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Deep machine learning interatomic potential for liquid silica
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The use of machine learning to develop neural network potentials (NNP) representing the interatomic potential
energy surface allows us to achieve an optimal balance between accuracy and efficiency in computer simulation
of materials. A key point in developing such potentials is the preparation of a training dataset of ab initio trajecto-
ries. Here we apply a deep potential molecular dynamics (DeePMD) approach to develop NNP for silica, which
is the representative glassformer widely used as a model system for simulating network-forming liquids and
glasses. We show that the use of a relatively small training dataset of high-temperature ab initio configurations
is enough to fabricate NNP, which describes well both structural and dynamical properties of liquid silica. In
particular, we calculate the pair correlation functions, angular distribution function, velocity autocorrelation
functions, vibrational density of states, and mean-square displacement and reveal a close agreement with ab
initio data. We show that NNP allows us to expand significantly the time-space scales achievable in simulations
and thus calculating dynamical and transport properties with more accuracy than that for ab initio methods. We
find that developed NNP allows us to describe the structure of the glassy silica with satisfactory accuracy even
though no low-temperature configurations were included in the training procedure. The results obtained open up
prospects for simulating structural and dynamical properties of liquids and glasses via NNP.
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I. INTRODUCTION

Application of machine learning (ML) in simulations of
materials is an actively developed paradigm. The main idea
behind such techniques is to fit properly the interatomic
potential energy surface (PES) of a particle system using
some reference data, which are usually provided by ab ini-
tio simulations. Since pioneering works at the end of the
2000s [1–3], a number of closely related ML approaches
have been proposed so far to solve this problem and ap-
plied successfully for studying condensed matter systems of
different nature [3–20]. These methods can be divided into
three main families: the linear regression methods, such as the
spectral neighbor analysis method [14,19] and the moment
tensor potentials [20]; kernel methods, including Gaussian
approximation potential method [3,18] and its modifications
[5,6]; and different approaches based on deep neural networks
[7–13,21–23]. Despite common ideas and purposes, these
methods may differ essentially by the manner in which they
fit a PES. The neural network approach seems one of the most
general and promising, at least for simulating bulk materials.
Neural network potentials (NNPs) fit a PES as a complex
nonlinear function of local environment descriptors, which
must be invariant under translation, rotation, and permutation
of atoms. There are many NNPs proposed so far, such as
deep potential molecular dynamics (DeePMD) [7–10], neural
network potential package (n2p2) [11,12], accurate neural

artificial intelligence network engine for molecular energies
(ANI) [21,22], and deep learning architecture for molecules
and materials by K. T. Schütt (SchNet) [23]. They are based on
similar ideas but utilize different sets of local descriptors and
different configurations of fitting neural networks. Anyway,
properly designed NNP can provide nearly ab initio accuracy
with orders of magnitude less computational cost [10–12].

One the most obvious applications of NNPs is the molec-
ular dynamics simulations of liquids. Indeed, NNPs allows us
to simulate thousands of particles at the timescales of nanosec-
onds, which is enough for an accurate description of both
structural and dynamical properties of a liquid. Thus NNPs
give us a unique ability for calculating transport properties of
materials with nearly ab initio accuracy as well as studying
large-scale structural properties. Note that due to the novelty
of NNP approach its application to the liquid state description
has not yet been thoroughly validated.

A key issue in developing NNPs is the preparation of a
training dataset of ab initio configurations that represent prop-
erly the PES of a system in a certain domain of configurational
space. In most cases, training configurations are obtained by
ab initio molecular dynamics (AIMD) simulations performed
using density-functional theory. Such calculations are very
time-consuming and so the search for effective ways to gen-
erate optimal training datasets is an important task in the
context of computational cost. Another issue is the possibility
of using NNPs to describe thermodynamic states that are far
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from those included in the training dataset. It is obvious, that
this possibility depends strongly on how much the structure
of the system varies under change of thermodynamic condi-
tions. The answer to this issue is especially important in the
context of simulations of supercooled liquids and glasses for
which obtaining properly relaxed AIMD configuration is an
extremely difficult task.

Here we address these issues for silica, which is of
great practical importance as a material for the semiconduc-
tor industry [24], pharmacy [25], food industry [26], and
nanotechnology [27]. Nano- and micro-sized silica particles
serve as a base for fabricating colloidal suspensions, which
are the main objects in studying self-assembly and tunable
interactions [28–30]. Moreover, silica is the representative
glassformer widely used as a model system in studying
network-forming liquids and glasses [31–41]. Due to its prac-
tical and fundamental importance, there have been intensive
researches in the field of computer simulations of silica.
Thus, a lot of interatomic potentials for this system have
been developed [42–46]. However, the NNP model combin-
ing the accuracy of AIMD and the efficiency of classical
simulations has not been developed so far. Here we intro-
duce such NNPs, which have been trained and tested using
a DeePMD kit [7–9,47,48]. By using the training dataset of
high-temperature AIMD configurations for relatively small
systems of 96 atoms, we fabricate NNP, which describes
well both structural and dynamical properties of liquid silica.
Then, this NNP was used to generate statistically independent
configurations for creating more reliable dataset, which was
used for improvement of the initial NNP. We find that this
new NNP also allows us to describe the structure of the
glassy silica with satisfactory accuracy even though no low-
temperature configurations have been included in the training
procedure.

II. METHODS

A. Ab initio calculations

The training datasets for NNP were generated by AIMD
simulations utilizing density-functional theory as imple-
mented in Vienna ab initio simulation program [49].
Projector augmented-wave pseudopotentials and Perdew-
Burke-Ernzerhof (PBE) [50,51] gradient approximation to the
exchange-correlation functional were used [52]. Only the �

point was used to sample the Brillouin zone and the energy
cutoff of 500 eV was set, which is higher than the default
cutoff automatically obtained from pseudopotentials. A Nose-
Hoover thermostat was used to control the temperature.

Two training ab initio datasets were generated. The first
one was created based on AIMD simulations of systems con-
taining 96 particles. The initial configurations for AIMD were
generated by classical molecular dynamics simulations with
Tersoff potential as implemented in LAMMPS code [53]. The
initial configuration for classical simulations was created as
a cubic lattice of 96 atoms (32 atoms of Si and 64 atoms
of O) which was randomly distributed over the lattice sites.
This structure was melted and annealed at 5000 K and zero
pressure P = 0 for 10 ps. Then we collected five substantially
different configurations, which were used as the initial ones

for independent AIMD runs performed in stepwise manner at
(5000, 4500,. . . , 2000) K; the final state at higher temperature
was used as the initial state for the lower temperature. At each
temperature, the systems were relaxed for 20 ps (10 000 steps
of 2 fs) and when equilibrium data were collected for another
20 ps; the volume for all AIMD runs was equal to the equi-
librium volume at P = 0, T = 5000 K. The timestep was 2 fs
and all the configuration were saved in the training dataset.
Note that all the AIMD configurations (even the nonrelaxed
ones) were included in the training procedure. But, for the
calculation of the observable properties, only the equilibrium
configurations were used. Thus, the total number of config-
uration was 5 × 7 × 10 000 = 350 0000, which were divided
into training and testing subsets in the ratio of 2:1. This dataset
was used to train NNP, which will be further referred to as
DeePMD-96.

The second dataset was generated for 216 particle sys-
tems using different strategy. Here we utilized DeePMD-96 to
generate three long trajectories that contained 106 MD steps
of 2 ps at T = 3000, 4000, and 5000 K. Then we collected
100 configurations with the step of 5000 frames from each
trajectory and used them as initial configurations for inde-
pendent AIMD runs of 100 steps of 1 fs. Since the main
purpose for creating this dataset was the better description
of the glassy structure (see Sec. III A), all calculations were
performed at the same volume corresponding to experimental
room-temperature density of glassy silica. Thus, the dataset
contained 30 000 configurations of 216 atoms. This dataset
was used to develop NNP, which will be further referred to as
DeePMD-216.

B. Training procedure

To develop NNP for silica, we mainly use a DeePMD
package [7–9,47,48]. To validate the results, the alternative
NNP was trained with the same datasets by using n2p2 code
developed by Singraber and coworkers [11] based on an ap-
proach proposed earlier by Behler and Parrinello [1,12]. Both
methods utilize feedforward multilayer neural networks (per-
ceptrons) as fitting functions. The main difference between
them is the set of local environment descriptors, which are fed
to the input layer of the neural network to provide invariance
under translation, rotation, and permutation. In the smooth
version of DeePMD we used (DeepPot-SE) [48], end-to-end
smooth and continuous embedding network is used for that
purpose, which allows us to transform properly the atomic
coordinates in a rather automatic manner. In the n2p2 method,
the set of so-called symmetry functions have to be properly
specified. Both methods give almost the same results but
DeePMD demonstrates a more convenient and user-friendly
procedure for preparing training data. Moreover, n2p2-based
simulations more often demonstrate unstable behavior when
the system falls out the ranges of values of the symmetry
functions that were obtained during the training procedure.
This problem is probably caused by the fact that the chosen
set of symmetry functions fails to describe some local atomic
environments. Thus, a very careful tuning of the symmetry
functions is needed. As a result, n2p2 approach requires more
routine work to obtain the same results than DeePMD. Here-
inafter, we will discuss only the results obtained by DeePMD.
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FIG. 1. Main frame: Partial O-O, Si-O, and Si-Si radial distribution functions g(r) for liquid silica at T = 3000 K calculated via AIMD,
NNP (DeePMD-216), and BKS potential. All calculations are performed at N = 216. Insets: The comparison between RDFs calculated by
DeePMD-96 and DeePMD-216.

The cutoff radius rcut of DeepPot-SE model was set to
6.0 Å and descriptors decay smoothly from 4.5 Å to the rcut.
The sizes of the angle filter, radial filter, and fitting networks
were {10, 20, 40}, {5, 10, 20}, and {40, 20, 10}, respec-
tively. The decay rate and decay step were set to 0.95 and
5000, respectively. For DeePMD-96, the prefactors in the loss
functions were pstart

e = 1.00, plimit
e = 1.00, pstart

f = 100, and
plimit

f = 100. For DeePMD-216, we set pstart
e = 1.00, plimit

e =
10.0, pstart

f = 1000, and plimit
f = 100. No virial data were in-

cluded in the training process in both cases and so we set
pstart

v = 0, plimit
v = 0.

C. NNP simulations

The DeePMD kit includes implementation to the
LAMMPS code, which allows us to perform direct MD simu-
lations with the developed NNP. In order to compare correctly
the results obtained by NNP and AIMD calculations, we apply
the same simulation conditions in both cases. In particular, all
the NNP results presented below in comparison with AIMD
was obtained for the systems containing either N = 96 (for
DeePMD-96) or N = 216 (for DeePMD-216) particles to
eliminate possible difference in the finite-size effects. NNP
simulations were performed in the temperature interval 3000–
5000 K in a stepwise manner using a final frame of each run as
an initial configuration for the next one. Each simulation con-
tained 105 (106) MD steps for DeePMD-96 (DeePMD-216).
When calculating observable properties, we excluded the first
10% of MD configurations to obtain equilibrium structures.
To fabricate a glassy structure of silica, we considered the sys-
tem of 2592 atoms (864 SiO2 units) for DeePMD-96 and 5832
atoms (1944 SiO2 units) for DeePMD-216. These systems
were quenched from 3000 K down to 300 K with the cooling
rate of 1012 K/s. Then, the quenched structure was annealed at
300 K for 104 MD steps to calculate structural characteristics,
which can be compared with available experimental neutron
scattering data. The length of MD step during quenching from
3000 K to 1500 was equal to 1.5 fs; in all other cases, it was
1.0 fs. In all cases, the Nose-Hoover thermostat with damping
parameter 100 fs was used to control the temperature.

III. RESULTS AND DISCUSSION

A. Structural properties

We start our discussion with the comparison of the struc-
tural characteristics calculated via AIMD, NNP, and van
Beest-Kramer-Santen (BKS) potential [46], which is one of
the most widely used classical force fields for silica. The first
resort method in studying the structure of liquids is the analy-
sis of the radial distribution function (RDF) g(r). In Fig. 1 we
show partial RDFs of liquid silica at T = 3000 K calculated
via the methods mentioned above. We see from the Fig. 1 that
NNP provide excellent agreement with AIMD data. Compar-
ison to BKS potential reveal qualitatively the same behavior
with noticeable quantitative differences. Remember, that we
use two versions of NNP, DeePMD-96 and DeePMD-216.
The former was constructed from ab initio trajectories ob-
tained for 96 particle system and the latter is a second-family
NNP constructed from a large number of statistically inde-
pendent AIMD trajectories whose initial configurations were
generated by DeePMD-96. In the main frames of Fig. 1, we
show the results obtained using DeePMD-216. A comparison
between DeePMD-96 and DeePMD-216 is presented in the
insets and reveals small differences. However, DeePMD-216
provides slightly better agreement with AIMD, especially for
Si-Si pairs. As we will see below, the difference between
the two NNPs is more substantial in the description of the
glassy state (see Fig. 3). In general, presented RDFs reveal
strong chemical interaction between species, especially for
Si-O pairs. That is in agreement with our knowledge about
the interatomic interactions in silica.

Another widely used distribution function providing im-
portant information about structural correlations beyond RDF
is the bond angle distribution function (BADF), which is the
probability density for an angle between two vectors con-
nected the target atom with its two nearest neighbors. Partial
BADFs for silica at T = 3000 K are shown in Fig. 2. We see
again that BADFs calculated via AIMD and NNP are in very
good agreement. The comparison between BADF calculated
via two versions of NNP presented in the inset reveals almost
the same results. In general, BADFs calculated demonstrate
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FIG. 2. Main frame: Partial BADFs for liquid silica at T =
3000 K calculated via AIMD, NNP (DeePMD-216), and BKS
potential. All calculations are performed at N = 216. Insets:
The comparison between BADFs calculated by DeePMD-96 and
DeePMD-216.

the picture corresponding to the tetrahedral structure of the
liquid silica. Indeed, the locations of the first maxima in
O-O-O and O-Si-O distributions correspond to almost per-
fect silicon-centered tetrahedron with the oxygen atoms in its
vertexes.

Thus, we see that developed NNP provides good accuracy
in describing the structure of liquid silica. On the one hand,

FIG. 3. Pair correlation function (a) and partial radial distribution
functions [(b)–(d)] for the vitreous silica. The red bullets in panels
(a) and (b)–(d) represent respectively the data obtained by neutron
diffraction [54] and those calculated from experimental data by the
reverse Monte Carlo method [55]. The solid lines in all panels corre-
spond to NNP simulations. DeePMD-96 (green) and DeepMD-216
(blue) represent respectively the results obtained with NNPs, which
were trained using ab initio data for N = 96 and N = 216 particle
systems. The insets in panels (b) and (c) show the areas marked by
rectangles on a larger scale.

this is rather expectable result because NNP under considera-
tion was developed using liquid ab initio trajectories. On the
other hand, this result is important in the context that neural
networks are able to fit PES for network-forming systems with
strongly anisotropic interactions.

A much more difficult task is the description of the vit-
reous silica structure by using NNPs. Correct solution of
this problem requires including in the training dataset atomic
configurations corresponding to supercooled liquid and glassy
states. However, an implicit generation of such configurations
via AIMD is hardly possible because the timescales, which are
achievable in simulations, are not enough to equilibrate the
structure of a particle system at relatively low temperatures.
Thus, the development of NNPs for describing supercooled
liquid and glasses, is an challenging task, which is beyond the
scopes of this work.

Here we address the particular issue on this way: How
closely a NNP developed via high-temperature liquid configu-
rations describes the structure of glassy silica? To answer this
question for the NNPs under consideration, we plot in Fig. 3
pair correlation function for the vitreous silica obtained by
neutron diffraction [54] as well as partial radial distribution
functions calculated from experimental data by the reverse
Monte Carlo method [55] and compare them with the re-
sults of NNP simulations. For the sake of comparison, the
results obtained using both versions of NNP (DeePMD-96 and
DeePMD-216) are presented. We see that the NNPs describe
satisfactory the structure of the glassy state in spite of the
facts that (1) no glassy configurations were included in the
training dataset and (2) the cooling rate of 1012 K/s applied
in simulations to obtain the glassy state is of orders of mag-
nitude higher than that in experiments. It is important to note
that DeePMD-216 demonstrates much better agreement with
experimental data. That may be explained by the following
reasons: (1) the dataset applied to train the DeePMD-216
model contains more statistically independent configurations
and thus more effectively covers the configurational space
of the system and (2) the larger system is less affected by
finite-size effect, which can be important in the glassy state.

The relative success of the NNP in describing glass struc-
ture is probably due to the special network structure of silica,
which does not change qualitatively during the cooling. In
the systems like metallic alloys, where the structure changes
essentially at cooling, one might expect that NNP trained
on high-temperature configurations would fail describing the
glassy state. Of course, even in the case of silica under
consideration, additional efforts are necessary to achieve a
better description of the glassy state. First, the training dataset
should be extended by adding properly generated glassy con-
figurations [8,56–58]. Second, the properties of numerically
quenched systems can substantially depend on the cooling rate
[59–62] and so more sophisticated methods like swap Monte
Carlo [63–65] or sub-Tg annealing [59,60] should be utilized
to obtain a more realistic glassy structure.

B. Dynamical properties

We have seen above that NNPs developed provide a good
description of structural properties of the silica. Here we fo-
cus on dynamical properties (dynamic correlation functions),
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FIG. 4. [(a) and (b)] Partial VAFs for liquid silica at T = 3000 K
calculated via AIMD, NNP, and BKS potential at the number of
particles N = 96. Insets compare VAFs extracted from NVE and
NVT ensemble simulations. [(b) and (c)] Vibrational densities of
states obtained via Fourier transform of VAF. Calculations were
performed at N = 96 for AIMD and N = 2592 for DeePMD-96. We
see that, due to larger system size, DeePMD allows us to calculate
VDOS with much higher accuracy.

whose calculation requires much more precision in the de-
scription of interatomic forces than in the case of structural
characteristics.

The simplest but important dynamical correlation function
is the velocity autocorrelation function (VAF), which is the
correlator of particle velocity,

Z (t ) = 〈v(t ) · v(0)〉,
where averaging is performed over particle trajectories. The
practical importance of VAF is that (i) its Fourier trans-
form presents the density of vibrational states [66] and (ii)
Green-Kubo relation with VAF gives the exact mathematical
expression for diffusion coefficient [67]. Note that we will
always use VAF normalized on its initial value.

In Figs. 4(a) and 4(b) we show partial VAFs for liquid silica
at T = 3000 K calculated via AIMD, NNP, and BKS poten-
tial. We see again that NNP provides excellent agreement with
ab initio data. Interestingly that BKS potential, even though it
describes satisfactorily the structural properties, demonstrates
only qualitative (not quantitative) agreement with AIMD in
describing VAF.

Since the use of a thermostat can affect the atomic dy-
namics, we perform NVE ensemble simulations, calculate
VAF and compare it with that obtained in NVT [see insets
in Figs. 4(a) and 4(b)]. The results are practically the same
that suggests the influence of the Nose-Hoover thermostat is
negligible in our case.

Note that, for the sake of accurate comparison, we calculate
VAF by all methods using the same conditions as for AIMD

FIG. 5. Main frame: MSD of liquid silica at T = 3000 K calcu-
lated via AIMD, DeePMD, and BKS potential. We see that DeepMD
allows us to cover timescales corresponding to diffusion regime in
atomic motion, whereas AIMD does not. Inset: MSD curves in linear
scale, which demonstrate clearly the linear behavior at t � 0.

[N = 96 (or 216), tmax = 0.2 ps]. However, the big advan-
tage of NNPs is that they allow us to expand significantly
the time-space scales achievable in simulations. That is es-
pecially relevant for calculating dynamical characteristics. In
Figs. 4(c) and 4(d) we illustrate this fact by the example of the
calculation of vibrational density of states (VDOS) via Fourier
transform of VAF. In this case, when calculating VDOS by
DeePMD, we consider a larger system of N = 2592 particles.
That allows us to achieve much higher accuracy in calculating
VDOS in comparison to AIMD.

Another important dynamic correlation function is the
mean-square displacement (MSD). In the condensed matter
theory, MSD is widely used for calculations of the diffusion
coefficients via the Einstein relation as well as an indicator
of glassy dynamics [68–70]. In Fig. 5 we show MSD for
liquid silica calculated at T = 3000 K by the methods under
consideration. As for VAF, NNP demonstrates an excellent
description of MSD, whereas BKS provides only qualitative
accuracy. Note that the MSDs presented in Fig. 5 reveal
behavior, which is typical for glass-forming liquids includ-
ing liquid silica [39,71]. Namely, there are three detectable
dynamical regimes: the ballistic regime at short times, the
plateau at intermediate timescales, and the long-time linear
(diffusion) regime [39,68]. Besides, at the crossover between
ballistic and plateau regimes (at around 0.2 ps) a little bump
is detected. This is the distinctive feature of the silica, which
is sometimes related to the boson peak [39].

It is important that AIMD simulations performed in rea-
sonable computer time allows us to cover only the first two
regimes; two orders of magnitude longer simulations are
needed to get diffusion regime. Such simulations are ex-
tremely time-consuming for even small system sizes, which
means it is hardly possible to calculate the transport prop-
erties of viscous liquids like silica by using AIMD. At the
same time, NNP approach allows us to perform simulations at
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hydrodynamic space-time scales and so calculating transport
properties with high accuracy. This fact is one of the most
fascinating capabilities of ML-based approaches.

IV. CONCLUSIONS

We utilize a deep machine learning approach as imple-
mented in DeePMD kit to develop NNP, which represents
properly the PES of silica. We focus on studying a liquid state
but also obtain some preliminary results for a glass.

Using only high-temperature liquid AIMD trajectories in
the training dataset, we develop a NNP, which provides nearly
ab initio accuracy in describing structural and dynamical cor-
relation functions of liquid silica, such as radial distribution
function, bond-angle distribution function, velocity autocor-
relation function, and mean-square displacement. Structural
properties of the glassy state are also described with satis-
factory accuracy in spite of the fact that no glassy data were
included in the training procedure.

We have also proposed an iterative procedure for develop-
ing NNPs. The main idea is to achieve iterative self-consistent

improvement of a NNP by creating a dataset to train children-
NNP using statistically independent initial configurations
generated by means of parent-NNP. For silica, this procedure
does not affect significantly the properties of a liquid but leads
to essential improvements in the description of the glassy
state.

Our findings suggest that NNPs allows us to achieve high-
enough accuracy in describing both structural and dynamical
properties of network-forming liquids and can be considered
a promising tool for studying supercooled liquid and glasses.
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