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Orientational ordering in a fluid of hard kites: A density-functional-theory study
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Using density-functional theory we theoretically study the orientational properties of uniform phases of hard
kites—two isosceles triangles joined by their common base. Two approximations are used: scaled particle theory
and a new approach that better approximates third virial coefficients of two-dimensional hard particles. By
varying some of their geometrical parameters, kites can be transformed into squares, rhombuses, triangles, and
also very elongated particles, even reaching the hard-needle limit. Thus, a fluid of hard kites, depending on
the particle shape, can stabilize isotropic, nematic, tetratic, and triatic phases. Different phase diagrams are
calculated, including those of rhombuses, and kites with two of their equal interior angles fixed to 90◦, 60◦,
and 75◦. Kites with one of their unequal angles fixed to 72◦, which have been recently studied via Monte Carlo
simulations, are also considered. We find that rhombuses and kites with two equal right angles and not too large
anisometry stabilize the tetratic phase but the latter stabilize it to a much higher degree. By contrast, kites with
two equal interior angles fixed to 60◦ stabilize the triatic phase to some extent, although it is very sensitive to
changes in particle geometry. Kites with the two equal interior angles fixed to 75◦ have a phase diagram with
both tetratic and triatic phases, but we show the nonexistence of a particle shape for which both phases are stable
at different densities. Finally, the success of the new theory in the description of orientational order in kites is
shown by comparing with Monte Carlo simulations for the case where one of the unequal angles is fixed to 72◦.
These particles also present a phase diagram with stable tetratic and triatic phases.
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I. INTRODUCTION

The study of entropically driven phase transitions in liquid
crystals has been an active field of research from the pioneer-
ing work of Onsager [1], having a major boost in the 1980s
and ’90s [2–7] and continuing as a very active topic of re-
search up to the present [8–18]. These works theoretically and
experimentally showed that liquid-crystalline uniform phases,
such as uniaxial or biaxial nematics (N), and nonuniform
phases such as smectic and columnar phases, can be stabilized
solely by extremely short-ranged repulsive particle interac-
tions. Several statistical-mechanical models were developed
for the description of thermodynamic and structural properties
of hard-body fluids in which the Helmholtz free-energy has
only an entropic contribution, with density functional theory
(DFT) being one of the most successful theoretical tool in this
respect [19].

Most theoretical works naturally concentrated on 3D sys-
tems since in experiments the ratios between the lengths
of the samples along the three spatial directions and those
of the particles are large enough to conform to the three-
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dimensional spatial criterion. However, new experimental
techniques have been recently developed for the synthesis of
taylor-shaped hard-core interacting microparticles, which can
now be studied under extreme confinement along one spatial
direction [20–22]. These systems can be thought of as single
monolayers of particles subject to Brownian motion in two
dimensions (2D).

Recent experimental works on these effectively 2D hard-
body fluids showed the stability of exotic uniform liquid-
crystalline phases such as tetratic (T) [20,21], and triatic (TR)
[22]. The symmetries of these phases can be rationalized from
the properties of the orientational distribution function, h(φ),
defined as the probability density for the angle φ between the
particle axis and the nematic director. Four- or six-fold sym-
metries, i.e., h(φ) = h(φ + 2π/n), indicate the presence of T
(n = 4) or TR (n = 6) phases, respectively. Figure 1 shows a
schematic representation of all uniform phases involved in this
study. The symmetries of these phases, indicating the presence
of one (N), two (T), or three (TR) equivalent directors, are
indicated.

Theoretical studies using MC simulations [23,24] and DFT
[25–27] predicted the stability of the T phase long before the
experiments were conducted. By contrast, theoretical studies
of the TR phase [28,29] appeared after the phase was discov-
ered in experiments [22].
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FIG. 1. Sketches of particle configurations in the I (a), T (b), TR
(c), and N (d) phases. Also, we show all possible equivalent directors
along which particles are aligned.

Depending on their particular (usually polygonal) shape,
2D particles also crystallize into a variety of structures with
different symmetries. These symmetries exhibit a subtle de-
pendence on geometrical details such as the roundness of the
particle corners. For example, in the case of regular polygons
with more than seven sides, the crystal melts continuously
into an hexatic phase and then transforms into an isotropic (I)
fluid through a first-order transition [30]. Triangles, squares
and hexagons exhibit a Kosterlitz-Thouless transition from
I to TR, T and hexatic phases, respectively, which then crys-
tallize [30]. Finally, pentagons undergo a one-step first-order
melting from crystal to I [30]. However, in a fluid of squares
with rounded corners, the orientationally disordered hexatic-
rotator, or orientationally ordered rhombic crystalline phases
are stabilized as density is increased [21,31], but no T phase
was found; instead, an hexatic phase between I and crystal
appears for a certain roundness parameter [31]. In the case of
hexagons with rounded corners a transition occurs between
an hexagonal rotator crystal and an hexagonal crystal [32].
DFT studies revealed that nonpolygonal particles such as hard
rectangles [25–27] or superellipses close enough to the rect-
angular shape [33] can stabilize the T phase when the aspect
ratio is below a certain critical value.

Some recent experimental works have shown the tendency
of some achiral 2D particles, such as equilateral triangles or
square crosses, to form chiral crystalline structures at high
packing fractions [22,34,35]. By mixing particles with exotic
geometries, e.g., kites and darts, it is also possible to obtain
quasi-periodic structures in which kite- and dart-shaped tiles
form pentagonal stars, arranged in turn into different close-
packed superstructural patterns [36].

In recent experiments the phase diagram of kites with one
of its unequal interior angles, α1, fixed to 72◦ with the other,
α2 being variable, was elucidated [37]. Interestingly, kites
with a shape departing from the square geometry also form
a T phase for some values of α2 [37]. Figure 2 shows the
geometry of kites, along with the definitions for the αi angles.

In this work the phase behavior and orientational proper-
ties of a uniform fluid of hard kites is studied theoretically.
DFT is used, based on two alternative approximations:
the standard scaled particle theory (SPT), and a new
approach which better approximates the third virial co-
efficient. Different constraints on the interior angles αi

of kites are selected. The kite geometry has the square
(αi = 90◦) and equilateral triangle (α1 = 60◦, α2 = 180◦)
as limiting cases. Actually, these shapes maximize T and
TR stability, respectively. We are interested in changes in
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FIG. 2. Sketches of the particle geometry and the excluded area
of two kites for a relative angle φ. Some characteristic lengths and
angles are shown.

the stability of these phases resulting from distortions of
these two polygonal geometries, always within the kite-like
shape. Therefore, the following constraints on the interior
angles are applied: (i) α1 = α2 (rhombuses having the square
as a limiting case), (ii) α1 + α2 = 180◦ (kites with the same
limiting case and with both equal interior angles fixed to
90◦), (iii) α1 + α2 = 240◦ (kites with the equilateral triangle
as a limiting case), and (iv) α1 + α2 = 210◦ (kites with the
limiting case consisting of an isosceles triangle with opening
angle equal to 30◦). Phase diagrams of all these cases are
calculated. By comparing the first and second cases we show
that the latter has a larger stability region for the T phase, i.e.,
a larger interval for α1 where the phase is stable. Also, the TR
phase of hard equilateral triangles is very sensitive to changes
in particle geometry, resulting in the lowest α1-interval for
which the phase is stable. The case (iv) is very interesting
since the phase diagram presents stable T and TR phases for
different α1. The existence of a particular particle shape (with
fixed αi) that exhibits both phases at different densities can be
discarded. Finally, we calculated the phase diagram of kites
with one of the unequal angles, α1, fixed to 72◦, while the
other one, α2, is freely varied. This study allowed our new
DFT theory to be contrasted with the recent Monte Carlo
(MC) simulations of Ref. [37]. We showed that, by varying α1

in the interval [54◦, 180◦], both phases, T and TR, are stable,
with the former having the largest stability region. The size
of this region is similar to that found in the simulations. This
result, together with the agreement in the values of packing
fractions at the I-T transition, gives support to the validity of
our DFT approach.

II. THEORY

In this section, we introduce the theoretical tools used to
study the equilibrium properties of the fluid of hard kites. In
Sec. II A the two version of DFT used are presented: the one
based on the classical SPT and a new one that better approx-
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imates three-body correlations in general systems of 2D hard
convex particles. In Sec. II B the particle model used and the
properties of the excluded area (the main ingredient of the
DFTs) are considered. Finally, Sec. II C presents a bifurcation
analysis using both theories to calculate the I-(TR,T) bifur-
cation curves; when the SPT approximation is used analytic
expressions can be obtained. The bifurcation analysis from the
(T,TR) phases to the N phase is described in the Appendix.

A. DFT for 2D hard convex particles

The density expansion of the fluid pressure is based on the
knowledge of the virial coefficients Bn. For hard spheres or
hard disks these coefficients are known to high order. How-
ever, for anisotropic hard bodies only the cases n = 2 and 3
are available in general, and the latter case is only known for
a few geometries. In 2D the exact second-virial coefficient
of convex bodies in the orientationally disordered I phase is
given by [38–41]

B2 = a + L2

4π
= a(1 + γ ), (1)

with a and L the area and perimeter of the particle. The
anisometry parameter

γ = L2

4πa
, (2)

is a measure of how much the particle geometry deviates
from a disk. In this case γ = 1, while for other convex
particles γ > 1.

A good approximation for the third virial coefficient,
again for orientationally disordered particle configurations, is
given by

B3 = a2 + δ1
L2a

4π
+ δ2

L4

(4π )2 = a2(1 + δ1γ + δ2γ
2), (3)

where δi are numerical coefficients obtained by fitting the
available values of B3 (calculated from MC integration) for
several convex particles [27,38,39].

An interesting limit is the Onsager hard-needle limit, where
particles become infinitely elongated. In this limit the particle
aspect ratio κ becomes infinite, κ → ∞. The behavior of the
ratio of B3 to B2

2 is [1,39]

lim
κ→∞

B3

B2
2

= 0, in 3D, (4)

lim
κ→∞

B3

B2
2

� 0.514, in 2D. (5)

The 3D limit explains the success of DFT theories for 3D
hard-body fluids based only on the exact second virial co-
efficient. By contrast, because of Eq. (5), the corresponding
2D theories have a lesser degree of accuracy and third and
possibly higher-order virial coefficients are necessary in the
theory to adequately account for particle correlations in the
fluid.

For orientationally ordered phases, the anisometry param-
eter becomes a functional of the orientational distribution

function h(φ):

γ [h] = 〈〈Aspt (φ)〉〉h(φ)

2a

≡ 1

2a

∫ 2π

0
dφ1

∫ 2π

0
dφ2h(φ1)h(φ2)Aspt (φ12). (6)

This is defined as a double angular average of Aspt (φ),
which is directly related to the excluded area between two
particles as

Aspt (φ) ≡ Aexcl(φ) − 2a. (7)

Note that, inserting the uniform distribution function h(φ) =
(2π )−1 in Eq. (6), we obtain

γ = 1

4πa

∫ 2π

0
dφAspt (φ) = L2

4πa
. (8)

The latter equality is proven in Refs. [40,41] for general
convex particles. Following a similar reasoning, an ap-
proximation for the third-virial coefficient of orientationally
ordered phases can be obtained by substituting the value of
the anisometry parameter by its functional form γ → γ [h]
in Eq. (3).

For perfectly oriented nematic phase, with the
symmetric orientational distribution function h(φ) =
[δ(φ) + δ(φ − π )]/2 (δ(x) being the Dirac-δ function), one
obtains from Eq. (6) γ [h] = [Aexcl(0) + Aexcl(π )]/(4a) − 1.
Now taking into account that the excluded area of perfectly
antiparallel oriented convex particles is equal to four times the
particle area, Aexcl(π ) = 4a, we obtain γ [h] = Aexcl(0)/(4a).
Finally, if particles are symmetric [Aexcl(0) = Aexcl(π )], then
the same value as for hard disks, γ [h] = 1, is obtained.

According to the SPT approach [42], the excess part of
the chemical potential is given by the second-order Taylor
expansion, with respect to the lengths of a test particle, of
the work necessary to insert this test particle into the fluid.
The second-order term is chosen to be the product of pressure
and particle area (i.e., the thermodynamic work necessary to
open a macroscopic cavity inside the fluid). This approxi-
mation recovers the exact limits for vanishingly small and
large test-particle lengths, intermediate lengths being just an
interpolation. Using thermodynamic relations, the excess part
of the free-energy per particle (in thermal units kT = β−1)
can be obtained, giving

ϕexc[h] ≡ βFexc[h]

N
= − log (1 − η) + γ [h]η

1 − η
, (9)

with k the Boltzmann constant, T the temperature, and N the
total number of particles. Fexc[h] is the Helmholtz free-energy
density functional. The fluid packing fraction is η = ρa with
ρ the number density. Note that the density expansion of
Eq. (9), up to second order, is

ϕexc[h] � a(1 + γ [h])ρ + 1

2
(1 + 2γ [h])a2ρ2

= B2[h]ρ + 1

2
B(spt)

3 [h]ρ2. (10)

This gives the exact expression for the second virial coeffi-
cient given by Eq. (1), and an approximate value for the third
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one as

B(spt)
3 [h] = (1 + 2γ [h])a2. (11)

We note that the third virial coefficient for the I phase, as
obtained from SPT, gives the incorrect hard-needle limit

lim
κ→∞

B(spt)
3

B2
2

= lim
κ→∞

1 + 2γ

(1 + γ )2 = 0, (12)

since γ → ∞ as κ → ∞. Comparing Eqs. (3) and (11) we
conclude that, for hard disks (γ = 1), both expressions coin-
cide if and only if δ1 + δ2 = 2.

To overcome the failure of SPT to describe the correct scal-
ing behavior in the Onsager limit, we here propose a different
expression for the excess free-energy which gives the exact
value of B2 and the approximation Eq. (3) for B3, resulting in
the correct scaling for κ → ∞. We also require to recover the
SPT expression for hard disks, so we choose the condition
δ1 + δ2 = 2. Finally, we set δ2 = 1

2 so that the hard-needle
limit, B3

B2
2

→ 0.514 ≈ 1
2 , is accurately approximated.

With these constraints in mind our proposal is

ϕexc[h] = − log(1 − η) + γ [h]η

1 − η

+ γ [h](γ [h] − 1)

(
1

2
+ rη

)

×
[

η

1 − η
+ log(1 − η)

]
,

(13)

where an extra term is included, proportional to rη, which
only affects the expressions for the fourth and higher virial
coefficients. The coefficient r can be chosen to accurately
describe the packing fraction of the I-T transition of the hard
square fluid (as obtained from MC simulations). The precise
form for the density-dependent new term was chosen to con-
form to the following criteria: (i) the divergence for packing
fraction close to unity should be the same as that from SPT
[i.e., ∼(1 − η)−1] and (ii) use of the other, logarithmic term,
already present in the SPT, combined with the previous one in
such a way as to obtain the correct low density expansion limit
[i.e., to recover the required third virial coefficient Eq. (3)].

The ideal part of the free-energy per particle, dropping the
thermal area, is

ϕid[h] ≡ βFid[h]

N

= log η − 1 +
∫ 2π

0
dφh(φ) log [2πh(φ)]. (14)

The scaled fluid pressure βpa = η2 ∂ϕ

∂η
is calculated from the

the total free-energy per particle ϕ[h] = ϕid[h] + ϕexc[h] as

βpa = η

1 − η
+ γ [h]η2

(1 − η)2
+ γ [h](γ [h] − 1)η2

×
[(

1

2
+ r

)
η

(1 − η)2
+ r log(1 − η)

]
. (15)

As already mentioned the anisometry for symmetric particles
asymptotically behaves as γ [h] ∼ 1 for very high orienta-

tional ordering. Thus, in the case (γ [h] − 1)/(1 − η)2 ∼ 0,
Eqs. (13) and (15) show that the SPT (the first two terms in
both equations) is also recovered at high packing fractions.

In Sec. III we use the SPT approximation Eq. (9) and our
new proposal Eq. (13) to calculate the phase diagrams of
hard kites. As usual, the total free-energy per particle ϕ[h] is
minimized with respect to h(φ) to obtain its equilibrium value.
The minimization is much less demanding numerically using
truncated Fourier expansions for the orientational distribution
function,

h(φ) = 1

2π

[
1 +

n∑
k=1

hk cos(2kφ)

]
, (16)

and then minimizing ϕ[h] with respect to the Fourier coef-
ficients {hk}. The second-order I-(T,TR) transition lines are
calculated using a bifurcation analysis (see Sec. II C), while
the coexisting binodals are obtained from the equality of the
chemical potentials βμ = ϕ + βpa

η
and pressures βpa (evalu-

ated at the equilibrium values of {hk}) in the two coexisting
phases.

The only uniform orientationally ordered phase in a
fluid of hard squares is the tetratic phase. From the ex-
cluded area between two hard squares we obtain Aspt (φ) =
2a(| sin φ| + | cos φ|) (the key quantity to calculate γ [h]).
The symmetry of the T phase implies h(φ) = h(φ + π/2),
and consequently the Fourier expansion Eq. (16) should only
contain even integers k = 2 j ( j � 1). ϕ[h] is then minimised
with respect to {h2 j} for a given η, with ϕex[h] given by SPT
[Eq. (9)], and also using our new proposal [Eq. (13)] with
r = 1 and 2. Inserting the equilibrium values into Eq. (15)
and its SPT-version (the first two terms), three different ap-
proximations for the equations of state (EOS) are obtained.
Results are shown in Fig. 3, which also includes the EOS of
hard squares obtained from MC simulations, Ref. [23]. An
indirect measure of the quality of our approach for B3 is that,
for packing fractions η � 0.6, the comparison between the
EOS obtained from the new theory and from MC simulations
is quite good, with the new theory being slightly better than
SPT. The left arrow in the figure indicates the I-T transition
from simulations, which occurs for η � 0.7. The conclusion is
that the choice r = 2 predicts the transition much better, while
the SPT gives a much higher value η ≈ 0.855. The figure also
shows how the theories overestimate the fluid pressure with
respect to MC simulations, particularly close to the phase tran-
sition. It should be taken into account that simulation results
also include the crystal phase at densities higher than η � 0.78
(the right arrow in Fig. 3). However, the crystal phase has not
been included in our DFT study, so that it makes sense that
both theories overestimate the pressure at high densities.

The SPT approximation had been extensively used in the
description of the phase behavior of hard particle fluids. As
will be shown in Sec. II C, it has the advantage of producing
analytic expressions of the packing fraction at the continuous
transition from I to the orientationally ordered phases as a
function of the particle characteristic lengths. Because of this
we decided to calculate most phase diagrams with the SPT
formalism. The new proposal Eq. (13) was numerically im-
plemented to calculate two different phase diagrams with the
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FIG. 3. EOS of hard squares according to SPT (dotted), the new
approach with r = 1 (dashed) and with r = 2 (solid). Open circles
represent MC simulation results from Ref. [23]. The I-T transitions
from SPT and the new approach using r = 1 and r = 2 are shown by
solid triangles, squares and circles, respectively. The stability region
of the T phase obtained from MC simulations [23] is defined by the
arrows.

aim to comparing both theories. Also we wanted to confront
the new theory with recent MC simulations for hard kites [37].

B. Excluded area of hard kites

Kites are formed by two isosceles triangles of heights h1

and h2 and unequal opening angles α1 and α2 (0 � αi � π ),
joined by their common bases b. See a sketch of the particle
in Fig. 2. The other two interior angles, not indicated in the
figure, are equal and have a value of π − (α1 + α2)/2. In
the same figure the excluded area between two kites with a
relative angle φ is drawn. The particle axis is parallel to the
heights and we choose the axis to point from the vertex with
the largest opening angle to that with the smallest one. The
particle area is a = b

2 (h1 + h2) = l1l2 sin ( α1+α2
2 ) with l1 and

l2 the lengths of the isosceles triangles, li =
√

h2
i + b2/4.

Considering that α1 � α2 (as sketched in Fig. 2), the SPT
area, Aspt (φ) = Aexcl(φ) − 2a, with a relative angle 0 � φ �
π can be calculated from

Aspt (φ) = 2l2
1 sin α1 cos φ + l2

1 sin(φ − α1)
(φ − α1)

+ l2
2 sin(φ − α2)
(φ − α2)

+ 2l1l2[sin(φ − α−
12)
(φ − α−

12)

+ sin(φ − π + α+
12)
(φ − π + α+

12)]. (17)

Here we have defined α±
12 = (α2 ± α1)/2, and 
(x) is the

Heaviside function. For π � φ � 2π the SPT area is just
Aspt (2π − φ).

In general, kites are not symmetric with respect to 180◦
rotations. However, as we showed in Ref. [29], a fluid of hard
triangles (also a nonsymmetric particle) has equilibrium N
and TR phases with orientational distribution functions having
the symmetry h(φ) = h(π − φ), a property directly related to

0 0.2 0.4 0.6 0.8 1
φ/π

1

1.2

1.4

1.6

1.8

2

A
sp

t/(
2a

)

FIG. 4. The function Aspt (φ) for squares (dashed), triangles with
α1 = 60◦ and α2 = 180◦ (dotted), rhombuses with α1 = α2 = 60◦

(dot-dashed), and kites with α1 = 60◦ and α2 = 120◦ (solid).

the nonnegativity of the odd-index Fourier amplitudes of the
function Aspt (φ) [29]:

∫ 2π

0
dφ cos[(2k − 1)φ]Aspt (φ) =

{
0, k = 1,

> 0, k > 1.
(18)

The function Aspt (φ) for kites also exhibits the same property.
This symmetry of the orientational distribution function im-
plies that particles axes have equal probabilities to point along
the two possible directions parallel to the (N,T,TR)-directors.

By construction kites can degenerate into squares if α1 =
α2 = 90◦, into triangles when α2 = 180◦ and α1 < 180◦, or
into rhombuses for α1 = α2. Figure 4 shows four exam-
ples of the function Aspt (φ) for squares, equilateral triangles
(α1 = 60◦ α2 = 180◦), rhombuses with α1 = α2 = 60◦ and
also for kites with α1 = 60◦ and α2 = 120◦. The symmetries
of this function are: (i) Aspt (φ) = Aspt (φ + π/2) for squares,
(ii) Aspt (φ) = Aspt (φ + 2π/3) for equilateral triangles, and
(iii) Aspt (φ) = Aspt (π − φ) for rhombuses. These symmetries
are directly related to the propensity of the system to stabi-
lize the T, TR, and N phases, respectively, at high densities.
Also note the complexity of Aspt (φ) for kites with α1 = 60◦
and α2 = 120◦ (this is generally true for α1 �= α2), with the
presence of several local minima and maxima, and with the
absolute minimum always located at φ = π . Thus, the mini-
mum excluded area is always reached when the main particle
axes are antiparallel, resulting in Aexcl(π ) = 4a.

C. Bifurcation analysis from I phase

In this section, we present the calculation of the second
order transition lines, η as a function of the opening angle α1

of kites, from the I to orientationally ordered phases, using
some constraints on the other angle α2. As shown in Sec. III
these transitions can be of first order. However, this gener-
ally occurs in a small region of the phase diagram, so the
I-(TR,T,N) transitions are, for most values of α1, of second
order.
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Inserting the Fourier expansion Eq. (16) into the definition
of γ [h], Eq. (6), we obtain

γ [h] = γ0 + 1

2

∑
k�1

γkh2
k , (19)

where we define the coefficients

γk ≡ 1

π

∫ π

0
dφ

Aspt (φ)

2a
cos(2kφ)

= − [sin(α1/2) cos(kα2) + sin(α2/2) cos(kα1)]2

(4k2 − 1)π sin(α1/2) sin(α2/2) sin [(α1 + α2)/2]
,

(20)

depending only on αi (i = 1, 2). Note that we used the sym-
metry of Aspt (φ) with respect to the axis φ = π to integrate
from 0 to π , multiplying the result by 2. In the following,
we use the same symmetry of h(φ) to change the integration
intervals from [0, 2π ] to [0, π ]. Because of this, the normal-
ization factor (2π )−1 in h(φ) [see Eq. (16)] will be substituted
by π−1.

Consider a small perturbation of the orientational distri-
bution function of the I phase, h(φ) ≈ π−1[1 + h2

j cos(2 jφ)],
where j = 1, 2 and 3 for N, T, and TR symmetries, respec-
tively. The lowest order perturbation of the ideal part of the

free-energy per particle is ϕid ≈ log η − 1 + h2
j

4 , while the ex-
cess part can be calculated from Eq. (13), taking

γ [h] ≈ γ0 + 1

2
γ jh

2
j , (21)

and retaining only terms proportional to h2n
j (with n = 0, 1).

The free-energy difference between the orientationally or-
dered phase X (X =N, T, TR) and the I phase is

�ϕ ≡ ϕX − ϕI �
(

1 + 2

{
η

1 − η
+ (2γ0 − 1)

(
1

2
+ rη

)

×
[

η

1 − η
+ log(1 − η)

]}
γ j

)
h2

j

4
. (22)

At the bifurcation point the factor inside the outer parenthesis
is equal to zero. The value of the packing fraction at this
point is obtained by solving the equation �ϕ = 0 numerically
for η. Considering now the free-energy difference from the
SPT approach, i.e., the same Eq. (22) but removing the term
proportional to 2γ0 − 1, we obtain a simple analytical result:

η j = 1

1 − 2γ j
, (23)

where the packing fraction is labeled with j, indicating the
symmetry of the bifurcated phase. Some interesting cases
are: rhombuses with α1 = α2, and kites with α1 + α2 = 180◦.
The latter constraint implies that the other two equal an-
gles of the kites are fixed to 90◦. As shown below this
restriction constitutes an important requirement for a stable
T phase even for values of α1 significantly different from 90◦
(square geometry). The expressions for η j for these important

cases are

1

η j
=

⎧⎪⎪⎨
⎪⎪⎩

1 + 8 cos2( jα1 )
π (4 j2−1) sin α1

(α1 = α2),

1 + 2 cos2( jα1 )[tan(α1/2)+cot(α1/2)+2(−1) j ]
π (4 j2−1)

(α1 + α2 = π ).

(24)

A first indication for the stability of the T phase in a fluid of
hard rhombuses is given by the intersection of the I-N ( j = 1)
and I-T ( j = 2) bifurcation curves, η1(α1) = η2(α1). This
equality gives the result α∗

1 � 69.98◦, a value corresponding
to the most anisometric rhombus with a stable T phase. In fact
the actual value is a bit larger since, as shown in Sec. III, the
phase transitions are of first order in the neighborhood of the
intersection point. For the case α1 + α2 = 180◦ the solution
to the equation η1(α1) = η2(α1) is α∗

1 = 56.14◦. Obviously
the fact that the other two equal angles of the kites are 90◦
promotes the stabilization of the T phase for values of α1

lower to those for hard rhombuses.
Applying now the constraint α1 + α2 = 240◦, we obtain

the I-N and I-TR bifurcation curves

1

η j
=

⎧⎨
⎩

1 + cos2(3α1/2)√
3π sin(α1/2) sin(α1/2+π/3)

( j = 1),

1 + 4
√

3 cos2(3α1 ) cos2(α1/2−π/3)
35π sin(α1/2) sin(α1/2+π/3) ( j = 3).

(25)

In this case the equal angles of the kites are fixed to 60◦. Thus,
for α1 = 60◦ the kite degenerates into an equilateral triangle
while for α1 = 120◦ it becomes a rhombus. The equality
η1(α1) = η3(α1) gives α∗

1 � 75◦. This value is rather close to
60◦, implying that the TR phase is less stable with respect
to deformations (within the kite geometry) of the equilateral
triangle as compared to rhombuses or kites with α1 + α2 =
180◦. In fact, the difference �α1 ≡ |α∗

1 − αref
1 | (with αref

1 =
90◦ for rhombuses and kites with α1 + α2 = 180◦, and αref

1 =
60◦ for kites with α1 + α2 = 240◦), gives �α1 ≈ 15◦, 20◦ and
34◦ for 240◦-kites, rhombuses and 180◦-kites, respectively.

Figure 5 shows the bifurcation curves for the I-N transition,
η1(α1), and the I-T transition, η2(α2), for (a) rhombuses and
(b) kites with α1 + α2 = 180◦, as obtained from Eq. (24).
Panel (c) corresponds to η1(α1) and η3(α1) (the I-TR bifurca-
tion) for the case α1 + α2 = 240◦, obtained from Eq. (25). All
figures also show the same bifurcation curves from the new
approach (with r = 2). Finally, in (d) the case α1 + α2 = 210◦
is shown. It is clear that the new approach gives much lower
values of packing fractions at bifurcation than those predicted
from the SPT for all the explored values of α1. However,
the intersections between different bifurcation curves (which
can be taken to approximately bound the stability regions of
the N, T, and TR phases), are located at the same values
α∗

1 . This result can be explained by the fact that the equality
ηi(α1) = η j (α1) implies the same equality γi = γ j for both
theories.

The stability of the N, T, and TR phases is bounded from
below, in case of second order transitions, by the bifurcation
curves plotted in Fig. 5. However, as shown in Sec. III, the T
and TR phases exhibit a transition to a N phase at high den-
sities. Also nonuniform phases, not taken into account in the
present study, could limit the stability of the orientationally
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FIG. 5. I-N (solid), I-T (dashed), and I-TR (dotted) bifurcation curves of (a) hard rhombuses, (b) kites with α1 + α2 = 180◦, (c) 240◦ =
4π/3, and (d) 210◦ = 7π/6, according to SPT (black) and the new approach (dark gray). Intersections between these curves are shown by
black circles. Intervals of the opening angle α1 shown in (c) and (d) are [π/3, 2π/3] and [π/6, 7π/12], respectively.

ordered phases from above. To calculate the (T,TR)-N second
order transitions, we need to perform a bifurcation analysis
from T and TR phases, which we relegate to the Appendix.

The case of kites with α1 + α2 = 210◦ = 7π/6 deserves
special attention. When α1 = 30◦ and consequently α2 =
180◦, the kite degenerates into an acute isosceles triangle,
while for α1 = α2 = 105◦ = 7π/12 particle becomes a rhom-
bus. For larger values of α1 the phase diagram is symmetric
with respect to the axis α1 = 105◦. From Fig. 5(d) we see that
the N, T, and TR phases are present in the phase diagram,
but the most striking feature is the existence of a crossover
between the I-TR and I-T bifurcation curves. This could imply
that there exist some kites which can have stable T and TR
phases and a transition between them. In Sec. III this case is
studied in detail, and we will show that below this crossover
the I phase exhibits a transition to the N phase, with the latter
being the stable one at high densities.

III. RESULTS

This section is divided into three parts, each showing the
phase diagrams as well as the orientational properties of:

rhombuses (Sec. III A), kites with the sum of the two unequal
interior angles constant, α1 + α2 = const (Sec. III B), and
kites with one of the unequal interior angles fixed to α1 = 72◦
(Sec. III C).

A. Hard rhombuses

First we calculated the phase diagram of the uniform
phases of hard rhombuses (α1 = α2). Apart from the I-N and
I-T bifurcation curves, shown in Fig. 5(a), we also calculated
the T-N bifurcation curve using the formalism described in the
Appendix. Also for those values of α1 where a first-order I-N
or T-N transition exists, we calculated the coexisting packing
fractions from the equality of chemical potential and pres-
sure of the coexisting phases. The complete phase diagram
is shown in Fig. 6. We can see how the region of stability
of the T phase is reduced as the particle shape changes from
square (α1 = 90◦) to a critical rhombus with α1 = 73◦ (shown
in the figure). The stability region of the T phase is bounded
below and above by the I-N and T-N second-order transition
curves. In the neighborhood of their intersection there exists
an interval of α1 where first-order I-N and T-N transitions take
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FIG. 6. Phase diagram of hard rhombuses (α1 = α2) in the pack-
ing fraction (η)-opening angle (α1) plane. The regions of stability
of I, T, and N phases are correspondingly labeled. The coexistence
region of the I-N and T-N first-order phase transitions (located in the
neighborhood of the crossover between the I-T and T-N bifurcation
curves) are shaded in gray. The inset shows a detail of the N1-N2

first-order phase transition in a small α1 interval. Also rhombuses for
different α1 are depicted, in particular the one located at the intersec-
tion of the I-T second-order transition curve with the (I,TR)-binodal
of the I-N (left) and TR-N (right) transitions.

place. For α1 below the intersection of the I-N bifurcation
curve and the I-binodal of the I-N transition, there exists a
N-N transition ending in a critical point. The N-N coexistence
region is shown in the inset of Fig. 6.

Obviously for small values of α1, when the rhombus
becomes highly elongated, the N phase is the only possi-
ble uniform phase with orientational order at high enough
densities. This phase becomes stable at a second-order I-N
transition, occurring at rather low packing fraction. For α1 ∼
90◦ the T phase is the stable one at densities above a second-
order I-T transition, at relative high packing fractions. As the
opening angle decreases from 90◦ and reaches a critical value
α∗

1 = 73◦, the T phase looses its stability. For α � α∗
1 , as the

density increases, the T phase exhibits a transition to a N phase
(see Fig. 6), so that particle axes break the fourfold symmetry
and the alignment along two equivalent directors changes to
alignment along a single director. However, as the structure of
the function h(φ) indicates, this N phase keeps some tetratic
correlations. As shown below, in the interval [0, 360◦] the
function still exhibits four peaks separated by 90◦, but two of
them, separated by 180◦, are much sharper and consequently
the T symmetry is broken. The present results indicate that the
second-virial DFT theories predict, for opening angles close
to the critical value α∗

1 , the existence of first-order I-N, T-N,
and N-N transitions, all of them coalescing in the same region
of the phase diagram.

The free-energy density � ≡ βFa/A = ηϕ as a function
of η for α1 = 0.359π = 64.62◦ is shown in Fig. 7(a). The
free energy clearly shows the presence of a N-N transition. In
Fig. 7(b) the coexisting orientational distribution functions for
both uniaxial nematics for this value α1 are shown. Figure 7(c)
shows the function h(φ) of the N phase that coexists with the
I phase, for a value α1 = 0.4π = 72◦ (located within the I-N
first-order transition region). We see the strong uniaxial order-
ing, with the presence of sharp peaks located at φ = 0, 180◦,
and the existence of small undulations around φ = 90◦. Fi-
nally, in Fig. 7(d) we show h(φ) for the coexisting T and N
phases at α1 = 0.42π = 75.6◦. The former has three peaks
with equal heights, located at φ = {0, 90◦, 180◦}, indicating
the T symmetry h(φ) = h(φ + π/2), while the latter exhibits
a clear uniaxial character with the most pronounced peaks
located at φ = {0, 180◦}, and with a secondary peak located
at φ = 90◦, corresponding to the presence of T correlations.

B. Hard kites with α1 + α2 = const

The next phase diagram is that of kites with the constraint
α1 + α2 = 180◦, i.e., with the two equal angles fixed to 90◦.
We have used both, the SPT, and the new approach discussed
in Sec. II A. Results are plotted in Figs. 8(a) and 8(b), respec-
tively. The fact that two of the angles of kites are right angles
makes the averaged excluded area to decrease much more, as
T ordering increases from the orientationally disordered con-
figuration. If MC simulations of kites with α1 + α2 = 180◦
were performed, then they presumably would show a high
propensity of particles to form clusters of particles joined by
the sides adjacent to the right-angled vertexes. In turn the
presence of a large amount of these clusters with α1 not acute
enough is the main stabilizing mechanism for the T phase.
This result is confirmed in Fig. 8 where, according to both
theories, the lower limit of stability of the T phase is reached
for α1 ≈ 58.4◦, a critical angle significantly lower than that
for rhombuses. In the region where the I-N, I-T, and T-N
bifurcation curves meet we again observe the existence of
first-order phase transitions between different phases, with
the presence of a N-N transition ending in a critical point.
Interestingly the α1-interval where the latter occurs is enlarged
with respect to that of rhombuses and also takes place at
higher densities. By comparing both panels we conclude that,
within the new approach, the region of stability of the T phase
is significantly enlarged, with the second-order I-T transition
occurring at lower densities. Also the I-N, T-N, and N-N first-
order transitions become stronger, with a wide density gap.

In Fig. 9 the orientational distribution functions of two
coexisting nematics of kites with α1 = 0.285π = 51.3◦, as
calculated from SPT, are plotted. The function h(φ) for the
higher-ordered nematic (N2) has, apart from the main peaks
located at {0, 180◦}, three additional local maxima, whose
locations are strongly correlated with the particle shapes.
This can be seen in the inset, where we plot the function
Aspt (φ) for this value of α1. Two of the local minima of
Aspt (φ) are located at α1 = 0.285π = 51.3◦ and 90◦ [highly
correlated with two of the positions of the local maxima
of h(φ)], with the other being the symmetric counterpart of
that located at φ ≈ 0.233π = 41.94◦. The latter is inside the
interval [0.215π, 0.285π ], where the function Aspt (φ) has a
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FIG. 7. (a) Free-energy densities of I (dashed) and N (solid) phases vs. packing fraction of hard rhombuses with α1 = 0.359π = 64.62◦.
We have defined �∗ = � + 53.344 − 71.474η, where a straight line has been subtracted from the free-energy. N-N coexistence is shown
by black circles joined by a dotted line. The open circle indicates the I-N bifurcation point. (b) The functions h(φ) corresponding to the N1

(dashed)-N2 (solid) coexistence [the black circles of panel (a)]. (c) Orientational distribution function h(φ) of the N phase coexisting with
I for rhombuses with α1 = 0.4π = 72◦. (d) The functions h(φ) corresponding to the T (dashed) and N (solid) phases of rhombuses with
α1 = 0.42π = 75.6◦.

relatively low value. Thus, apart from the most favored an-
tiparallel orientations of the main particle axes ({0, 180◦}),
some orientations are also favored to a lesser extent, due to
the local minimization of the excluded area.

We have calculated the phase diagram of kites with the
constraint α1 + α2 = 240◦ and α1 ∈ [60◦, 120◦] with the aim
to study in what extent the TR phase, with the symmetry
h(φ) = h(φ + π/3), is still stable by deforming an equilateral
triangle within the kite geometry. The results from the SPT are
plotted in Fig. 10, which shows that the region of TR phase
stability, bounded by I-TR bifurcation curve and the TR-
coexistence binodal of TR-N transition, ends at α1 ≈ 74.3◦
(see the shape of this kite in Fig. 10) a value not too far from
60◦ indicating that the TR phase is very sensitive to these kind
of deformations. Also, in the region where the I-TR and I-N
bifurcation curves meet, the I-N transition becomes of first
order (see the inset) which continues in a TR-N transition
for lower α1 eventually keeping its first-order character up
to α1 = 60◦. We can only speculate about this fact close to
η ≈ 1 because the coexistence calculations are very difficult

to numerically perform in this limit so we extrapolated the
obtained TR and N binodals up to η = 1.

As we have already pointed out in Sec. II C kites with α1 +
α2 = 210◦ and α1 ∈ [30◦, 105◦] deserve special attention for
two reasons: (i) from the bifurcation analysis we showed that
the T and TR phases are present in the phase diagram and
(ii) it is interesting to prove or discard the existence of a kite
with both T and TR phases and a transition between them.
The complete phase diagram resulting from the SPT is plotted
in Fig. 11. Indeed the TR and T phases are stable and they
are bounded above by a TR or T binodals of the (TR,T)-N
first-order phase transitions except for some relatively small
intervals of α1 where these transitions becomes of second
order. Two examples of equilibrium orientational distribution
functions h(φ) for stable T and TR phases, with their inherent
symmetries h(φ + 2π/n) (with n = 4 and 6 for T and TR,
respectively), are shown in Fig. 12(a). As we can see from the
phase diagram of Fig. 11, for values of α1 close to that of the
intersection between I-TR and I-T bifurcation curves [see also
Fig. 5(d)] the I phase exhibits a direct transition to a N phase
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FIG. 8. Phase diagrams of kites with α1 + α2 = 180◦ according
to (a) SPT and (b) the new approach. The insets show the regions of
the phase diagrams where first-order transitions take place. Coexis-
tence regions are shaded in gray. The stability regions of I, N, and
T phases are correspondingly labeled. In panel (a) kites for two
values of α1 are depicted.

thus discarding at all the existence of a particle geometry
having both stable TR and T phases. Also the packing fraction
values at which the TR and T phases are stable are remarkable
high if we compare with those of the other phase diagrams
shown. Thus, we expect that if we included the nonuniform
phases in our analysis they would be more stable than the
orientationally ordered uniform phases in large parts of the
phase diagram.
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FIG. 9. Orientational distribution functions, h(φ) for two co-
existing nematics, N1 (dashed) and N2 (solid) of kites with α1 =
0.285π = 51.3◦ and α1 + α2 = 180◦ calculated from SPT. Inset: the
SPT-area, Aspt (φ), for these kites.
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FIG. 10. Phase diagram of kites with α1 + α2 = 240◦. The inset
shows a detail close to the intersection between the I-N and I-TR
bifurcation curves. The regions shaded in gray indicate the first-order
character of phase transitions. Regions of stability of I, TR, and N
phases are correspondingly labeled. Three kites with α1 = 60◦, α1 =
74.3◦ and α1 = 120◦ are depicted, the middle indicating the upper
stability limit of TR phase.
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the SPT. Regions of stability of I, TR, and N phases are correspond-
ingly labeled. Some kites are sketched.

In Fig. 12(b) we plot the function h(φ) for three differ-
ent stable N phases for values of the opening angle of kites
α1 = 0.3π = 54◦, 0.37π = 66.6◦ and 90◦, and for packing
fractions higher than upper bounds of stability of TR, I, and
T phases, respectively (see the phase diagram of Fig. 11).
We concentrate only on the description of the secondary
peaks (the much sharper main peaks are located at {0, π}
and are outside the scale of the figure). For packing fractions
above the TR-phase stability region (fixing α1 = 0.3π ) the
secondary peaks of the stable N phase are located at φ ≈
{π/3, 2π/3} confirming the presence of important TR corre-
lations in particle orientations. As α1 increases up to 0.37π ,
approximately coinciding with the location of the intersec-
tion between the I-TR and I-T bifurcation curves, these main
secondary peaks move to φ ≈ 0.4π and 0.6π , approximately
equal to α1 and its symmetric counterpart with respect to
0.5π . As we have already described above this issue is related
with the local minima of the function Aspt (φ). It is interesting
also to observe the presence of two lower peaks located at
φ ≈ 0.2π and 0.8π which are also related with the structure
of the excluded area. Finally, for α1 = 0.5π (the right open-
ing angle) we observe the usual secondary peak located of
φ = π/2 showing the presence of important T correlations in
the fluid.

C. Hard kites with α1 = 72◦

Finally, we have calculated the phase diagram of kites with
one of the unequal opening angles fixed to α1 = 72◦, while
the other one, α2, was varied inside the interval [54◦, 180◦].
The new approach for ϕexc[h] with r = 2 [see Eq. (13)] was
used. The aim of this calculation was to compare the re-
sults obtained from the implementation of our new theoretical
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FIG. 12. (a) Orientational distribution functions of kites with
α1 + α2 = 210◦ and values of the pairs (α1, η) = (54◦, 0.965)
(solid) and (90◦, 0.922) (dashed), corresponding to stable TR and
T phases, respectively. (b) Three different functions h(φ) correspond-
ing to stable N phases of kites with (α1, η) = (54◦, 0.971) (dotted),
(66.6◦, 0.975) (solid), and (90◦, 0.935). The scale of the figure has
been chosen to enhance the secondary peaks of h(φ).

model with recent MC simulations of hard kites with the
same value of α1 and with α2 ∈ [54◦, 144◦] [37]. In Fig. 13
the theoretical phase diagram, together with the simulation
results of Ref. [37], are shown. Our model predicts that, as
α2 is varied from 54◦ to 180◦, the I phase exhibits a sequence
of transitions to N (α2 ∈ [54◦, 74◦]), T (α2 ∈ [74◦, 142◦]), N
again (α2 ∈ [142◦, 157◦]), and TR (α2 ∈ [157◦, 180◦]) phases.
The I-N transitions are generally of first order.

Considering only uniform phases, our analysis shows that
the T and TR phases are stable up to packing fractions where
second- or first-order (T,TR)-N transitions occur. Figure 13
shows the transitions from the I to liquid-crystalline phases
(open circles) and from these to nonuniform phases (open
triangles), as obtained from the MC simulations of Ref. [37].
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FIG. 13. Phase diagram of hard kites with one of the unequal
interior angles set to α1 = 72◦, while the other one is varied in
the interval [54◦, 180◦]. Results correspond to the new approach for
ϕexc[h], with r = 2. The regions of stability of I, N, T, and TR phases
are correspondingly labeled. Shaded regions indicate the coexistence
regions of the first-order phase transitions. Open circles and triangles
show transitions from I to liquid-crystalline uniform phases and from
uniform to nonuniform phases, respectively, as obtained from the MC
simulations of Ref. [37]. Different regions, from R1 to R4, correspond
to the division of the interval [54◦, 144◦] introduced by the authors
of Ref. [37]; from left to right, these regions indicate the stability
intervals for Hmo phase (see the text for its definition), an asymmetric
tetratic phase T2, and the usual symmetric T1 phase. In region R5 (not
calculated in Ref. [37]), the presence of a TR phase is observed.

The authors of Ref. [37] divided the interval [54◦, 144◦] in
four regions (enumerated in Fig. 13 using the labels Ri, with
i = 1, . . . , 4). They claimed the existence of: (i) a molecular
ordered hexatic liquid-crystal phase (Hmo) (this is we would
call a TR phase) in R1, (ii) an asymmetric T phase (T2) in R2,
(iii) the usual symmetric T phase (T1) in R3, and (iv) a direct
transition from I to nonuniform phases in R4.

From the structure of h(φ) in the region R1, with six peaks
separated by 60◦ but not necessarily of the same height, the
authors of Ref. [37] concluded that Hmo is stable in a relatively
small interval of η. In R2 they found an angular distribution
h(φ) with four peaks separated by 90◦, but these come in pairs
of different height, so this was associated to an asymmetric
T (T2) phase. Finally, in R3 a distribution with nearly per-
fect fourfold symmetry was found, which points to the usual
T phase, called T1.

From the theoretical point of view, however, the defini-
tions of the T and TR phases are clearcut: the symmetry
h(φ) = h(φ + 2π/n) (with n = 4 and 6, respectively) must
be fulfilled. In case h(φ) �= h(φ + 2π/n) the phase should
be called N, even if the secondary peaks of h(φ) (different
from the main ones at {0, π}) are sharp, pointing to important
T or TR correlations in the fluid. Based on this definition,

some of the configurations assigned to a TR phase by the
authors of Ref. [37] should in fact be considered to correspond
to a uniaxial N phase with important TR correlations.

Figure 14(a) shows the function h(φ) for the coexisting
N phase at the I-N transition, for kites with α2 = 70◦ (just at
the boundary between R1 and R2). For values of α2 well inside
the region R1, the structure of h(φ) is similar, except for the
precise location of the secondary peaks, which change with
α2. In this case, from the structure of h(φ) we can infer the
existence of clear N ordering, with two sharp peaks at {0, π},
and two very small secondary peaks at φ ≈ {0.4π, 0.6π},
separated by a region with a rather constant value and a weak
local minimum at φ = 0.5π . This approximate plateau in the
interval 0.4π to 0.6π indicates the existence of T correlations
which, as can be seen from Fig. 14(b), are much stronger in
the N phase coexisting with T for kites with α2 = 78◦ (a value
close to the boundary between the regions R2 and R3). For
α2 ∈ [54◦, 70◦] we only see a uniaxial N phase with very
small TR correlations.

The structure of the asymmetric distribution found in R1 by
the simulations is more similar to that we found in the N phase
(coexisting with I) of kites with α2 = 150◦, see Fig. 14(a), or
in the N phase (coexisting with TR) of kites with α2 = 171◦,
see the Fig. 14(c); both these values are inside the region R5.

Differences in the heights of the secondary peaks of h(φ)
resulting from theory and simulations,with α2 well inside the
region R1, could be explained by the importance of three-
body and higher correlations in the description of the ordering
properties of the fluid. Our theory approximates the third virial
coefficient of the N phase based on the second, which could
explain the differences mentioned above.

Despite this, following our definitions for the orientation-
ally ordered phases and assimilating Hmo to a N phase (except
for a small region around α2 ≈ 60◦ and in a small range
of packing fractions, where the authors of Ref. [37] found
distributions with symmetric TR peaks), and T2 also to a
N phase, the phase diagrams of MC simulations and theory
are remarkably similar. This is specially true regarding the
stability of uniform orientationally ordered phases. The I-N
transition occurs in the regions R1 and R2, the I-T transition in
R3, and the transition from I to nonuniform phases in R4, simi-
lar to what we found from the theoretical model (except for the
presence of nonuniform phases). Also the packing fractions
of these transitions are quite similar. The main drawback of
the model is the impossibility to study the stability of nonuni-
form phases, which would require a DFT for the one-body
density profile ρ(r, φ) with an accurate description of spatial
correlations. An extension of the present model involving the
substitution ρ(φ) → ρ(r, φ) is simply not adequate.

The recently developed DFT based on the fundamental
measure theory [43] is expected to be a promising route.

The inclusion of nonuniform phases would probably mod-
ify the phase diagram of Fig. 13 in the sense that the region
where the T is now stable for η � 0.8 would become unsta-
ble with respect to spatially ordered phases. Taking this into
account we obtain a confidence interval for T-phase stability
as α2 ∼ [74◦, 121◦], similar to that obtained from simulations
where the region of T1-stability is α2 ∼ [78◦, 114◦].

Finally, we will comment on the region in the phase dia-
gram denoted by R5. In this region, not simulated in Ref. [37],
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FIG. 14. (a) Coexisting N distributions corresponding to the I-N transitions of hard kites with α1 = 72◦, and α2 = 70◦ (dashed) and 150◦

(solid). (b) Coexisting distributions corresponding to the T (dashed)-N (solid) transition for kites with same the α1 and α2 = 78◦. (c) Coexisting
distributions of the TR (dashed)-N (solid) transition for kites with the same α1 and α2 = 171◦.

we found that the I phase exhibits a transition to a TR phase
for α2 ∈ [157◦, 180◦], as expected for kites similar to triangles
and not very far from the equilateral triangle. This TR phase
is stable up to packing fractions where a first-order TR-N
transition takes place.

IV. CONCLUSIONS

In this paper we have presented a systematic theoretical
study of the phase behavior of hard kites, with an emphasis
on the relative stability of all the possible uniform phases
(I, T, TR, and N). We used the SPT approximation, together
with a new approach that approximates the third virial coef-
ficient more accurately. This approximation was refined by
comparing the EOS of hard squares from theory and MC sim-
ulations. Several phases diagrams were calculated, including
that of rhombuses (α1 = α2), a set of them for kites with a
constraint on the sum of their two unequal interior angles,
α1 + α2 = {180◦, 240◦, 210◦}, and finally that for kites with
α1 = 72◦. The latter was calculated with the aim of compar-
ing with recent MC simulations [37]. In general, we found
first- and second-order I-(T,TR,N) and (T,TR)-N transitions,
which define regions of stability of the uniform phases. Also
we found several intervals for the opening angle where the
hard-kite fluid exhibits a first-order N-N transition ending in a
critical point.

As expected, the T phase was found to be more stable
for kites with both equal angles fixed to 90◦ (the constraint
α1 + α2 = 180◦). For this particular case the interval of α1

where the T is stable is the largest, [58.4◦, 90◦]; compared to
that of rhombuses, [73◦, 90◦]. The new approach presents a
stabilizing effect on the T phase, with a dramatic lowering of
the I-T bifurcation curve, resulting in a larger T-region in the
phase diagram. Kites with the constraint α1 + α2 = 240◦ and
with an opening angle α1 within the interval [60◦, 210◦] (with
bounds corresponding to the equilateral triangle and rhombus,
respectively) have a stable TR phase for α1 ∈ [60◦, 74◦]. We
can therefore conclude that the TR phase is more sensitive to
changes in particle shape (but still within the kite geometry)
than the T phase. The case α1 + α2 = 210◦ is particularly
interesting because the crossover between the I-T and I-TR
bifurcation curves would suggest the existence of some kites

exhibiting transitions between T and TR phases. However, we
have proved this is not possible due to the presence of an I-N
transition occurring below the crossover, the N phase being
the stable one at higher densities. The N phase close to the
crossover is peculiar, in the sense that it presents TR or T cor-
relations (depending on the value of α1), with the orientational
distribution function h(φ) having secondary peaks (apart from
the main peaks at {0, 180◦}), located at angles φ compatible
with those associated with the TR or T symmetries.

By comparing the phase diagrams of kites with α1 = 72◦
obtained from theory and simulations, we can validate the
suitability of the new approach for the prediction of the sta-
bility of orientationally ordered uniform phases. The interval
of α1 where the T phase is stable and the densities of the I-T
transition are quite similar in the theory and the simulations.
Also similar is the structure of the orientational distribution
function in some parts of the phase diagrams. In others this
structure can be different, in particular regarding the relative
heights of the secondary peaks, something that can be ex-
plained by the approximations, inherent in the theory, for the
third- and higher-order virial coefficients.

The inclusion of nonuniform phases deserves further study.
This is certainly far from trivial at the DFT level. In this regard
a DFT with an accurate description of spatial correlations
would be required. An example of such a theory, developed
for hard discorectangles and within the fundamental measure
formalism, can be found in Ref. [43].
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APPENDIX: BIFURCATION ANALYSIS FROM
(T,TR) PHASES

The starting point in the bifurcation analysis from the T or
TR phases is the nonlinear integral equation resulting from the
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equilibrium condition:

δϕ[h]

δh(φ)
= λ ⇒ h(φ) = exp

[
λ − δϕexc[h]

δh(φ)

]
, (A1)

where λ is a Lagrange multiplier that guarantees the normal-
ization

∫ π

0 dφh(φ) = 1. Taking into account Eq. (13), we have

δϕexc[h]

δh(φ)
= ψ[h; η]

δγ [h]

δh(φ)
,

δγ [h]

δh(φ)
=

∫ π

0
dφ′h(φ + φ′)

Aspt (φ′)
a

= 2
∑
k�0

γkhk cos(2kφ), (A2)

where we have used the Fourier representation Eq. (16) of
h(φ) and the definition Eq. (20) for the coefficients γk . Also,
the shorthand notation

ψ[h; η] = η

1 − η
+ (2γ [h] − 1)

×
(

1

2
+ rη

)[
η

1 − η
+ log(1 − η)

]
(A3)

has been used. From Eqs. (A1) and (A2) we obtain

h(φ) = eλ exp

{
−2ψ[h; η]

∑
k�1

γkhk cos(2kφ)

}
, (A4)

where λ can be calculated from

e−λ =
∫ π

0
dφ′ exp

{
−2ψ[h; η]

∑
k�1

γkhk cos(2kφ′)

}
,(A5)

which obviously guarantees the normalization condition. Mul-
tiplying Eq. (A4) by cos(2 jφ), integrating over φ, and using
again the expansion Eq. (16), we obtain

h j = 2eλ

∫ π

0
dφ cos(2 jφ)

× exp

{
−2ψ[h; η]

∑
k�1

γkhk cos(2kφ)

}
. (A6)

Now a small perturbation of the T phase is introduced, result-
ing in a N phase with orientation distribution function

hN(φ) = hT(φ) + 1

π

∑
j�1

h2 j−1 cos[2(2 j − 1)φ],

hT(φ) = 1

π

(
1 +

∑
j�1

h2 j cos(4 jφ)

)
, (A7)

with h2 j−1 � h2 j . We define the quantity

T (φ) ≡ exp

{
−ψT[h; η]

∑
k�1

γ2kh2k cos(4kφ)

}
, (A8)

with ψT[h; η] calculated from Eq. (A3) with the anisometry
parameter having a T symmetry:

γT[h] = γ0 + 1

2

∑
k�1

γ2kh2
2k . (A9)

Expanding Eq. (A6) for j = 2n − 1 up to first order in
{h2k−1}, and using the symmetry of the T phase (implying∫ π

0 dφT (φ) cos [2(2 j − 1)φ] = 0), we obtain

h2n−1 = − 2ψ0(η)∫ π

0 dφ′T (φ′)

∫ π

0
dφT (φ)

∑
k�1

γ2k−1h2k−1

×{cos[4(k + n − 1)φ] + cos[4(k − n)φ]} (A10)

⇒ h2n−1 = −ψ0(η)
∑
k�1

γ2k−1

× [h2(k+n−1) + h2|k−n|]h2k−1. (A11)

Here we have used the definition h2k = 2
∫ π

0 dφT (φ)
cos(4kφ)/

∫ π

0 dφ′T (φ′) while the function ψ0(η) is the same
as Eq. (A3) with the substitution γ [h] → γ0.

Defining now the column vector c with coordinates ck =
h2k−1, k = 1, . . . , m/2 (with m an even number) and the
matrix B with elements

bnk = δnk + ψ0(η)γ2k−1(h2(k+n−1) + h2|k−n|),

n, k = 1, . . . ,
m

2
, (A12)

the Eq. (A11) can be put in the matrix form Bc = 0 which has
a nontrivial solution for c if and only if

B(η, {h2k}) ≡ det(B) = 0. (A13)

m/2 is the total number of even Fourier amplitudes
{h1, h3, . . . , hm−1}, which are of same order, say ∼ε, in the
perturbative expansion of h(φ) around hT(φ). We need to take
h2(k+n−1) = 0 if k + n − 1 > m/2 and h2|k−n| = 2 for k = n.

We solve Eq. (A13) iteratively for the present as well as
for the SPT approach [obtained by replacing 2γ0 − 1 by 0
in Eq. (A3)] to find the T-N bifurcation value of η, once the
equilibrium Fourier amplitudes of the T phase {h2k} have been
obtained (these in turn depend on η). In most of the calculated
T-N bifurcations we found that assuming all even Fourier
amplitudes {h2k−1} to have the same order ε exactly gives a
value η∗ in agreement with that found from the free-energy
minimization with respect to all {hj} (odd and even) for a
given η (and extrapolating η → η∗, which gives h2k−1 → 0).

The bifurcation analysis can also be implemented for
a small perturbation of the TR phase, resulting in a
N phase with

hN(φ) = hTR(φ) + 1

π

∑
i=1,2

∑
j�1

h3 j−i cos [2(3 j − i)φ], (A14)

hTR(φ) = 1

π

(
1 +

∑
j�1

h3 j cos(6 jφ)

)
, h3 j−i � h3 j . (A15)

This analysis can be realized using the same procedure as for
the bifurcation from the T phase. The result is

h3n−l = − 2ψ0(η)∫ π

0 dφ′T (φ′)

∑
i

∑
j

γ3 j−ih3 j−i

∫ π

0
dφT (φ)

×{cos[6(n + j − 1)φ)δl+i,3

+ cos[6(n − j)φ]δl−i,0}
(A16)

052128-14



ORIENTATIONAL ORDERING IN A FLUID OF HARD … PHYSICAL REVIEW E 102, 052128 (2020)

⇒ h3n−l = −ψ0(η)
∑

i

∑
j

γ3 j−i

×[h3(n+ j−1)δl+i,3 + h3|n− j|δl−i,0]h3 j−i, (A17)

where in this case

T (φ) = exp

{
−2ψTR[h; η]

∑
k�1

γ3kh3k cos(6kφ)

}
, (A18)

γTR[h] = γ0 + 1

2

∑
k�1

γ3kh2
3k . (A19)

Defining the vector c = (c(1), c(2) )T with coordinates c(i)
k =

h3k−i (i = 1, 2), k = 1, . . . , m/3 (with m a multiple of 3), and

the matrix

B ≡
(

B(1,1) B(1,2)

B(2,1) B(2,2)

)
, (A20)

with matrix elements

b(l,i)
n j = δn, jδl,i + ψ0(η)γ3 j−i

×[h3(n+ j−1)δl+i,3 + h3|n− j|δl−i,0],

n, j = 1, . . . ,
m

3
, (A21)

we solve Eq. (A13) to find the packing fraction at bifurca-
tion. Again we take h3(n+ j−1) = 0 if n + j − 1 > m/3 and
h3|n− j| = 2 if n = j.
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