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Absence of small-world effects at the quantum level and stability of the quantum critical point
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The small-world effect is a universal feature used to explain many different phenomena like percolation,
diffusion, and consensus. Starting from any regular lattice of N sites, the small-world effect can be attained by
rewiring randomly an O(N ) number of links or by superimposing an equivalent number of new links onto the
system. In a classical system this procedure is known to change radically its critical point and behavior, the new
system being always effectively mean-field. Here, we prove that at the quantum level the above scenario does
not apply: when an O(N ) number of new couplings are randomly superimposed onto a quantum Ising chain,
its quantum critical point and behavior both remain unchanged. In other words, at zero temperature quantum
fluctuations destroy any small-world effect. This exact result sheds new light on the significance of the quantum
critical point as a thermodynamically stable feature of nature that has no analogy at the classical level and
essentially prevents a naive application of network theory to quantum systems. The derivation is obtained by
combining the quantum-classical mapping with a simple topological argument.
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I. INTRODUCTION

After Onsager’ s exact solution for the D = 2-dimensional
case [1], the Ising model assumed the role of a paradigm
at the base of our understanding of phase transitions and
critical phenomena, not only within classical physics but also
within quantum physics. However, important conceptual and
quantitative differences exist between the two cases. In the
classical case, competition between order and thermal fluc-
tuations induces a second-order phase transition triggered by
lowering the temperature below a critical value which is fi-
nite if D � 2. In the quantum case, at zero temperature, the
competition between two different ground states induces a
second-order phase transition triggered by lowering a trans-
verse external field below a critical value which is finite even
when D = 1 [2–6]. Indeed, as the quantum-classical mapping
(QCM) shows [7], the critical behavior of a D-dimensional
quantum Ising model amounts to that of a suitable D + 1 clas-
sical Ising model. Despite these well established facts and an
extensive literature on the subject, many issues remain open
about the interplay between the classical and the quantum
case [3].

Aside from the finite-dimensional case, the classical Ising
model and its generalizations have extensively been used also
in the context of networks (complex or not), where the nodes
and the links of the network represent the spins and the cou-
plings between them, respectively [8–17]. In these systems,
the phase transition is seen as a result of the interplay between
the topology of the underlying network, ranging from com-
pletely regular to completely random, and the physical process
running on it. Whenever the topology is sufficiently random
these complex systems share a common feature: their dimen-
sion is effectively infinite and, as a consequence, the system
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is effectively mean-field. This property can be understood by
exploiting the small-world (SW) concept [10]. In fact, the
general feature of random graphs and their variants, called SW
graphs, is their SW character: as opposed to D-dimensional
lattices, where the average distance between two randomly
chosen nodes scales as N1/D, in SW graphs the distance scales
as log(N ), from which, by comparison, we see that in the latter
case D = ∞. In terms of phase transitions, this SW property
results in dramatically favoring long-range order, the system
being effectively mean-field due to the infinite dimensionality
[17]. However, the above scenario applies to classical systems
and a natural question emerges: Does it hold for quantum
systems too? Indeed, a bunch of speculative works trying to
exploit the SW effect as well as the general concepts of com-
plex networks at the quantum level have appeared in recent
years [18] in which, e.g., Anderson localization is reduced
[19], entanglement is improved [20], super conductivity is
enhanced [21], and even the way to a visionary quantum
internet is paved [22], to mention a few. Our finding, however,
which is based on an exact result at zero temperature, leads to
skepticism.

Let us consider specifically the SW graphs: Starting from
any regular D-dimensional lattice, the SW property can be
attained by rewiring an O(N ) number of couplings or by
superimposing an equivalent number of extra couplings onto
the original system. The latter procedure generates more ana-
lytically treatable models and several exact results have been
reached [23,24], also for the D � 2 case [25,26]. In particular,
for the classical Ising model these studies show that, due to
the SW effect, in the D = 1 case the system acquires a finite
critical temperature, while in the D = 2 case the system gets
a higher critical temperature, and, in both cases, the critical
behavior turns out to be mean-field-like.

Here we prove that this classical scenario does not hold
at the quantum level: when an O(N ) number of extra ferro-
magnetic couplings are randomly superimposed onto a D = 1
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FIG. 1. A portion of the model studied in this paper: six qubits in
a chain are immersed in a uniform transverse field h0 (green arrows)
and interact by nearest neighbors and random pairs via the ferromag-
netic couplings J0 (blue links) and J (black links), respectively. The
mean connectivity related to the coupling J is denoted by c. When
h0 → 0, we recover a classical Ising model whose underlying graph,
despite being embedded in a one-dimensional space, is characterized
by the SW effect and, as a consequence, makes the critical behavior
of the classical model mean-field. However, does such a classical
scenario hold also in the quantum case, i.e., when h0 �= 0?

quantum Ising chain (see Fig. 1), its quantum critical point
and behavior both remain unchanged (see Fig. 2). In other
words, at zero temperature quantum fluctuations destroy any
SW effect. As we shall show, the ultimate reason for that is the
fact that, at zero temperature, an extra dimension—the one
associated with the imaginary time evolution—arises that is
not covered by the SW links: the “quantum graph” is never
SW. As a consequence, caution is in order before transferring
the established knowledge of classical complex systems into
the quantum world. This exact result sheds new light on the
meaning of the quantum critical point as a thermodynamically
stable feature of systems and, as we explain later, provides
insights for understanding the intrigued interplay between
quantum and classical behavior at finite temperatures in the
presence of a transverse field [3]. Furthermore, the stability
of the quantum critical point might be crucial for deter-
mining optimal quantum annealing paths [27–33] for hard

FIG. 2. Phase diagram of the quantum Ising chain of Fig. 1,
Eq. (9), on the plane (h0/J0, T ), where J0 is the coupling and h0

is the transverse field. The curves c > 0 and c′ > c (red) represent
qualitative lines of critical temperature for two different values of the
additional mean connectivity (bringing the same long-range coupling
J), c and c′, as a function of the adimensional parameter h0/J0.
For c = 0 the line of critical temperature collapses to 0 (blue).
The points A (or A′) and B represent classical and quantum critical
points, respectively, and can be exactly calculated: A ≡ [0, Tc(h0 =
0)], Tc(h0 = 0) being the solution of Eq. (19), while B ≡ (1, 0) for
any c, this being the main result of the present work. The critical
behavior in A (or A′) is mean-field while that in B corresponds to
that of a D = 2 Ising model. As we increase c toward c′, the point A
moves upward toward A′, but B does not move at all.

FIG. 3. Application of the quantum-classical mapping (QCM)
followed by the random-nonrandom mapping (RNRM) to the quan-
tum Ising chain of Eq. (9). Here M = 4 and N = 6. Dashed lines
represent periodic boundary conditions. Top: Six qubits in a chain
are immersed in a uniform transverse field h0 (green arrows) and
interact by nearest neighbors and random pairs via the ferromagnetic
couplings J0 (blue links) and J (black links), respectively. Notice
that, in the classical limit, i.e., in the case with a null transverse
field, h0 = 0, the underlying network, even if embedded in a 1D
space, makes the system SW. Middle: Array of 4 × 6 classical spins
interacting by nearest neighbors via the couplings J0x (blue links) and
J0y (green links), as given by Eqs. (3), and by random pairs via the
coupling J/M (black links). Notice the absence of long-range links
in the vertical direction, a fact that prevents the underlying network,
now embedded in a 2D space, to make the system SW. Bottom: Array
of 4 × 6 classical spins each interacting with nearest neighbors by
the couplings J0x and J0y, and with all the other spins lying on the
same row by the uniform coupling cJ/(MN ), as given by Eq. (11)
for large M. This classical model can be exactly solved by using the
exact solution of the 2D Ising model in the presence of a uniform
external field (see Sec. V).

combinatorial problems [34–43]. The main aim of the present
work however is to focus on the proof of the result. The first
part of this result, i.e., the fact that there is no SW effect
in a quantum system, is first made evident by using a quite
simple geometrical argument based on the quantum-classical
mapping (see top and middle panels of Fig. 3). Then, the
second part of the result, i.e., the fact that the critical point
remains unchanged when the random extra couplings are
added, is derived by using another special mapping that sends
a random model toward a nonrandom one (see bottom panel
of Fig. 3). Furthermore, it is shown that this second mapping
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confirms also that the critical behavior of the system remains
unchanged: a fact that represents a necessary and sufficient
condition for the absence of any SW effect and which is in
agreement with the above simple geometrical argument.

The paper is organized as follows. In Sec. II we recall the
QCM and its immediate application to the one-dimensional
(1D) model without disorder (the pure model). In Sec. III we
discuss the crucial difference of the QCM at zero and finite
temperature (not often stressed in the literature). In Sec. IV
we introduce the random model to which we apply the QCM
followed by the application of the random-nonrandom map-
ping (RNRM), which eventually produces a model without
disorder. In Sec. V we solve this model at T = 0. In Sec. VI
we discuss the state of the art at T > 0. Finally, in Sec. VII
conclusions are drawn. In the Appendix we report and revisit
the derivation of the RNRM, originally given in Ref. [44], and
provide also an alternative derivation.

II. THE PURE MODEL AND THE QCM

Let us consider a lattice ring of N qubits interacting via a
first-neighbor ferromagnetic coupling, J0 > 0, and subjected
to a transverse field, h0:

H0 = −J0

N∑
i=1

σ Z
i σ Z

i+1 − h0

N∑
i=1

σ X
i , (1)

where σ X
i , σY

i , and σ Z
i are the Pauli matrices of the ith

qubit. This system is known to develop a zero temperature
second-order quantum phase transition at the critical point
J0 = h0. A way to see this consists in solving the model via the
Jordan-Wigner transformations [45,46]. Another interesting
way consists in applying the QCM [7]. For β → ∞, the QCM
evaluates the partition function Z0 = Tr exp(−βH0) of the
quantum D = 1 model with Hamiltonian (1) as the partition
function of an anisotropic classical D = 2 Ising model defined
by two suitable couplings associated with two directions x and
y (not to be confused with the suffix of the Pauli matrices): x
corresponds to the position of the actual ith qbit, and y cor-
responds to a virtual direction along which we propagate the
inverse temperature β (or, equivalently, the imaginary time).
The resulting classical Hamiltonian reads (for a review see,
e.g., Refs. [3,6])

HClassic
0 = − J0x

M∑
j=1

N∑
i=1

Si, jSi+1, j

− J0y

N∑
i=1

M∑
j=1

Si, jSi, j+1, (2)

where the Si, j are MN virtual classical spins arranged onto
the D = 2 discrete torus [1, . . . , M] × [1, . . . , N] and, up to
terms O(1/M2), the two couplings are given as follows:

J0x = J0

M
, β0J0y = 1

2
ln

(
M

β0h0

)
, (3)

where β0 = 1[β] is a unitary constant that serves only for di-
mensional reasons ([β0] = [β]). Systems (1) and (2) become
equivalent in the limit M → ∞, i.e, in the limit in which the

Trotter-Suzuki factorization [7], at the base of the QCM, be-
comes exact. In this limit, J0x → 0+ while J0y → +∞ in such
a way that the system can have a finite critical point. In fact,
by plugging Eqs. (3) into the equation for the critical point of
the D = 2 Ising model (from Kramers-Wannier duality [47]
or Onsager’ s solution [1]),

sinh(2β0J0x ) sinh(2β0J0y) = 1, (4)

in the limit M → ∞, we get the critical point of the original
D = 1 quantum system (1): J0 = h0.

III. QCM AT ZERO AND FINITE
TEMPERATURE—TECHNICAL WARNINGS

In the following sections, the reader should take into
account two technical warnings not often stressed in the lit-
erature. These warnings are related to the crucial difference
that exists between the application of QCM at zero and finite
temperature.

(i) As first remarked by Suzuki [7], the QCM does not
claim that the critical behavior of the D-dimensional quantum
system H0 at finite temperatures is equal to that of the D + 1-
dimensional classical system HClassic

0 since, for any finite β,
the latter, due to Eqs. (3), degenerates when M → ∞, so
that, in general, at finite temperature, the resulting classical
model might be equivalent to a suitable classical—but rather
nonobvious—D-dimensional model. Let us analyze this issue
more closely. It is easy to see that, in the thermodynamic
limit, the ground-state energy E0 of the system (1) can be
expressed as

lim
N→∞

E0

N
= − lim

N→∞
lim

β→∞
1

Nβ
log [Tr exp(−βH0)]

= − 1

β0
lim

M,N→∞
1

MN
log

[
Tr exp

( − β0HClassic
0

)]
,

(5)

where the last equality holds up to an immaterial additive
constant that does not depend on the Hamiltonian parameters
(see Sec. IV of Ref. [7]). From Eq. (5) it is then evident that,
apart from the physical dimension, the length M plays the
same role of the inverse temperature in the limit in which
this goes to infinity and, as a consequence, the zero temper-
ature limit is also the limit M → ∞ where the Trotter-Suzuki
factorization becomes exact. At finite temperature, one can
still exactly exploit the Trotter-Suzuki factorization, but the
resulting classical system does not acquire an actual extra
dimension. In fact, at finite temperature one has to evaluate
the free energy density f0 as

−β f0 = lim
N→∞

1

N
log [Tr exp(−βH0)]

= lim
N→∞

1

N
log

[
lim

M→∞
ZClassic

0

]
, (6)

which is very different from limM,N→∞ 1
MN log [ZClassic

0 ]. The
finite temperature analysis is therefore rather harder because
it requires the exact solution of the D = 2 model for finite
sizes where one of the two sides of the torus must be sent to
infinity while keeping the other fixed. In particular, as shown
in Ref. [7], for the model (1) it is possible to obtain f0 by
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exploiting the exact solution of the D = 2 Ising model for
finite sizes from Kaufman [48] and the result is

−β f0 = 1

2π

∫ 2π

0
dq log [2 cosh (βε(q))], (7)

where

ε(q) = [
J2

0 + h2
0 − 2J0h0 cos(q)

]1/2
. (8)

Remarkably, Eqs. (7) and (8) cannot be obtained from the
thermodynamic limit of the free energy density of the D = 2
classical Ising model by simply using in it the couplings (3)
in the limit M → ∞. Notice in particular that, as anticipated,
for any finite β, Eqs. (7) and (8) do not show any singularity
in the Hamiltonian parameters or in β. Only for β → ∞ does
a singularity show up at the critical point J0 = h0 and only in
this limit is one allowed to exploit the thermodynamic limit
of the free energy density of the D = 2 classical Ising model
by simply using in it the couplings (3) in the limit M → ∞.
Later on, we shall need to work with the free energy density
of the D = 2 classical Ising model but in the presence of a
row-dependent external field.

(ii) Provided the result is used only for zero temperature
[see warning (i)], the QCM makes sense and is useful for
analytic manipulations also for large but finite M, provided
that M scales at least proportionally with N . As a practical
rule one can simply take M = N .

We stress again that in the following analysis we are only
concerned with the zero temperature limit and the symbol β0

plays no role but a mere dimensional factor.

IV. THE MODEL WITH SMALL-WORLD COUPLINGS
AND THE RNRM

Let us now see what happens when we add cN extra
interactions between random pairs of qubits via another fer-
romagnetic coupling, J > 0, with c > 0 being the additional
mean connectivity (see the upper panel of Fig. 3). The new
quantum Hamiltonian reads

H = − J
N∑

i< j=1

ci, jσ
Z
i σ Z

j − J0

N∑
i=1

σ Z
i σ Z

i+1 − h0

N∑
i=1

σ X
i , (9)

where ci, j is the adjacency matrix of the extra couplings, i.e.,
a random variable taking the values 0 or 1 with probabil-
ities 1 − c/N or c/N , respectively. The resulting ensemble
of graphs generated by the different realizations of {ci, j} is
known as the Gilbert random graph (a slight variant of the
Erdös-Reny random graph), and its properties are well known
[11]. In particular, for large N , the connectivity of each node
becomes poissonian distributed with mean c and, for any
c > 1, the graph is percolating and owns the SW property.
In general, for different realizations of {ci, j} there correspond
different Hamiltonians (9). Yet, in the thermodynamic limit
N → ∞, due to the self-averaging character of the random
graph, relative fluctuations of the system become negligible.
In other words, any extensive observable (like the energy or
the magnetization) can be evaluated either via a single real-
ization of a sufficiently large system or as an average over the
adjacency matrix realizations. The latter is the usual success-
ful setup applied to all (quenched [8]) disordered models in

classical physics which, thanks to the QCM, we can assume
to be valid also in the present quantum case.

On applying the QCM to the quantum system (9) we get

HClassic = − J

M

M∑
j=1

N∑
i1<i2=1

ci1,i2 Si1, jSi2, j + HClassic
0 , (10)

where HClassic
0 is defined in Eqs. (2) and (3). From the first

term of Eq. (10), we see that the SW effect on the underlying
graph of HClassic, if any, can be realized only along the x
direction (see the middle panel of Fig. 3). In other words, in
order to cross the D = 2 torus [1, . . . , M] × [1, . . . , N] from
one corner to the opposite via a sequence of random hoppings
on the underlying graph of HClassic, on average we must use
an O( log(N )M ) number of links, while in a SW graph this
should be O( log(MN )). As a consequence, we expect that
HClassic, and hence the quantum system governed by H , has
not acquired a mean-field character and that it remains essen-
tially similar to the original quantum system governed by H0

with no SW effect. In the following we prove that this guess
is exact in an extreme sense: not only the quantum critical
behaviors but also the quantum critical points of H0 and H are
the same.

Let us indicate the averages over the {ci1,i2}
realizations by ·. As explained above, if 〈O〉 =
TrO exp(−βH )/Tr exp(−βH ) denotes the ensemble average
of the observable O associated with a given {ci1,i2} (quenched)
realization, for large N we can conveniently identify this
average with 〈O〉. In turn, all these averages can essentially be
derived from the free energy density f of the quenched model:
−β f = limN→∞ ln(Z )/N = limN→∞ limn→0(Zn − 1)/(Nn).
The latter identity is at the base of the so-called replica trick
that has been used to investigate a large variety of random
models, especially spin-glass models [8]. At the critical
point, when the replica trick is used in combination with the
high-temperature expansion of the free energy of a model
built over a random graph, there emerges a general mapping
between the random model (or “disordered model”) and a
suitable nonrandom model [25,44]. In the following, we refer
to this mapping as the RNRM. In general, the disorder can be
due to the underlying graph structure having a generic random
matrix {ci1,i2} and, more in general, to the random values of
the corresponding couplings {Ji1,i2}. In both cases, the RNRM
consists of the following replacement (here · means average
over any kind of disorder)

ci1,i2 tanh(βJi1,i2 ) → ci1,i2 tanh
(
βJi1,i2

)
. (11)

As has been confirmed also via Monte Carlo simulations [26],
whereas the RNRM (11) gives only effective approximations
below the critical temperature, it provides the exact critical
point and behavior by ruling out all the difficulties of the
random model. We stress that the RNRM does not consist
of some annealed approximation. One of the most interesting
advantages of the RNRM lies in the fact it holds true for
generalized infinite-dimensional graphs without the necessity
for such graphs to be locally treelike or small-world, just
as in the present case. In the Appendix we report a simple
derivation that is valid for the present case and show also
an alternative derivation which does not invoke the replica
trick at all. When applied to the adjacency matrix {ci1,i2} of
the random graph with the constant coupling J/M, for large
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but finite M, Eq. (11) sends the random classical Hamiltonian
(10) to the following nonrandom Hamiltonian (see the bottom
panel of Fig. 3):

H̃Classic = − cJ

MN

M∑
j=1

N∑
i1<i2=1

Si1, jSi2, j + HClassic
0 . (12)

V. SOLUTION OF THE MODEL AT T = 0

The Hamiltonian H̃Classic represents a D = 2 Ising model
with superimposed fully connected interactions that run only
within the rows of the torus [1, . . . , M] × [1, . . . , N]. Its par-
tition function Z̃Classic of the model (12) can be analyzed
by a standard technique [49]. By introducing M auxiliary-
independent Gaussian fields {xl}, up to a O(1) term in the
exponent, and up to an immaterial constant of proportionality,
we get

Z̃Classic ∝
∫ M∏

j=1

dx je
−Nβ0 f ({x j }), (13)

β0 f ({x j}) =cβ0J

M

M∑
j=1

x2
j

+ β0 f0

(
β0J0x, β0J0,y;

{
cβ0J

M
xj

})
, (14)

where f0(βJ0x, βJ0,y; {βh j}) is the free energy density of
the D = 2 Ising model with the couplings J0x and J0y

in the presence of a row-dependent external field, {h j}.
Notice that, in order to avoid a pedant notation like
f0(βJ0x, βJ0,y; {βh j}; N, M ), etc., in Eq. (13) and following,
the harmless dependencies on finite-size effects are left un-
derstood but they should be kept in mind for the correct
interpretation of the next equations. We stress that such depen-
dencies on finite-size effects are smooth and not particularly
important since, unlike the harder situation where one has
to deal with finite temperatures [see warning (i)], here we
have N ∼ M. The steepest descent method applied to Eq. (13)
provides the following effective mean-field equations for the
row-dependent average magnetizations mj = ∑N

i=1〈Si, j〉/N of
Eq. (12):

mj = m0; j

(
β0J0x, β0J0,y;

{
cβ0J

M
ml

})
,

j = 1, . . . , M, (15)
where m0; j (β0J0x, β0J0,y; {β0h j}) is the magnetization along
the jth row of the D = 2 Ising model with the couplings J0x

and J0y in the presence of a row-dependent external field, {hj}.
Equations (15) and following are valid up to O( log(N )/N )
corrections. Let us focus on the thermodynamically dominant
uniform solution {mj = m} [making f ({mj}) a minimum]. By
deriving Eq. (15) with respect to a uniform external field,
{βh j = βh}, we obtain the adimensional susceptibility of the
system

χ = χ0
(
β0J0x, β0J0,y; cβ0J

M m
)

1 − cβ0J
M χ0

(
β0J0x, β0J0,y; cβ0J

M m
) , (16)

where χ0(βJ0x, βJ0,y; βh) is the adimensional susceptibility
of the D = 2 Ising model with the couplings J0x and J0y in

the presence of a uniform external field, h. The paramagnetic
solution of Eq. (15) is stable when the denominator of Eq. (16)
evaluated at m = 0 is positive. In other words, for finite M, the
paramagnetic solution becomes unstable when

cβ0J

M
χ0(β0J0x, β0J0,y; 0) = 1. (17)

Taking into account the critical point of the D = 2 model,
Eq. (4), Eq. (17) tells us that, for large but finite M, the
critical point of the system (12) is shifted at higher temper-
atures or, in terms of the couplings β0J0x and β0J0,y, is such
that sinh(2β0J0x ) sinh(2β0J0y) < 1. Furthermore, for large but
finite M, Eq. (15) tells us that the system is essentially mean-
field-like, with the classical critical exponents. In fact, from
Eq. (16) we see that the susceptibility has the critical exponent
γ = 1 and similarly for the other critical exponents. However,
the QCM holds true only in the limit M → ∞. In such a
limit, Eq. (17) can be satisfied only at the critical point of the
D = 2 model (4) [where χ0(β0J0x, β0J0,y; 0) → ∞], which,
by using explicitly the expression for the couplings, Eqs. (3),
implies that the critical point of the quantum system with extra
random couplings, Eq. (9), is just equal to the critical point
of the quantum system without random couplings, Eq. (1):
J0 = h0. Furthermore, if we choose J0 < h0, so that we are
in the paramagnetic region, on sending M → ∞ in Eq. (16),
we get

lim
M→∞

χ = lim
M→∞

χ0(β0J0x, β0J0,y; 0), (18)

which implies that the critical exponent of the susceptibility
of the system (9) is equal to the critical exponent of the
susceptibility of the quantum system (1) (γ = 7/4), and the
same argument applies to the other critical exponents. Notice
that our analysis does not necessarily imply that the systems
(1) and (9) at T = 0 are identical. As we have mentioned
before, inside the ferromagnetic region, i.e., for J0 > h0, the
RNRM is only an approximation where Eq. (15) turns out to
be effective [26].

VI. STATE OF THE ART AT T > 0

The above result is limited to zero temperature. The other
available exact result concerns the pure classical model, i.e.,
the case with no transverse field, h0 = 0. As discussed in
the introduction, in this case, for any c > 0 the system is
effectively mean-field and its critical point can be exactly
calculated by the following equation [24,25]:

c tanh(βJ )e2βJ0 = 1. (19)

Equation (19) tells us that the critical temperature is a growing
function of c (linear for large c). For any other case, i.e., the
region (h0 > 0, T > 0), there are no exact results; however,
as discussed before in warning (i), in this region the D = 1
quantum system (1) behaves essentially as a D = 1 classical
system (7), so that, analogously, we expect that for any T >

0 the D = 1 quantum system with superimposed additional
links, Eq. (9), behaves essentially as a D = 1 classical sys-
tem with superimposed additional links too, having therefore
the small-world character, a finite critical temperature, and
mean-field critical exponents. By using these observations
and interpolating the exact points given by Eq. (19) and the
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quantum critical point, we get the scenario depicted in Fig. 2,
with a line of critical temperatures that grows with c for any
h0 < J0.

For T > 0 the critical behavior is classical for any value
of the Hamiltonian parameters; however, this does not imply
that all the physics of the system is dominated by a classical
behavior. More precisely, sufficiently far from the critical line,
things might be not classical even for T > 0. In fact, when
c = 0, for T > 0 two lines of a D = 1-classical → D = 1-
quantum crossover are known to exist that depart from the
quantum critical point h0 = J0 (for fixed T , the above crossing
corresponds to transiting from h0 < J0 to h0 > j0) [2–4,6].
From the experimental point of view, this crossover region
represents the most important part of the problem [3]. Our
analysis leads one to expect that, for c > 0, such a crossover
might become mean-field-classical → D = 1-quantum. This
is a rather interesting issue that deserves further investigation.

VII. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have proved that, contrary to a somehow
classical common sense, at zero temperature there is no SW
effect, the quantum critical point and behavior of the system
remaining those of the finite-dimensional model before the
addition of the extra links or, equivalently, before the rewiring.
Quantum fluctuations destroy any SW effect and raise the
quantum critical point as a robust feature of nature. Whereas
this invariance puts severe limits on the possibility for improv-
ing long-range order via the SW effect at low temperatures,
we expect possible applications for quantum annealing.

It is natural to ask whether the stability of the quantum
critical point remains valid also for more general networks, in
particular, those that are scale free. This will be the subject
of a future work. It is should be, however, clear from our
discussion based on the QCM (the same argument applies
unchanged) that the small-world property cannot be satisfied
regardless of the structure of the underlying network defined
by the set of couplings, a general feature that prevents a naive
application of network theory to quantum systems.

Our result is obtained by combining the quantum-classical
mapping with a random-nonrandom mapping, the latter being
based on a simple topological argument.

Note added. Recently, I became aware of an interesting
work that by simulation shows the absence of the small-world
effect in a photonic quantum network [50].
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APPENDIX: RNRM

The RNRM was originally developed for analyzing spin-
glass models, but in the case of ferromagnetic models its
derivation is simpler, and it is worth reporting it here where
we check its validation for the model with the Hamiltonian
given by Eq. (10). For more details we refer the reader to
Refs. [25,44]. We report also a different derivation not based

on the replica trick. Let us consider an Ising model with N
spins and generic couplings Jb along the bonds b ≡ (ib, jb) of
an undirected graph G whose set of links is denoted by �. The
Hamiltonian and the partition function of this system read as
follows:

H = −
∑
b∈�

Jbσibσ jb, (A1)

Z =
∏

b

cosh(βJb)P, (A2)

P =
∑
γ∈G

∏
b∈γ

tb, tb ≡ tanh(βJb), (A3)

where in Eqs. (A2) and (A3) we have applied the so-called
high-temperature expansion, G being the set of (closed)
multipolygons γ in G. From Eq. (A2) we see that in the
thermodynamic limit the density free energy f splits as

−β f = lim
N→∞

1

N

∑
b∈�

log [cosh(βJb)] + ϕ, (A4)

where

ϕ = lim
N→∞

log(P)

N
. (A5)

Clearly, a singular behavior of f , if any, can be contained only
in ϕ. Let us consider now that some disorder is present, in the
graph G, in the couplings, or in both, and let us indicate by
· the average over this disorder. In other words, the factors
tb, with b ∈ �, must be seen as a set of independent random
variables (not necessarily identically distributed). In such a
case we are interested in evaluating

ϕ = lim
N→∞

log(P)

N
= lim

N→∞
lim
n→0

Pn − 1

Nn
. (A6)

The replica trick consists in evaluating Pn for n integer and at-
tempt the analytic continuation toward n → 0. From Eq. (A3)
we have

Pn =
∑

γ1,...,γn∈G

∏
b1∈γ1,...,bn∈γn

tb1 · · · tbn , (A7)

where G is the natural extension of G that includes disorder,
i.e., the set of multipolygons made by bonds b ∈ �, where

� = {b = (ib, jb) : tb �= 0}. (A8)

Let us analyze the first terms. We have

P1 = P =
∑
γ∈G

∏
b∈γ

tb, (A9)

P2 =
∑

γ1,γ2∈G

∏
b1∈γ1,b2∈γ2: b1 �=b2

tb1 · tb2

∏
b∈γ1∩γ2

t2
b , (A10)

P3 =
∑

γ1,γ2,γ3∈G

∏
b1∈γ1,b2∈γ2,b3∈γ3: b1 �=b2,b1 �=b3,b2 �=b3

tb1 · tb2 · tb3

×
∏

b∈γ1∩γ2,b′∈γ3: b�=b′
t2
b · tb′

∏
b∈γ1∩γ3,b′∈γ2: b�=b′

t2
b · tb′

×
∏

b∈γ2∩γ3,b′∈γ1: b�=b′
t2
b · tb′

∏
b∈γ1∩γ2∩γ3

t3
b . (A11)
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Let us consider a disorder such that tb � 0. Depending on the
kind of disorder, � can be “small” or “large.” For example,
if the disorder involves only the couplings of a lattice model
with a fixed set of bonds �, we have � = � and the evaluation
of Pn may remain very hard for n �= 1, unless G is locally
treelike, for which we have

Pn 
 P
n
. (A12)

If instead the disorder is such that at any lattice point there
pass a number Nα of bonds for some α > 0, a simple com-
binatorial argument emerges: given two randomly chosen
multipolygons γ1 and γ2 in G, the probability that they over-
lap along some bonds becomes negligible in the limit of
large N . Notice that, due to the factors t k

b in Pn, with k ∈
{1, . . . , n}, at high temperature and in the thermodynamic
limit, Pn is characterized by only short multipolygons whose
overlap, therefore, tends trivially to zero (simply because they
are mostly disconnected). As we decrease the temperature,
however, multipolygons of larger and larger length become
important in Pn. In fact, for a system characterized by a
single coupling value and without disorder, i.e., a single value
tb = tanh(βJ ), ϕ is a power series in tanh(βJ ) as follows:

ϕ =
∞∑

l=0

cl tanhl (βJ ), (A13)

where the coefficients cl take into account the number of
multipolygons of length l (see later for the actual connec-
tion between the cl ’s and the numbers Cl ’s of multipolygons
of length l) and therefore grow exponentially with l . As a
consequence, the series has a radius of convergence R de-
termined by the inverse of the ratio of growth of cl , R−1 =
liml→∞ cl+1/cl . The radius of convergence determines there-
fore the critical temperature of the system via the universal
equation

1

tan(βcJ )
= lim

l→∞
cl+1

cl
. (A14)

An analogous formula holds true also for the random system.
Equation (A14) tells us that, at the critical point, the relevant
information concerns only multipolygons of infinite length
(later on, we comment about how the value of ϕ at the critical
point characterizes its value in all the paramagnetic regions).
This observation applies in particular to the evaluation of P2

via the analysis of two randomly chosen paths of infinite
length. Whereas it is difficult to evaluate the probability that
they overlap in general, it is easy to see that it goes to zero
in many cases of interest by just looking at the possible paths
that emanate from the same vertex. This combinatorial argu-
ment allows one to effectively neglect all the terms involving
overlaps of bonds in Eqs. (A9)–(A11), which leads again to
Eq. (A12), where the approximation becomes exact in the
limit N → ∞, regardless of the presence of short loops and
regardless of the value of α. Notice that only for α = 1 one
has the small-world property.

More precisely the mechanism goes as follows. To fix
the idea, let us consider an Ising model with the coupling J
built over the Gilbert random graph, i.e., the graph where the
adjacency matrix ci, j is a random variable taking value 0 or
1 with probabilities 1 − c/N or c/N , respectively. In this case

we have t k
b = t k = (c/N )tanhk (βJ ). As we have explained in

Sec. IV, in the thermodynamic limit, we are free to evaluate
f and ϕ by either performing the average over all the graph
realizations or considering a single but infinite graph (in other
words the free energy is self-averaging). We apply the latter if
c < 1 and the former if c > 1. If c < 1 we use the known fact
that, in the thermodynamic limit, the Gilbert random graph
has zero clustering coefficients. As a consequence, for c < 1
in the thermodynamic limit, loops are negligible and we have
trivially ϕ = ϕ = 0. Let us now consider the case c > 1 and
let us evaluate P2. From Eq. (A10) we see that we have a sum
over pairs of multipolygons which can have a zero, a full, or a
partial overlap between each other. We can split the sum over
all the pairs of multipolygons γ1 and γ2 of lengths l1 and l2,
respectively, as follows:

P2 =
∑
l1,l2

[N0(l1, l2)(t )l1+l2 + N2(l1, l2)(t2)(l1+l2 )/2 + · · · ],

(A15)

where N0(l1, l2) is the number of pairs of multipolygons
which have zero overlap, N2(l1, l2) is the number of pairs of
multipolygons which have full overlap, and the dots stands for
the rest of the contributions characterized by a partial overlap.
To make more manifest the first two kinds of contributions,
we find it convenient to rewrite the sum as

P2 =
∞∑

l=0

{
N0(l )

[
c

N
tanh(βJ )

]l

+N2(l )

[
c

N
tanh2(βJ )

] l
2

+ . . .

}
, (A16)

where N0(l ) is the total number of multipolygons of length
l which can be formed by any pair of multipolygons having
zero overlap, N2(l ) is the total number multipolygons formed
by pairs of multipolygons each having length l/2 (for l even;
clearly, for l odd we have N2(l ) = 0), and we have made

explicit use of t k = (c/N )tanhk (βJ ). Notice that here � corre-
sponds to the complete (or fully connected) graph. Taking into
account that in the complete graph of N nodes the number of
paths of length l is Nl , we have N0(l ) 
 [l (l + 1)/2]Nl and
N2(l ) = Nl/2. In fact, we can form a global path of length
l by combining two nonoverlapping paths having lengths l1
and l − l1, respectively, and there are l (l + 1)/2 such combi-
nations, whereas we can overlap a pair of paths only if they
have the same length. In conclusion, the ratio between the
second and the first kind of contribution is 1/(cl/2l2). Similar
considerations hold true for the terms with a partial overlap.
Taking into account now that c > 1, we see that, in the ther-
modynamic limit, for l → ∞ Eq. (A16) can be evaluated by
dropping all the terms except those associated with N0(l ).

By plugging Eq. (A12) in Eq. (A6) and by using Eq. (A9)
we finally arrive at

ϕ = ϕI ({tb}), (A17)

which tells us that, up to an additive constant, the density
free energy f of the random system is equal to the density
free energy fI of an Ising model whose set of nonrandom
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couplings {J (I )
b } satisfies

tanh
(
βJ (I )

b

) = tanh(βJb). (A18)

In particular, for the case of the generalized Gilbert ran-
dom graph with fixed amplitudes related to the Hamiltonian
(10), we see that the topological argument holds true for

large N , so that in this case we have α = 1/2 [the total
number of nodes is MN with M ∼ N , see warning (ii)] and
Eq. (A18) amounts to [here (i1, j1) and (i2, j2) represent the
positions of the two nodes between which there is the bond
b, J (I )

b ≡ J (I )
(i1, j1;i2, j2 )]

tanh(βJ (I )
(i1, j1;i2, j2 ) ) =

⎧⎪⎨
⎪⎩

c
N tanh

(
βJ0x + βJ

M

) + (
1 − c

N

)
tanh(βJ0x ), i2 = i1 + 1, j2 = j1,

tanh(βJ0y), j2 = j1 + 1, i2 = i1,
c
N tanh

(
βJ
M

)
, i2 �= i1 + 1, j2 = j1,

(A19)

which for large M leads to the Ising nonrandom Hamiltonian
(12).

It is instructive to derive the RNRM in another way which
does not make use of the replica trick. For pedagogical rea-
sons, let us first assume that G is the square lattice. In G,
the allowed multipolygons γ have lengths l = 0, 4, 6, 8, . . .

Let us decompose P in Eq. (A3) (i.e., the singular part of the
partition function) as

P = 1 + Q4 + Q6 + Q8 + . . . , (A20)

where we have introduced the sums restricted to multipoly-
gons of fixed length:

Ql =
∑

γ ∈ G :
l (γ ) = l

∏
b∈γ

tb, (A21)

l (γ ) being the length of the multipolygon γ . We have

log(P) = Q4 + Q6 + Q8 − 1
2

(
Q2

4 + Q2
6 + Q2

8 + · · · )
− (Q4Q6 + Q4Q8 + Q6Q8 + · · · ) + · · · , (A22)

which leads to

log(P) = Q(c)
4 + Q(c)

6 + Q(c)
8 + · · · , (A23)

where Q(c)
l stands for the sum restricted to connected multi-

polygons of fixed length l , a connected multipolygon being a
multipolygon that cannot be obtained by the product of two
or more (disconnected) multipolygons (in fact, we could call
them just “polygons”). The first few terms are

Q(c)
4 = Q4, (A24)

Q(c)
6 = Q6, (A25)

Q(c)
8 = Q8 − 1

2 Q2
4,

. . . (A26)

Notice that, whereas Ql does not allow for overlaps of links,
Q(c)

l in general does. For example, the case l = 8 in Eq. (A26)
shows that, in Q(c)

8 , the contributions due to the product of two
disconnected squares coming from the second term cancel out
with the first term. However, not all the contributions coming
from the second term cancel out with some of the first. In fact,
such extra contributions are all those in which a partial or total
overlap between two squares is present. Note that the most
important feature of the Q(c)

l ’s is that they are extensive in the

system size N , as it must be according to Eq. (A5). Indeed,
in this framework we understand the previously mentioned
connection between the coefficients cl introduced in Eq. (A13)
and the total number of multipolygons of length l , Cl : for a
system characterized by a single coupling the relation between
the cl ’s and the Cl ’s is the same as the relation between the
Q(c)

l ’s and the Ql ’s. Let us now suppose that the couplings
in Eq. (A1) are independent identically distributed random
variables. From Eqs. (A23) and (A24)–(A26) we have

log(P) = Q(c)
4 + Q(c)

6 + Q(c)
8 + · · · , (A27)

where

Q(c)
4 = Q4, (A28)

Q(c)
6 = Q6, (A29)

Q(c)
8 = Q8 − 1

2 Q2
4,

. . . (A30)

Of course Q2
4 �= (Q4)2, and similarly for higher-order terms.

However, we recognize that the approximation Q2
4 
 (Q4)2

becomes more and more accurate as we consider, instead
of the two-dimensional lattice, a hypercube D-dimensional
lattice with larger and larger values of D [for the same topo-
logical argument that we have previously applied in deriving
Eq. (A12)]. We stress again that, both before and after av-
eraging over the disorder, in Q2

4 there are contributions that
do not cancel out with some of those of Q8 and that the
former are those in which at least an overlap of two links
is present. As we consider larger and larger values of D,
such surviving contributions from Q2

4 become dominated by
those pairs of squares where only a pair of links overlap with
each other (more precisely, by neglecting the contribution
with the full overlap with respect to the contributions with
a single overlap, we make an error order, 1/D). Now, this

does not imply yet that, in evaluating Q(c)
8 for large D, Q2

4

and (Q4)2 can be taken as approximately equal, because of
the presence of the above overlapping link which is associated
with a term that does not cancel out with Q8. However, as we
have discussed before, in the thermodynamic limit the leading
contributions that characterize the critical behavior of the sys-
tem are those associated with arbitrarily long multipolygons,
i.e., l → ∞, where a single link overlap does not play any
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role. And the above argument can be repeated for any products
of say k terms, Ql1 Ql2 . . . Qlk . This shows that, effectively,
when D → ∞ or, more in general, when G [see definition
(A8)] is such that any vertex has a number of neighbors which
is an increasing function of N (as in our target model), we
can take effectively Ql1 Ql2 . . . Qlk 
 Ql1 · Ql2 · · · Qlk , which,
by plugging in Eqs. (A28)–(A30) implies

Q(c)
l 
 Q(c)

l ({tb}), (A31)

where Q(c)
l ({tb}) stands for the contribution of the con-

nected multipolygons of length l of a nonrandom system
in which the random couplings {tb} are replaced by their
averages over the disorder {tb} and the approximation be-

comes exact in the thermodynamic limit. Equation (A31)
leads immediately to Eq. (A17). This alternative deriva-
tion, despite being a little more complicated, shows that
actually the RNRM can be proved without invoking any
replica trick.

Above, we have proved the RNRM at the critical point,
which is enough for the present paper. We point out, however,
that the same mapping applies to all the paramagnetic
region P. For example, by extending the RNRM to arbitrary
disorder, including spin-glass disorder, it is possible to find
the generalization of the Nishimori line [51] and, by analytic
continuation, to show that ϕ takes the same value in all the P
region. In particular, for a system with a fixed coupling built
on the Gilbert random graph, this implies that ϕ ≡ 0 in all the
P region [52].
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