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Universal two-level quantum Otto machine under a squeezed reservoir
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We study an Otto heat machine whose working substance is a single two-level system interacting with a
cold thermal reservoir and with a squeezed hot thermal reservoir. By adjusting the squeezing or the adiabaticity
parameter (the probability of transition) we show that our two-level system can function as a universal heat
machine, either producing net work by consuming heat or consuming work that is used to cool or heat
environments. Using our model we study the performance of these machine in the finite-time regime of the
isentropic strokes, which is a regime that contributes to make them useful from a practical point of view.
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I. INTRODUCTION

Classical heat machines convert thermal resources into
work and vice versa. For example, the heat engine draws
heat from a hot reservoir, uses part of that heat to perform
mechanical work, and discards the rest in a cold reservoir.
The refrigerator, on the other hand, uses mechanical work to
remove heat from a cold reservoir and discards it in a hot one.
A third kind of heat machine, the heather, uses the mechanical
work to heat one, usually the cold, or both reservoirs; see
Fig. 1. The cyclic heat machines are the paradigm for these
comparative studies, whose efficiency η for heat engines and
coefficient of performances C for refrigerators are related by

C = 1

η
− 1. (1)

Equation (1) answers the following question: Given a cyclic
heat machine operating reversibly, if work W is extracted with
efficiency η, what is the performance coefficient C if that same
heat machine operates in a reverse cycle consuming work,
−W ? The heat machine efficiency and performance coeffi-
cient are bounded by the Carnot efficiency and performance
coefficient, which, for thermal reservoirs, are only attained
in quasistatic or reversible cycles. It is currently a subject of
intense study to compare heat machines running on purely
classic resources with heat machines running on some kind
of genuinely quantum resource, as, for example, coherence
[1–8], entanglement [9–13], as well as exploring the finite
dimension of Hilbert space [14–16].

A heat machine whose working substance is a quantum
system is often called a quantum heat machine. Potential tech-
nological applications of quantum heat machines ranges from
heat transport in nanodevices [17,18] to biological process
control [19,20], among others [21]. One kind of quantum
heat machine widely addressed by researchers in the field of
quantum thermodynamics is the quantum Otto heat machine
(QOHM) [15,22–29]. The QOHM consists of two isochoric
strokes, one with the working substance coupled to the cold

thermal reservoir and the other coupled to the hot thermal
reservoir, and two isentropic strokes, in which the working
substance is disconnected from the thermal reservoirs and
evolves unitarily. In the past few years, nonthermal reservoirs
have also been used in the theoretical and experimental study
of QOHM; for instance, squeezed thermal reservoirs [30–35]
and reservoirs at apparent negative temperature [36]. These
unconventional quantum engines have drawn attention due to
the promising gains in engine efficiency and power.

In this paper we study a minimal model of QOHM which
is universal [16,37] in the sense that it can works either as
a heat engine or a refrigerator or, yet, a heater (see Fig. 1),
depending on the control parameter. Our model consists of a
two-level system (TLS) driven by an external laser source and
interacting with a cold thermal reservoir and with a squeezed
hot thermal reservoir, which will be assumed as a free resource
[33]. The relation between η and C [Eq. (1)] will be general-
ized to include the squeezing parameter, which will be our
parameter of control in building these types of heat machines.
Using our model, we are able to study both the efficiency and
performance of this TLS machine at finite-time regime of the
isentropic strokes, which contributes to making them useful
from the point of view of applicability.

This paper is organized as follows. In Sec. II we present
our model for a universal QOHM, which consists of a TLS as
the working substance under a cold thermal and a squeezed
hot thermal reservoir. In Sec. III we present the results of our
calculation for the heats exchanged with the reservoirs and the
work done or performed by the QOHM and the corresponding
efficiency η and performance coefficient C. In Sec. IV we gen-
eralize the relation between η and C given by Eq. (1) to include
both the squeezed thermal reservoir and finite-time isentropic
strokes. Finally, in Sec. V we present our conclusions.

II. UNIVERSAL QOHM

We are going to consider the TLS implementation of
a four-stroke quantum Otto cycle. The four-stroke to our
QOHM are the following:
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FIG. 1. The four types of heat machines: (a) a heat engine, which
draws heat from the hot reservoir and dumps it in the cold one,
performing work; (b) a refrigerator, on which work is performed and
used to draw heat from the cold reservoir and pump it to the hot one;
(c) a heater that uses the work done to pump heat from the hot to the
cold reservoir; and (d) a second type of heat machine that uses the
work done to heat two environments at once.

(i) Cooling stroke. In this first step, the TLS is weakly
coupled to the cold thermal reservoir until thermalized, when
it can be described by the Gibbs state ρG

1 = e−βcHc/Tr(e−βcHc ),
where Hc is the Hamiltonian and βc = 1/kBTc, where kB is the
Boltzmann constant and Tc is the reservoir temperature. The
TLS Hamiltonian remains unchanged during the thermaliza-
tion process and has the form Hc = 1

2 h̄ωcσx, with h̄, ωc, and
σx being the reduced Planck constant, the angular frequency,
and the x Pauli matrix, respectively.

(ii) Expansion stroke. In this stage the TLS evolves uni-
tarily from the state ρG

1 (at time t = 0) to ρ2 = UρG
1 U †(at

time t = τ ), where U is the unitary operator accounting for
the external driven of the TLS Hamiltonian, which varies
from Hc = 1

2 h̄ωcσx to Hh = 1
2 h̄ωhσy, with ωh being an angular

frequency higher than ωc (corresponding to the energy gap
expansion). For our purpose, it is not necessary to specify the
unitary operator U .

(iii) Heating stroke. This is the stage where the
TLS is weakly coupled to the hot squeezed thermal
reservoir until reaching the stead state ρS

3 = SρG
3 S†.

The reservoir squeezing changes the thermalized
state ρG

3 = e−βhHh/Tr(e−βhHh ) according to operator
S = (μ|−y〉〈+y| + ν|+y〉〈−y|)/

√
μ2 + ν2, where μ = cosh r

and ν = sinh r [38]. The state |−y〉 (|+y〉) is the ground
(excited) state of the TLS at this stage and r is the
squeezing parameter. As in the cooling stroke, here the
TLS Hamiltonian Hh = 1

2 h̄ωhσy also remains unchanged.
(iv) Compression stroke. This stage is accomplished by

reversing the expansion protocol (ii), such that the TLS
Hamiltonian is changed from Hh = 1

2 h̄ωhσy to Hc = 1
2 h̄ωcσx,

corresponding to the energy gap compression, making the
TLS state to evolve unitarily from to ρS

3 to ρ4 = U †ρS
3U .

The quantities we are interested in is the efficiency η to
the heat engine as well as the coefficient of performance
C to the refrigerator. The engine efficiency is given by
η = −Wnet/Qh, where Qh is the average heat absorbed from
the hot reservoir and Wnet is the average net work extracted
from the engine, while the coefficient of performance, on the
other hand, is given by C = Qc/Wnet, where Qc is the average
heat extracted from the cold thermal reservoir by performing
an average net work Wnet on the TLS. In order to deter-
mine both the efficiency and the coefficient of performance
we resort to the first law of thermodynamics, together with
work and heat definitions, as follows. According to the first
law of thermodynamics, the change in the internal energy
of a given system during a thermodynamic process can be
decomposed into work W and heat Q. In quantum thermo-
dynamics the first law is written as 	E = Q + W , where 	E
is the average change in the system internal energy, which is
given by E = Tr(ρH ). Heat and work averages, in turn, are
Q = ∫

dtTr[(dρ/dt )H] and W = ∫
dtTr[ρ(dH/dt )] [39,40],

respectively. Therefore, according to the first law, from the
quantum Otto cycle described in (i)–(iv), we can promptly see
that W = 0 and 	E = Q in the heating and cooling strokes,
and Q = 0 and 	E = W in the expansion and compression
strokes. This considerably simplifies the calculations, as com-
pared to other cyclic machines, such as Carnot or Stirling,
where work and heat are simultaneously exchanged.

Aiming at possible applications in nuclear magnetic res-
onance [27,36], we use here the following parameters in
our numerical calculations: ωc = 2π kHz, ωh = 3.5ωc, βc =
1/(10 peV), and βh = 0.7βc.

III. RESULTS

With the information provided in (i)–(iv) strokes and defi-
nitions of work and heat as given in Sec. II, we can obtain the
average heats exchanged with the cold and hot reservoirs as
well as the average net work:

Qc = −1

2
h̄ωc(tanh θc − ζ tanh θh) − h̄ξζωc tanh θh, (2)

Qh = 1

2
h̄ωh(tanh θc − ζ tanh θh) − h̄ξωh tanh θc, (3)

and

Wnet = −1

2
h̄(ωh − ωc)(tanh θc − ζ tanh θh)

+ h̄ξ (ωh tanh θc + ζωc tanh θh), (4)

where θc(h) = 1
2βc(h)h̄ωc(h), ζ = 1/(μ2 + ν2)2, and ξ =

|〈±y|U |∓x〉|2 = |〈±x|U †|∓y〉|2. The parameter ξ , which gives
the probability of transition between the two levels of the
TLS, is the adiabaticity parameter [27,36]. This parameter
allows us to study the QOHM efficiency and performance
coefficient in any time regime. In fact, this so-called adi-
abaticity parameter is the transition probability induced by
the unitary evolution U , and the faster the unitary process
the greater ξ . When ξ = 0, the process is called quasistatic
and occurs at null power. Finite-time processes, on the other
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FIG. 2. Curves Qc (dotted blue line), Qh (dashed red line), and
Wnet (solid black line) versus the squeezing parameter r. These curves
highlight the universality of our model, since depending on the value
of the control parameter r the four types of machines shown in Fig. 1
can be engineered. The parameters used here are (a) ξ = 0.2, ωc =
2π kHz, ωh = 3.5ωc, βc = 1/(10 peV), βh = 0.7βc and (b) ξ = 0,
ωc = 2π kHz, ωh = 3.5ωc, βc = 1/(10 peV), βh = 0.7βc. Dotted
black lines delimit the regions of the different types of machine
shown in Fig. 1.

hand, occur at nonnull power, and for instantaneous pro-
cess U = I , with I being the identity. As we shall see, the
Otto efficiency and performance coefficient occurs to ξ = 0,
corresponding to a machine operating at null power. As we
are not attaching any secondary system to exchange work
with our TLS machine, either in the case of heat engines
or the in the case of refrigerators, we can think about this
simplified model as a proof or concept [27], allowing us to
impose theoretically maximum constraints on their efficiency
or performance coefficient. It is worthwhile to mention that,
from Eq. (3), if we consider a quasistatic process (ξ = 0) in
the limit of high squeezing (r → ∞), which implies ζ → 0,
then Qh > 0 irrespective of the bath temperatures. If we then
let Tc > Th in this high squeezing limit, then this would im-
ply a heat flow from cold to hot, apparently in contradiction
with the second law of thermodynamics. However, it is to be
noted that the squeezing operation takes the reservoir out of
thermodynamics equilibrium, changing its excitation number
to nth → N = nth(cosh2 r + sinh2 r) + sinh2 r [38] and, as a
consequence, changing the so-called effective or apparent
temperature, defined according to N = (e−h̄ωh/kBTeff − 1)

−1
, of

the squeezed reservoir. Hence, in the limit of high squeezing
r → ∞, N → ∞, such that even letting Tc > Th the effective
temperature of the reservoir will be Teff > Tc, which can be
seen as an increase in its effective temperature as well as a
change in its ergotropy, such that part of the energy exchanged
with the squeezed thermal bath is actually work. Because
of the nonequilibrium nature of the squeezed reservoir, no
second law violation occurs, as shown in Refs. [41,42].

According to our convention, Q > 0 (Q < 0) means heat
energy flowing into (out of) the engine, while Wnet < 0
(Wnet > 0) means useful energy flowing out of (into) the en-
gine; see Fig. 1. In Fig. 2 we show all the three relevant

quantities Qc (dotted blue line), Qh (dashed red line), and
Wnet (solid black line) versus the squeezing parameter r for
ξ = 0 [Fig. 2(a)] and ξ = 0.2 [Fig. 2(b)]. From Fig. 2(a)
the universality of our TLS machine should be apparent. For
example, if we want to build a heat engine, for which Qc < 0,
Qh > 0, and Wnet < 0, then we should choose r � 0.77; if
we want to build a refrigerator, for which Qh < 0, Qc > 0,
and Wnet > 0, then our control parameter should be r � 0.29;
heater machines of types I and II, on the other hand, lie in
region 0.29 � r � 0.77, thus corresponding to the four types
of heat machines as shown in Fig. 1. Also, note from Fig. 2(b)
that to the quasistatic case ξ = 0 there are only two types of
heat machines, and depending on the value of r, the machine
switches directly from engine to refrigerator and vice versa.

In the following sections we will study the two main types
of machines whose application has been highlighted in the
most varied contexts, which are the engine and the refriger-
ator, by considering the squeezing as the control parameter.

A. Two-level heat engine

Following the definition of efficiency, which is η =
−Wnet/Qh, we find to our model:

η = 1 − ωc

ωh
R, (5)

where

R = 1 + 2ξF
1 − 2ξG , (6)

with

F = ζ tanhθh

tanhθc − ζ tanhθh
(7)

and

G = tanhθc

tanhθc − ζ tanhθh
. (8)

Note, from Eq. (6), that R = 1 when ξ = 0, which corre-
sponds to the quasistatic case, and η = 1 − ωc

ωh
≡ ηOtto.

In terms of the adiabaticity parameter ξ the condition to
extract work is Wnet < 0, such that

ξ <
(ωh − ωc)(tanh θc − ζ tanh θh)

2(ωh tanh θc + ζωc tanh θh)
, (9)

which implies ζ < tanh θc/ tanh θh (since ξ � 0). As we can
confirm both analytically and numerically, this condition
results in heat absorption from the squeezed hot thermal reser-
voir, Qh > 0, and heat loss to the cold thermal reservoir, Qc <

0, which characterizes the heat engine. In Fig. 3 we show the
efficiency η versus the squeezing parameter for quasistatic
regime ξ = 0 (solid black line), which gives the Otto effi-
ciency, and for finite-time regime ξ = 0.1 (dashed blue line)
and ξ = 0.2 (dotted red line). Figure 3 shows that although the
engine efficiency can be enhanced by the squeezed reservoir,
the Otto efficiency is never achieved for processes occurring
in finite-time regimes. However, for a treatment of the engine
efficiency when elaborated optimization procedure is carried
out, see Ref. [34].

052131-3



DE ASSIS, SALES, DA CUNHA, AND DE ALMEIDA PHYSICAL REVIEW E 102, 052131 (2020)

B. Two-level refrigerator
According to Eq. (1), a good engine is a poor refrigerator

and vice versa. This leads us to the conclusion that, as we have
seen in the previous section, since the squeezing parameter
enhances the engine efficiency, squeezed reservoirs should not

enhance the coefficient of performance. As we shall see, our
results confirm that this is true. The refrigerator C is defined
by the ratio C = Qc/Wnet, meaning that the goal is to extract
as much heat as possible from the cold reservoir by doing a
minimum of work. From Eqs. (2) and (4) we obtain

C = ωc(tanh θc − ζ tanh θh) − ξζωc tanh θh

(ωh − ωc)(tanh θc − ζ tanh θh) + ξ (ωh tanh θc + ζωc tanh θh)
, (10)

or, after a little algebra,

C = RCOtto

1 + COtto(1 − R)
, (11)

where R was defined in Eqs. (6)–(8) and

COtto = ωc

ωh − ωc
(12)

is the ideal C obtained from quasistatic processes, i.e., by
letting ξ = 0 (R = 1).

Recalling that Eq. (11) makes sense only for Qc > 0 and
Wnet > 0, the following constraint must be obeyed:

ξ <
1

2

(
1 − tanh θc

ζ tanh θh

)
. (13)

By imposing the constraint Eq. (13), we can numerically
verify that the highest value of C is equal to the ideal Otto ma-
chine COtto = ωc/(ωh − ωc), which occurs to the quasistatic
process ξ = 0 or R = 1. In Fig. 4 we show the C for the ideal
Otto refrigerator ξ = 0 (solid black line), as well as for two
other finite-time parameters ξ = 0.1 (dashed blue line) and
ξ = 0.2 (dotted red line). As we can see, for ξ > 0 all curves
in Fig. 4 start below the ideal Otto performance coefficient
COtto = 0.4 and decrease further as the squeezing parameter

FIG. 3. Efficiency η to the TLS engine versus the squeezing
parameter r considering quasistatic processes ξ = 0, resulting in the
Otto efficiency ηOtto = 1 − ωc/ωh (horizontal solid black line) and
the finite-time regime ξ = 0.1 (dashed blue line) and ξ = 0.2 (dotted
red line). We also use the parameters ωc = 2π kHz, ωh = 3.5ωc,
βc = 1/(10 peV), and βh = 0.7βc.

increases. As expected, the performance coefficient behavior
is contrary to the efficiency behavior shown in Fig. 3.

IV. η-C RELATION FOR SQUEEZED RESERVOIRS

In this section we will generalize Eq. (1) to take into
account processes occurring under squeezed reservoirs. To
this end, we need to eliminate Wnet from both η = −Wnet/Qh

and C = Qc/Wnet using Eqs. (2)–(4). For ξ > 0 it should be
noted, see Fig. 2(a), that in different regions in which the heat
machine operates either as refrigerator or engine, there is no
Wnet such that its absolute value coincides in both regions,
thus implying that it is not legitimate to consider W (engine)

net =
−W (fridge)

net when eliminating Wnet from η = −Wnet/Qh and
C = Qc/Wnet. As a consequence, unlike what happens in the
quasistatic case shown in Fig. 2(b), for ξ �= 0 there will
not always be a balance between the work Wnet that can be
extracted from a universal TLS engine having η efficiency,
and the C performance that would be obtained if that same
work Wnet were supplied to a fridge machine, at least for
the parameters considered here. Nonetheless, note that when
ξ = 0 [Fig. 2(b)] the different regions that delimit the different
types of thermal machines do not overlap, regardless of the
parameters used. For example, the work is positive in the
region that limits the operation of the refrigerator but negative
in the region that limits the operation of the heat engine, as

FIG. 4. Performance C versus the parameter r of the squeezed
reservoir for a (a) quasistatic process ξ = 0 (solid black line) and
finite-time processes (b) ξ = 0.1 (dashed blue line) and (c) ξ = 0.2
(dotted red line). The other parameters used here are ωc = 2π kHz,
ωh = 3.5ωc, βc = 1/(10 peV), and βh = 0.7βc.
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shown in Fig. 2(b). If we then restrict our analysis to the
case ξ = 0, then we see that as defined by Eq. (6), R =1,
and therefore, using Eq. (5), Eq. (11), and Eq. (12), the η-C
relation follows:

COtto = 1

ηOtto
− 1, (14)

which is exactly the same as Eq. (1) and therefore the squeez-
ing parameter does not modify the relation between η and C
in the quasistatic limit, which is an interesting result.

V. CONCLUSION

We have proposed a universal QOHM based on a two-level
system as the working substance that operates under two
reservoirs: a cold thermal reservoir and a squeezed hot thermal
reservoir. For universal QOHM we mean the possibility of
changing the parameters of control, such as the squeezing r

and the adiabaticity ξ parameters, to make the machine work
as a thermal engine, a refrigerator, or as a heater. We also
showed that the squeezing parameter, although useful to im-
prove the efficiency of an engine, always leads to a worsening
of the performance coefficient of a refrigerator. This is in
contrast to the result of Ref. [31], where the authors consid-
ered a harmonic oscillator as the work substance and the cold
reservoir as the squeezed one. Finally, we have demonstrated
that the usual relation between η and C, Eq. (1), remains
unchanged for a heat machine working at null power under
two reservoirs: a cold thermal reservoir and a hot squeezed
thermal reservoir.
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[36] R. J. de Assis, T. M. de Mendonça, C. J. Villas-Boas, A. M.

de Souza, R. S. Sarthour, I. S. Oliveira, and N. G. de Almeida,
Phys. Rev. Lett. 122, 240602 (2019).

[37] N. M. Myers and S. Deffner, Phys. Rev. E 101, 012110 (2020).
[38] R. Srikanth and S. Banerjee, Phys. Rev. A 77, 012318 (2008).
[39] R. Alicki, J. Phys. A: Math. Gen. 12, L103 (1979).
[40] R. Kosloff, J. Chem. Phys. 80, 1625 (1984).
[41] W. Niedenzu, D. Gelbwaser-Klimovsky, A. G. Kofman, and G.

Kurizki, New J. Phys. 18, 083012 (2016).
[42] G. Manzano, Phys. Rev. E 98, 042123 (2018).

052131-5

https://doi.org/10.1126/science.1078955
https://doi.org/10.1073/pnas.1110234108
https://doi.org/10.1103/PhysRevA.86.043843
https://doi.org/10.1103/PhysRevX.5.031044
https://doi.org/10.1103/PhysRevE.93.012145
https://doi.org/10.1103/PhysRevLett.119.170602
https://doi.org/10.1103/PhysRevE.97.042120
https://doi.org/10.1103/PhysRevA.99.062103
https://doi.org/10.1103/PhysRevE.79.041113
https://doi.org/10.1103/PhysRevE.87.042131
https://doi.org/10.1103/PhysRevE.89.032115
https://doi.org/10.1103/PhysRevX.5.041011
https://doi.org/10.1103/PhysRevLett.120.063604
https://doi.org/10.1063/1.373503
https://doi.org/10.1103/PhysRevLett.105.130401
https://doi.org/10.1103/PhysRevE.87.012140
https://doi.org/10.1103/PhysRevLett.111.040601
https://doi.org/10.1038/s41567-018-0199-4
https://doi.org/10.1016/0375-9601(83)90189-5
https://doi.org/10.1038/scientificamerican0509-72
https://doi.org/10.1088/0264-9381/31/20/205002
https://doi.org/10.1103/PhysRevE.85.041148
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1103/PhysRevB.94.184503
https://doi.org/10.1209/0295-5075/113/60002
https://doi.org/10.3390/e19040136
https://doi.org/10.1103/PhysRevLett.123.240601
https://doi.org/10.1088/1367-2630/ab4dca
https://doi.org/10.1103/PhysRevE.101.022127
https://doi.org/10.1103/PhysRevLett.112.030602
https://doi.org/10.1103/PhysRevE.91.062137
https://doi.org/10.1103/PhysRevE.93.052120
https://doi.org/10.1103/PhysRevX.7.031044
http://arxiv.org/abs/arXiv:2003.12664
http://arxiv.org/abs/arXiv:2006.08311
https://doi.org/10.1103/PhysRevLett.122.240602
https://doi.org/10.1103/PhysRevE.101.012110
https://doi.org/10.1103/PhysRevA.77.012318
https://doi.org/10.1088/0305-4470/12/5/007
https://doi.org/10.1063/1.446862
https://doi.org/10.1088/1367-2630/18/8/083012
https://doi.org/10.1103/PhysRevE.98.042123

