [55].
The escape rate operator R is (minus) the diagonal part of
the generator Eq. (2). Since R is a local operator we can also
obtain analytically its equilibrium average in the large size
limit, see the Appendix. In Fig. 1(b) we show the agreement
between 〈k〉 from simulations and the analytic result. Note that
〈n〉 and 〈k〉 are symmetric around c = 1/2 as functions of c
as a consequence of the up/down symmetry of the model, cf.
Eq. (2) (while there is no corresponding symmetry in terms of
DW filling nDW).
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FIG. 1. Equilibrium properties of the XOR-FA model. We show
various properties of the XOR-FA at equilibrium for both finite-size
systems (N = 1000, symbols) obtained via Monte Carlo simulations,
and N = ∞ (solid lines) obtained through the analytical consider-
ations from the Appendix. (a) The average excitation density for
various DW fillings as a function of c. (b) The average dynamical
activity 〈k〉 as a function of c for the same DW fillings of panel (a).
(c) The average dynamical activity 〈k〉 as a function of DW filling
nDW for various c. Note that the peak in the dynamical activity with
respect to nDW varies with c (dotted line).

B. Relaxation dynamics

The dynamics of the XOR-FA model is entirely deter-
mined by expansion and contraction of the domains (or the
movement of domain walls which cannot cross). The system
behaves like an “accordion.” Depending on the value of c there
may be an energetic preference to expand or contract domains
of one orientation or the other. Figure 2 shows typical trajecto-
ries sampled from the XOR-FA model by running continuous
time Monte Carlo at various conditions. The trajectories of
the figure are at a quarter filling for three values of c. The top
row of Fig. 2 is for c = 0.4, the middle one for c = 0.5, and
the bottom one, c = 0.6. The columns correspond to different
initial conditions. Column (a) shows equilibrium trajectories,
i.e., those that start from an initial condition sampled from
Eq. (13). They show pronounced space-time fluctuations in
the dynamics associated to the breathing of domains. Column
(b) corresponds to the most unfavorable initial state, where
DWs are maximally clustered. Relaxation to equilibrium in
this case is slow, as DWs within the bulk of the cluster
cannot move until the DWs on the outside of cluster diffuse
away. Column (c) shows an opposite nonequilibrium initial
condition, where DWs are maximally spread out. In this case
relaxation to equilibrium is faster, cf. Fig. 2(c). The large
space-time fluctuations that are evident in these example tra-
jectories anticipate the large deviation phase transitions that
we uncover in the next section.

The different timescales involved in the relaxation of the
XOR-FA model can be quantified using time-correlation func-
tions. In particular we focus on two different correlators in
the equilibrium dynamics. The first one is the autocorrelation
function, C(t ), which measures how many sites that were in

FIG. 2. Trajectories of the XOR-FA model. Representative tra-
jectories from continuous-time Monte Carlo simulations using
generator Eq. (2) with a time of t = 103. The rows are for different
values of c, with c = 0.4 (top), c = 0.5 (middle), c = 0.6 (bot-
tom). All trajectories are at quarter filling, nDW = 1/4. The columns
correspond to different initial conditions: (a) typical equilibrium con-
figuration, (b) DWs maximally clustered, (c) DWs maximally spread
out. Column (b) shows the slowest approach to equilibrium.

the excited state at time 0 are also in an excited state at a later
time t . Subtracting the disconnected part, and normalizing so
that it takes values between 1 and 0, it reads

C(t ) = 1

N

N∑
j=1

〈n j (t )n j (0)〉 − 〈n〉2

〈n〉 − 〈n〉2 , (14)

where the average is over realisations of the dynamics in equi-
librium, i.e., starting from a configuration sampled from the
equilibrium state Eq. (13) and evolved according to Eq. (2).

The second correlator we study is the persistence function,
P(t ), which quantifies the average probability for a randomly
selected site to have not changed state up to time t . We can
define it in terms of a local dynamical variable pj (t ) at each
site j, where p j (t ) = 1 if the site has never changed from its
initial state at time t , and pj (t ) = 0 as soon as it changes for
the first time. The resulting aggregate function is then

P(t ) = 1

N

N∑
j=1

〈p j (t )〉 . (15)

This function is automatically normalized between 1 at the
initial time and 0 eventually when all sites flip at least once.

In Fig. 3 we show results for time-correlators. We fo-
cus mostly on the persistence function as it better captures
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FIG. 3. Time correlations of the XOR-FA model. All results are
done for N = 400. We show the persistence function P(t ) plotted
for (a) nDW = 1/4 and (b) nDW = 1/2. In both cases we show for
various c. The black dashed line also shows the autocorrelator C(t )
for c = 0.1 to compare. (c) We plot the same functions as shown for
(a) but with a double-logarithmic scale on the ordinate. (d) We show
the time taken τ for the persistence function to drop to P(τ ) = e−1

(crosses) for c = 0.5 (blue, bottom), c = 0.1 (red, top) and various
nDW. We also show our estimate τ (solid lines) given in Eq. (17).

overall relaxation. Figure 3 shows P(t ) for various c and two
filling fractions of DWs, nDW = 1/4 (a) and nDW = 1/2 (b).
For comparison we also show the autocorrelator for c = 0.1
(dashed). We see that decreasing c away from c = 0.5 leads to
slower relaxation times. The same can be said for decreasing
the density of the DWs. Figure 3(c) shows the same functions
as in Fig. 3(a) but in a double-logarithmic scale on the ordi-
nate. The change in slope in this representation emphasises
the change from exponential decay at short times, to stretched
exponential decay at long times [56].

From the persistence function we can extract a characteris-
tic relaxation time, τ , customarily from the time the function
decays to e−1, that is, P(τ ) = e−1. These times are shown in
Fig. 3(d) for two values of c and as a function of the DW
filling. Their behavior can be understood approximately with
simple heuristic arguments.

We first note that for c � 1, we can treat the dynamics of
the XOR-FA model as small up domains diffusing around a
“vacuum” of down domains. To move, the up domain must
first expand by exciting a neighboring spin. This happens
slowly at rate c. Following this, the domain then shrinks at rate
1 − c ≈ 1. It can either shrink back to its original position, or
shrink such that it shifts by one site across, each happening
with equal probability. Thus, we say it diffuses around the
lattice with diffusion constant Dc ≈ c/2. The time taken for
the system to fully relax can then be estimated as the time
it takes for the DWs to diffuse from their original positions
around the available space surrounding them, until they hit
another DW. On average, the length of each zero domain is
given by the average number of down spins split among the

number of zero domains. Namely,

l0 = 2

nDW
(1 − 〈n〉). (16)

It then follows that the timescale for the system to relax
goes as

τ ∼ (l0/2)2

Dc
= 2

c

(1 − 〈n〉)2

nDW
2

(17)

for c small. As Fig. 3(d) shows, this prediction works well
for c small in the whole nDW range, while for c ≈ 0.5 it
qualitatively accounts for τ for small DW density [57].

Thinking of the dynamics in this way can also explain the
two timescales in Fig. 3(c). At some small time after t � 0,
the first successful shift of domain(s) will occur. When this
happens for c � 1/2, the original site is no longer excited,
but the site next to it is. In the language of the persistence, this
means two sites have flipped from their initial state. For both
the persistence and the autocorrelator, this gives a fast initial
relaxation, and as these are random uncorrelated events, the
initial decay is exponential. Further successive moves of the
domain only change at most one more site from its initial state
(or in the case of the autocorrelator, will only slightly reduce
the probability that the domain may end up in its original
position). Thus, the rate at which relaxation occurs is reduced,
the time is longer, and the decay of the correlators is stretched
as the relaxation becomes more collective.

IV. DYNAMICAL LARGE DEVIATIONS AND MATRIX
PRODUCT STATES

In this section we study the statistics of trajectories of
the XOR-FA model in the long-time regime where we can
apply large deviation (LD) methods [19,58,59]. Recent work
[60–62] has shown the effectiveness of numerical tensor net-
work methods for studying the LDs of KCMs. Here, by means
of numerical matrix product states (MPS) we are able to study
the LDs of the XOR-FA for large systems to high accuracy.
As we show below, the XOR-FA has a trajectory-space phase
transition between between dynamical phases with very dis-
tinct characteristics, similar to what occurs in several other
KCMs.

A. LDs and tilted generators

The dynamical activity [19,63–65] is a trajectory observ-
able which counts the number of configuration changes (in
our case the number of spin flips) in some given time. It is
the natural trajectory observable to quantify the amount of
motion in the dynamics. A question one can ask is what is
the probability of observing the activity K for trajectories ωt

which run for a total time t . The probability distribution for K
is given by

Pt (K ) =
∑
ωt

π (ωt ) δ[K (ωt ) − K], (18)

where π (ωt ) is the probability of observing trajectory ωt . For
long times this obeys a large deviation (LD) principle Pt (K ) ≈
e−tϕ(K/t ) where ϕ(K/t ) is the LD rate function [58]. One can
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also consider the moment generating function

Zt (s) =
∑

K

Pt (K ) e−sK =
∑
ωt

π (ωt ) e−sK (ωt ), (19)

which also obeys a LD principle, Zt (s) ≈ etθ (s) where θ (s)
is the scaled cumulant generating function (SCGF) whose
derivatives at s = 0 give the cumulants of K , scaled by time
[58]. The SCGF plays the role of the thermodynamical free
energy and is related to the LD rate function by a Legendre
transform θ (s) = − mink[sk + ϕ(k)] [58].

We can deform the generator given in Eq. (2) by multi-
plying the off-diagonals by a factor of e−s to give the tilted
generator,

Ws =
N∑

j=1

P j{e−s[cσ+
j + (1 − c)σ−

j ]

− c(1 − n j ) − (1 − c)n j}, (20)

whose largest eigenvalue is the SCGF θ (s) [58]. It has
the associated left and right eigenvectors, 〈ls|Ws = θ (s) 〈ls|
and Ws |rs〉 = θ (s) |rs〉 , respectively. As the dynamics obeys
detailed balance, we can transform the generator into a Her-
mitian one by using a similarity transformation independent
of s [55]. We first define the diagonal matrix Q with matrix
elements 〈n|Q|n〉 = (1 − c)N/2[c/(1 − c)]

∑
i ni/2. The tilted

Hamiltonian Hs = −Q−1WsQ is then given by

Hs = −
N∑

j=1

P j
[
e−s

√
c(1 − c)σ x

j − c(1 − n j ) − (1 − c)n j
]
,

(21)
which has the ground state Hs |ψs〉 = −θ (s) |ψs〉. As was
done for the generator, one can write the tilted Hamiltonian
in the DW representation

HDW
s = −

N∑
j=1

1

2

[
e−s

√
c(1 − c)(XjXj+1 + YjYj+1)

+ 1

2
(ZjZ j+1 − 1)

−
(

1

2
− c

)
(−1) j+1

j−1∏
k=1

Zk (Zj − Zj+1)

]
. (22)

The eigenvector |ψs〉 of Hs is related to the left and right
eigenvectors of Ws by

|ψs〉 =
∑

n

√
ls(n)rs(n) |n〉 , (23)

where ls(n) = 〈ls|n〉 and rs(n) = 〈n|rs〉. Thus, studying the
LDs reduces to diagonilizing Eq. (21) to find θ (s) and |ψs〉.

B. Matrix product states

A matrix product state (MPS) is an ansatz for the vector
state of a many-body system [66–68]. For a chain of N finite
dimensional subsystems (of dimension d), it corresponds to
states of the form

|�〉 =
d∑

i1,...,iN

Tr
(
Ai1

1 Ai2
2 . . . AiN

N

) |i1 i2 . . . iN 〉 , (24)

where ik labels the states of the physical basis for the kth
subsystem and each Ak is a rank-3 tensor with dimensions
d × D × D, with D the so-called bond dimension. Thus, the
MPS is described by O(NdD2) parameters. Notice that by
increasing D, any arbitrary state can be exactly written in the
form of Eq. (24), although this may require up to D = d�N/2�.

The bond dimension D limits the entanglement within
the state. More precisely, in a MPS with bond dimension
D, the entanglement entropy for a subchain L (defined as
SE = −TrρL log ρL where ρL = TrN\L |�〉 〈�| is the subchain
reduced density matrix) is upper-bounded by SE � 2 log D,
independent of the subchain length. This implies that the
MPS satisfies an entanglement area law, which is intimately
related to their success at approximating relevant physical
states [69]. In particular, ground states of local gapped Hamil-
tonians, which in one spatial dimension are known to satisfy
an area law [70], but also of critical models, can be effi-
ciently approximated by MPS [70,71]. Furthermore, MPS
constitute the basis of efficient numerical methods, including
the celebrated density matrix renormalization group (DMRG)
algorithm [72,73] which we use to approximate the ground
state of Hs.

The DMRG, originally formulated in Ref. [72], can be un-
derstood as a variational minimization of energy over the set
of MPS. By writing the operator Eq. (21) as a matrix product
operator (MPO) [74,75], one can perform a local optimization
on a single tensor within the MPS to minimize the energy.
We iterate through each tensor, applying local updates until
convergence. This variational MPS search (vMPS) is well de-
tailed in many reviews (e.g., Refs. [68,76]). For completeness,
we give a brief description in the Appendix.

When applying the vMPS to study the LD statistics of the
XOR-FA model, we use open boundary conditions (OBC)
which formally corresponds to setting n0 = nN+1 = 0, as this
allows for the most efficient MPS calculations, with computa-
tional cost O(D3). In our problem, the number of DWs defines
a global conserved quantity, and we need to find the ground
state in a particular sector. Although it is possible to encode
this symmetry in the tensors [77–79], as other local constraints
have [80], we opt here for a simpler approach. Namely, we
add an energy penalty to the Hamiltonian to favor the desired
sector. Specifically, the penalty is λ(NDW − NDW)2 where
λ > 0 is some Lagrange multiplier and NDW = ∑N

i=0 ni(1 −
ni+1) + (1 − ni )ni+1 is the operator which counts the number
of DWs.

C. Results

As we now show, the MPS ansatz combined with the vari-
ational search proves to be very efficient for studying the LDs
of the XOR-FA model, just like for other KCMs and exclusion
processes [60–62]. In this way we are able to achieve results
for system sizes superior to traditional methods such as exact
diagonalization or importance sampling.

1. First-order phase transition in the SCGF

A key property of other KCMs such as the FA or the East
model is the presence of a first-order dynamical phase tran-
sition [64] in the thermodynamical limit N → ∞, manifested
as a singularity in the SCGF θ (s) at s = 0. Consequentially
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FIG. 4. First-order phase transition in the SCGF. We consider the finite-size scaling of the phase transition for N ∈ [20, 100] and nDW =
1/2. (a) A linear-linear plot of the SCGF θ (s)/N . There is an apparent change in behavior at some critical point sc(N ) > 0. (b) The SCGF
θ (s)/N for s > 0 on a log-log plot. On the first branch, θ (s)/N follows a LR (dashed line) up to sc(N ) after which it follows another branch,
which is no longer linear or scales with system size. The dotted lines show the value of the SCGF at s → ∞. (c) The activity k(s) = −θ ′(s)/N
has a drop around s = sc(N ) which becomes sharper with system size. (d) The dynamical susceptibility χ (s) = θ ′′(s) which peaks at sc(s). The
peaks become narrower and larger as N becomes larger. (e) The critical point sc(N ) extracted from the peak of the susceptibility plotted against
system size, for the DW densities nDW = 1/2 (blue circle) and nDW = 1/4 (red diamonds). We fit the data the the power law sc(N ) ∝ N−α

(solid line) and to the polynomial sc(N ) = aN−2 + bN−3 + cN−4 (dashed lines) which are the subleading corrections to N−2.

there are two dynamical phases—the active phase for s < 0
and the inactive phase for s > 0. We look for evidence for this
transition in the XOR-FA model.

Figures 4(a) and 4(b) show the SCGFs obtained numer-
ically for system sizes N ∈ [20, 100], in linear and log-log
scales, respectively. The upper row of Fig. 4 is for c = 0.5
while the lower row corresponds to c = 0.1. For finite size,
near enough s = 0 the SCGF should obey the linear response
(LR), θ (s) ∼ −skeq, where keq is the average activity per unit
time in the equilibrium state. For the FA and East models,
the equilibrium activity is straightforward to calculate exactly
(see, e.g., Ref. [81]). For the XOR-FA, it is more difficult due
to the conservation of DWs. In the Appendix we give a way to
compute it to a good approximation. As we see from Fig. 4(b),
the SCGF we obtain numerically does obey LR close to s = 0.

Still for s � 0, beyond the LR regime the SCGF changes
behavior, notably stops scaling with system size, see Figs. 4(a)
and 4(b). This change in behavior becomes even more appar-
ent when one considers the activity per unit time as a function
of s, k(s) = −θ ′(s)/N , Fig. 4(c). We see a sudden drop close
to s = 0 that becomes more pronounced with system size, a
hallmark of a first-order phase transition. From the point of the
numerics, this occurs when where there two smallest energy
levels of Eq. (21) cross.

The transition point sc can be estimated from the peak of
the susceptibility χ (s) = θ ′′(s); see Fig. 4(d). The peaks be-
come higher and sharper with system size. From the numerics
we can make a finite-size scaling analysis of the critical point.
We find that sc(N ) seems to obey sc(N ) ∝ N−α as shown in
Fig. 4(e). For nDW = 1/2, we find that the best fit exponent
is α ≈ 2.123 for both c = 0.5 and c = 0.1. Furthermore, for
nDW = 1/4 we find that α ≈ 2.056 and α ≈ 2.188 for c = 0.5
and c = 0.1, respectively. In each case α is close to the value 2
expected from a diffusive behavior of the gap in the spectrum

of Eq. (21). It could be that these are subleading corrections
to N−2; see Fig. 4(e).

2. Spatial structure of active and inactive phases

The singularity in the SCGF represents a phase transition
in the trajectories of the dynamics at the level of fluctua-
tions: The behavior at s < 0 corresponding to dynamics with
activity that is larger than the typical (equilibrium) one is
fundamentally different from that at s > 0 corresponding to
dynamics which is less active than typical. This difference is
also manifested in the configurations that are predominantly
visited by the different trajectories. That is, active and inactive
dynamical phases are associated with very different spatial
structures.

We mean the following. At s = 0 there is no tilting in the
ensemble of trajectories which is the one given by the orig-
inal dynamics. It corresponds to typical behavior. Dynamics
is ergodic over configuration space, and over long-times the
distribution of configurations that are visited—for some fixed
value of the number of DWs—is given by the equilibrium
probability Eq. (13). The state Eq. (13) is the leading right
eigenstate of generator Eq. (20) at s = 0.

At s �= 0 the probability of a trajectory is reweighted by the
exponential of its activity, cf. Eq. (19). How often configura-
tions are visited in such reweighted ensembles depends on s,
and for long times the distribution over configurations is given
by the leading eigenstate of Eq. (20), or equivalently Eq. (21)
for the detailed balance-obeying XOR-FA. We have access to
these states, |ψs〉, from our MPS numerics.

The easiest way to characterise the spatial structure of
the characteristic configurations associated with dynamics
tilted by s is to study the average local occupations 〈ni〉s =
〈ψs|ni|ψs〉 [82]. In Figs. 5(a) and 5(b) we show these local
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FIG. 5. Spatial structure of the active and inactive phases. (a) The average occupation of each site for a system with c = 0.5, N = 40 and
NDW = 10. For s < 0 there is a clear localization of domains. Each domain becomes (on average) equally sized and hence the DWs are equally
spread. For s > 0, we see the DWs gather at the edge(s). (b) The same as (a) but for c = 0.1. (c) The average distance between neighboring
DWs for a systems with c = 0.5 and nDW = 1/2. This shows there is a maximal separation between DWs in the active phase, and only one
site separating DWs for the inactive phase. Inset: The average excitation density as a function of s. (d) The same as (c) but with c = 0.1 and
nDW = 1/4. Here we observe multiple plateaus in the growth. Inset: The average excitation density as a function of s.

densities as a function of s for two values of c and nDW = 1/4.
For s large and negative we see that that domains becomes
maximally sized, that is, DWs become maximally spaced
apart, maximizing the activity, as expected. In contrast, for
s large and positive DWs become localized at either edge
of the system. When DWs become minimally separated and
clustered together, only the sites next to the last DW are
allowed to move and activity becomes subextensive and thus
minimal.

We can further quantify the average distance between
neighboring DWs by considering the operator

Dd =
N+1∑
i=1

ni−1(1 − ni )(1 − ni+1) . . . (1 − ni+d−1)ni+d

+ (1 − ni−1)nini+1 . . . ni+d−1(1 − ni+d ), (25)

which measures the likelihood of observing two neighboring
DWs at distance d apart. The average distance between neigh-
boring DWs is then given by

〈d〉s = (NDW − 1)−1
∑

d

〈ψs|Dd |ψs〉 (26)

(as we have NDW − 1 pairs of neighboring DWs). In Fig. 5(c)
we show 〈d〉s as a function of s for c = 0.5 and nDW = 1/2. It
is evident from the plot that the dynamical transition at sc ≈ 0
is also one where there is a singular change in the distance
between DWs in the corresponding characteristic configura-
tions, from maximal distance between DWs at s negative, to
minimal at s positive.

Figure 5(d) shows the same for c = 0.1 and nDW = 1/4.
We see that away from the SEP limit of the XOR-FA, there is
even richer spatial structure due to the energetic cost associ-
ated with domains. At small s < 0 there is an initial plateau
in the growth of the average distance between DWs. This
is an extension of the equilibrium behavior, where domains
are randomly sized according to the behavior described in
Sec. III. As we move further into the active phase, we observe

another plateau. At this point, the excitation density 〈n〉s =
N−1 ∑

i 〈ni〉s (as shown in the inset) has not varied much from
the equilibrium value. This leads us to believe that this change
in structure is due to the excited domains spreading apart and
becoming localized as shown in Fig. 5(b). This maximizes
the activity without having to grow the excited domains as
is energetically favorable for c < 1/2. Following this plateau,
there is a steady growth to the maximum 〈d〉s corresponding
to the growth of the one domains, such that every DW is
on average equally spaced. This is further supported by the
fact that following this plateau, the excitation density rapidly
grows.

3. Maximally and minimally active limits

While we cannot calculate the SCGF analytically in
general, there are limits where the calculation becomes
tractable [apart from the obvious case of θ (0) = 0]. These
are the s → ±∞ limits corresponding to the tilting of the
dynamics that maximizes and minimizes the activity. For
the former we can easily calculate the ground state of
Eq. (21) via vMPS to obtain the rescaled SCGF θ̃/N =
lims→−∞ esθ (s)/[N

√
c(1 − c)] using only a small bond di-

mension of O(10). The numerical data is shown in Fig. 6(a)
for various filling fractions. Note that for s → −∞ the de-
pendence on c is irrelevant and can be scaled out as in our
definition of θ̃ .

We can extrapolate from the numerical results for finite size
to obtain an estimate of limN→∞ θ̃/N as a function of the den-
sity of domain walls nDW. This large-size limit of the SCGF
can be obtained analytically. For s → −∞, after scaling out
the e−s and

√
c(1 − c) factors, the Hamiltonian Eq. (22) be-

comes that of the XX model. Being noninteracting, the ground
state can be obtained exactly by standard means [83], to give:
limN→∞ θ̃/N = π

2 sin(π nDW). Figure 6(a) shows the agree-
ment between the numerical extrapolation and the exact result.
The structure of the state in the maximally active limit for
a system with N = 40 sites and NDW = 20 domain walls is
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FIG. 6. Maximally and minimally active limits. (a) Top: The
rescaled SCGF θ̃/N = lims→−∞ esθ (s)/

√
c(1 − c) for various num-

ber of DWs. We fit the data with the curves θ̃/N = a + bN−1.
Bottom: θ̃/N in the limit N → ∞ obtained by extrapolating the fitted
curves in top figure, plotted against the density of domain walls
nDW. We fit the data using limN→∞ θ̃/N = π

2 sin(πnDW ). (b) The
average occupation at each site for systems a system with N = 40
and NDW = 20 in the limits s → −∞ (top) and s → ∞ (bottom).
For the latter, we show only one of the degenerate ground states. In
this case, DWs localize at the left.

shown in Fig. 6(b). In the limit N → ∞ we would expect that
lims→−∞ 〈n〉s = 1/2, and lims→−∞ 〈d〉s = nDW

−1 which are
both in excellent agreement with the numerical vMPS data.

For the minimally active limit s → ∞, the Hamiltonian
given in Eq. (21) becomes a diagonal one. Each configuration
is an eigenstate and one can easily show that the configuration
with the least energy is the one where all the DWs are clus-
tered at the edge of the system (which is doubly degenerate).
The SCGF at this limit is given by θ (s → ∞) = −c and the
exact structure for N = 40 and NDW = 20 is given in Fig. 6(b)
for just one of the degenerate states (in practice the vMPS
prefers to converge onto just one to keep the bond dimension
minimal). Additionally, the excitation density and the distance
between DWs are given by lims→∞ 〈n〉s , 〈d〉s = nDW/2, 1,

respectively.

V. COMPARISON BETWEEN THE FA, XOR-FA,
AND PXP MODELS

As discussed above, the kinetic constraint of the XOR-FA
model is stronger than that of the FA model (which is a binary
OR operation on the spins neighboring the one attempting to
flip), but weaker than that of the PXP model (which is a binary
AND operation on the neighboring spins). This has significant
consequences on the dynamics.

In the case the FA model [17], configuration space is
all connected by the dynamics, except for the configuration
with ni = 0 for all i. This means that in practice dynam-
ics is irreducible and there is one giant ergodic component
(as the probability of starting from the unique all-zero site
is suppressed exponentially with size). Despite the rela-
tive weakness of the constraint, the dynamics of the FA is
strongly fluctuating [84]. Figure 7 (top left) shows an ex-
ample trajectory in equilibrium, displaying the characteristic

FIG. 7. Comparison between FA, XOR-FA and PXP models.
The top panels show sample equilibrium trajectories for the FA
model (left, taken from Ref. [84], c ≈ 0.27, N = 100), the XOR-FA
(middle, 1/4 filling, c = 0.5, N = 200), and the PXP model (right,
no pairs of contiguous up spins, c = 0.5, N = 100). The bottom
panels show the corresponding LD rate functions for the activity in
the three models (c = 0.5 for each) obtained via numerical MPS. The
data for the FA model is from Ref. [60] (N = 200), and that for the
PXP is from Ref. [80] (N = 400). Both the FA and XOR-FA (1/2
filling, N = 100) rate functions show first-order transitions close to
the typical dynamics (flatness of the bottom of the curves), while the
PXP has a continuous transition for highly atypical low values of the
activity (kink at left of curve, see Ref. [80]). The dashed curves are
Poisson rate functions for comparison.

“space-time bubbles” responsible for dynamic heterogeneity
[24,85]. This preponderance of fluctuations is manifest in the
form of the LD rate function for the dynamical activity, see
Fig. 7 (bottom left), corresponding to a (dynamical) first-order
transition [64].

On the other extreme of this comparison is the PXP model
[27–30]. In the stochastic terminology this corresponds to the
two-spin facilitated FA model in one-dimension [17]. Here
the constraint is such that configuration space is broken into
exponentially many dynamically disconnected components.
Specifically, pairs of sites with up spins, ni = ni+1 = 1 cannot
be flipped and are conserved by the dynamics. This means that
dynamics is reducible as configuration space is partitioned
into an exponential in size number of irreducible components,
classified by local conservation laws (i.e., the location of
the unmovable contiguous clusters of up spins). The largest
ergodic component is that where no two up spins are adja-
cent. But despite the strength of the constraint, the resultant
dynamics is much less interesting than for the FA or the XOR-
FA models, see for example the sample trajectory of Fig. 7
(top right). Correspondingly, a detailed quantification of the
statistics of the dynamics shows no significant fluctuations,
see the LD rate function of Fig. 7 (bottom right).

The middle panels of Fig. 7 show the XOR-FA for com-
parison. Given that its constraint is somewhat in between
that of the FA and PXP model, we see that trajectories dis-
play less pronounced “bubbles” than the FA but are more
fluctuating that the PXP. Specifically, the constraint does
break configuration space, but the number of disconnected
ergodic components is only linear in the system size. These
components are classified by the globally conserved number
of domain walls. This allows for rich dynamics within the
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components, leading to singular LD behavior as demonstrated
in this paper; see LD rate function Fig. 7 (middle bottom).

The key observation is that both FA and XOR-FA models
have trajectory transitions which manifest in fluctuating dy-
namics, while the PXP does not. In both the FA and XOR-FA
models there are configurations which are completely void of
dynamics, the all-zero state in the FA, and the state with max-
imal number of domain walls in the XOR-FA. But while these
configurations are disconnected dynamically, many other con-
figurations have finite regions that resemble them locally.
Such spatial rare regions can only be relaxed from the outside,
and thus give rise to the dynamical bubbles of the trajectories,
see Fig. 7, and are at the source of the large fluctuations in
the dynamics. In contrast, the PXP constraint makes inactive
configurations local rather than global, and they can either
be relaxed locally or not. In the PXP there are no space-time
bubbles and no LD transition close to s = 0 (close at the edge
of typical dynamics, see discussion of previous sections).

VI. CONCLUSIONS

We have studied a new classical stochastic KCM, the one-
dimensional XOR-FA model, which could be experimentally
realized with a laser-driven dissipative Rydberg lattice gas un-
der facilitation (antiblockade) conditions [33–35]. The kinetic
constraint in this model is stronger than that of the standard
FA model, as spins can flip if only one nearest neighbor is
in the excited state, in contrast to the FA where spins can
also flip if more than one neighbor is excited. It is also less
constrained than the PXP, or two-spin facilitated FA, model
which requires both neighbors to be simultaneously in the
same state. As such it shares features with both these mod-
els. The constraint imposes a conservation law, that of the
total number of domain walls, breaking configuration space
into a number of disconnected components that scales with
system size. This contrasts to the FA model where all but
one configuration are dynamically connected, and is closer to
the PXP where configuration space is also disconnected. The
distinction with the PXP is that in the XOR-FA the conserved
quantity is global, while in the PXP there are many local
conserved quantities and configuration space is broken into
exponentially many disconnected components. This less se-
vere disconnection of state space makes the dynamics within
connected components in the XOR-FA still interesting as
there is scope for large dynamical fluctuations (in contrast
to the PXP). An interesting question would be to study the
analogous problem in constrained lattice gases, considering
variants of the Kob-Andersen (KA) model [4] or the triangular
lattice gas (TLG) [86] but where constraints are “selective”
(as in Ref. [87]). The KA and the TLG are models where
particles can hop as long as a minimum number of neighbors
are unoccupied (cf. the FA model where at least one neighbor
has to be up for the spin to flip). A “selective” [87] version
of such models where the number of required unoccupied
neighbors is fixed would be slightly more constrained, just
like the XOR-FA is slightly more constrained than the FA
model. Studying such models in the manner of the current
paper would require, however, to extend the tensor network
methods to dimensions higher than one.

The XOR-FA is a “thermal” model, in the sense that it
obeys detailed balance with respect to the Boltzmann dis-
tribution of a noninteracting binary gas, where each excited
spin costs a unit of energy, and subject to the conservation of
the number of DWs. In analogy to other KCMs like the FA
and East models [17], the XOR-FA has a trivial (up to the
conservation law) thermodynamics, but complex relaxation
dynamics due to the constraint. The conservation law allows
the XOR-FA to be represented in terms of the dynamics of its
DWs. This establishes a connection to exclusion processes.
At infinite temperature the XOR-FA can be mapped via a
duality transformation to the SEP [39,43,44], while at finite
temperature this mapping leads to a dynamics of hopping
DWs with long-range interactions (in contrast to the original
spin representation which is always local).

Like in other KCMs [19,55,64,81], we have shown here
that the XOR-FA has a trajectory level phase transition be-
tween active and inactive dynamical phases. We have proved
this to high accuracy via numerical MPS. This adds to recent
work [60–62] demonstrating the effectiveness of numerical
tensor network methods for studying the full counting statis-
tics of stochastic systems. One of the many advantages of this
approach is the direct availability of spatial structural informa-
tion in the various dynamical phases. For the XOR-FA we find
spatial structure as expected from its connection to the SEP
[88,89]: a change from repulsion of DWs in the active phase,
maximizing the possibility of motion, through structureless
configurations in the typical equilibrium dynamics, to DW
clustering in the inactive phase. Away from the strict SEP
limit, these structures remain overall, with further richness due
to energetics.

Here we have studied the XOR-FA in one-dimension. It
is easy to generalise the model to higher dimensions, once
again motivated for example by the problem of atoms interact-
ing strongly in Rydberg states. For example, in the blockade
regime, when going from one dimension to a, say, two dimen-
sional square lattice, the PXP model becomes the hard square
model [90]. Similarly, in the antiblockade regime of Ryd-
bergs, the XOR-FA would generalise to a model that is less
constrained than that of hard squares, but more constrained
than the two-spin facilitated FA model in two dimensions [17].
From the results here it is safe to speculate that such higher
dimensional generalisations of the XOR-FA will also display
very rich dynamics. Additionally, the structure of the ground
state observed at s > 0 is reminiscent of the localized ground
states found in quantum KCMs [22], which has dramatic
consequences for the quantum dynamics of the model. It may
be interesting to investigate whether an analogous localization
can be characterized in the ground state of the XOR-FA model
in the inactive regime.
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state |�〉 as an MPS. (b) The Hamiltonian Hs as an exact MPO.
(c) The inner product 〈�|�〉. (d) The expectation value 〈�|Hs|�〉.
(e) The effective norm Nk . (e) The effective Hamiltonian Hk .
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APPENDIX

1. Variational MPS

The vMPS algorithm used in Sec. IV goes as follows.
We have some MPS, |�guess〉 as defined in Eq. (24), which
is our guess to the true ground state. See Fig. 8(a) for the
diagrammatic representation, where the shapes represent the
local tensors and the legs represent contractions over tensors.
One can then write the Hamiltonian in Eq. (21) as a matrix
product operator (MPO) [74,75],

Hs =
∑

i1,..,iN

∑
j1,.., jN

Tr(Mi1 j1
1 Mi2 j2

2 . . . MiN jN
N ) (A1)

|i1 i2 . . . iN 〉 〈
j1 j2 . . . jN

∣∣ ,
where Mk is a rank-4 tensor with dimensions d×d×DH×DH .
The locality of Hs allows us to exactly represent it in MPO
form with only a small bond dimension DH = 4, where each
tensor is identical. As with the MPS, this can be represented
in the diagrammatic form Fig. 8(b). The energy of the guess
with respect to Eq. (A1) is then given by

Eguess = 〈�guess|Hs|�guess〉
〈�guess|�guess〉 � Es, (A2)

where Es = −θ (s) is the true ground state energy. The ex-
pectation value and inner product can be expressed as tensor
network contractions, as illustrated in Figs. 8(c) and 8(d).
This allows for an efficient calculation that exploits the MPS
structure.

At each step, a single tensor is optimized by minimizing
equation Eq. (A2) with respect to Ak , which gives

HkAk = Eguess NkAk, (A3)

where Nk and Hk are the effective norm and effective Hamil-
tonian computed by contracting over all tensors except for
Ak within 〈�guess|�guess〉 and 〈�guess|Hs|�guess〉 , respectively.

Both effective operators can be expressed also as tensor net-
works, as shown in Figs. 8(e) and 8(f). If we treat Ak as a
(D2d )-vector and Nk , Hk as (D2d )-matrices, then Eq. (A3)
is simply a generalized eigenvalue problem which should be
solved using a sparse eigensolver to keep the computational
scaling to O(D3). The solution to Eq. (A3) with the smallest
Eguess is our new choice for Ak .

We sweep back and forth through each tensor in the MPS,
applying local updates in the way detailed above. Since each
local minimization can be solved exactly, the energy can only
decrease at each step, and the algorithm is guaranteed to con-
verge. However, it may do so to a local minimum. As a quality
criterion, we require that the (efficiently computable) vari-
ance of the Hamiltonian in the guess state falls below some
specified value 〈H2

s 〉 − 〈Hs〉2 < ε, where here 〈·〉 denotes an
expectation with respect to the |�guess〉. If |�guess〉 does not
satisfy this criterion for a run of the algorithm at some bond
dimension D, then we run it again with an MPS with a higher
bond dimension, typically using the previous run as our initial
guess.

2. MPS steady-state solutions

Here we follow the workings of Ref. [54] to present an
MPS steady-state solution to Eq. (13) in the thermodynamic
limit, N → ∞, with which we can determine the equilibrium
properties of the model. We consider the XOR-FA model with
N sites and PBC, and describe the probability vector |ν〉 as
an MPS, cf. Eq. (24), where of course we have translational
invariance and each tensor is identical, Ak = A for all k. Let
us now guess the solution

A0 =
[

0 0
1 − p0 p0

]
, A1 =

[
p1 1 − p1

0 0

]
, (A4)

where 0 < p0, p1 < 1. We first require that our solution anni-
hilates the generator, W |ν〉 = 0. It is easy to verify that this
is the case if we have

p1

p0
= c

1 − c
. (A5)

Additionally, we require that |ν〉 is normalized. The partition
function is calculated by taking the inner product with the flat
state,

Z = 〈−|ν〉 = Tr(MN ), (A6)

where MN = A0 + A1. It is easy to show via induction that

Mt =(2 − p0 − p1)−1

([
1 − p0 1 − p1

1 − p0 1 − p1

]

+ (p0 + p1 − 1)t

[
1 − p1 −(1 − p1)

−(1 − p0) 1 − p0

])
. (A7)

It follows that the partition function is already normalized in
the infinite limit

lim
N→∞

Z = 1. (A8)

The average DW density 〈nDW〉 can be calculated as the
DW occupation between any two neighboring sites in the
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lattice,

〈nDW〉 = 1

Z
〈−|[ni(1 − ni+1) + (1 − ni )ni+1]|ν〉

= 1

Z
Tr([A1A0 + A0A1]MN−2). (A9)

Taking the infinite limit, one finds that

lim
N→∞

〈nDW〉 = 2(1 − p0)(1 − p1)

2 − p0 − p1
. (A10)

We can now determine the p0, p1 necessary to have the re-
quired DW density by substituting Eq. (A5) into Eq. (A10)
and solving as a quadratic equation. Thus, we have found
an MPS steady-state solution with bond dimension 2, which
also has the required DW density in the thermodynamic
limit.

To calculate other local observables, we can again simply
use the procedure described above. The average excitation

density can be calculated using a local MPO on just one site,

lim
N→∞

〈n〉 = lim
N→∞

1

Z
〈−|ni|ν〉 = lim

N→∞
1

Z
Tr(A1MN−1)

= 1 − p0

2 − p0 − p1
. (A11)

Likewise, the average dynamical activity can be calculated as
the escape rate of just a single site, which can be calculated
using the three-body operator

ri = c[ni−1(1 − ni )(1 − ni+1) + (1 − ni−1)(1 − ni )ni+1]

+ (1 − c)[ni−1ni(1 − ni+1) + (1 − ni−1)nini+1]. (A12)

After a lengthy calculation, we find

lim
N→∞

〈k〉 = lim
N→∞

1

Z
〈−|ri|ν〉

= 2(1 − p0)(1 − p1)

2 − p0 − p1
[(1 − c)p1 + cp0]. (A13)

We compare our analytical results to numerical data obtained
for large, but finite system sizes in Fig. 1. Both results show
excellent agreement.
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