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Energy transport in harmonically driven segmented Frenkel-Kontorova lattices
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In this work we study the energy transport in a one-dimensional system composed of two dissimilar Frenkel-
Kontorova lattices connected by a time-modulated coupling and in contact with two heat reservoirs operating at
different temperature by means of molecular dynamics simulations. There is a value of the driving frequency at
which the heat flux takes its maximum value, a phenomenon termed thermal resonance. Structural modifications
in the lattice strongly alter the way in which the external driving interacts with the phonon bands. The overlap
of the latter in the harmonic regime of the model determines the frequency range wherein resonance emerges.
Parameter dependencies by which the incoming heat flux can be directed to either of the heat reservoirs are
examined as well. Our results may be conductive to further developments in designing thermal devices.
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I. INTRODUCTION

Structural stability in mesoscale and nanoscale devices
is closely related to heat generation within. Experiments
measuring the heat generated in electric-current-carrying
metal-molecule junctions determined that the generated heat
can be substantial [1–3] and can therefore threaten the de-
vice’s integrity. Efficiently dissipating heat in such devices is
thus important and a problem that must be considered, espe-
cially with regard to technological applications. An example
of devices wherein the above issues are relevant is that of
microelectromechanical and nanoelectromechanical systems.
These are being developed for a host of nanotechnological
applications, such as highly sensitive mass [4], spin [5], and
charge detectors [6], as well as for basic research in the
mesoscopic physics of phonons [7]. In fact, an improved un-
derstanding of the manipulation and control of phonons—that
manifest themselves as heat at the nanoscale level—is neces-
sary for further progress in addressing the above-mentioned
problem [8].

Several models and mechanisms have been proposed to
control or manipulate the heat flux at the nanoscale. For a
static thermal bias the most explored control mechanism so
far has been by means of tuning the structural asymmetry
and the degree of anharmonicity in tailored one-dimensional
lattice structures. The ensuing dependence on temperature
of the power spectra of dissimilar segments results in the
phenomenon of thermal rectification, i.e., asymmetrical heat
flow, with substantial progress being achieved in the last two
decades [9]. This phenomenon offers improved thermal man-
agement at the nanoscale and its success can be gauged by the
fact that, only shortly after the first theoretical models of the
heat rectifier [10] and thermal memory [11] were developed,
successful experimental realizations were reported [12,13].

*mromerob@ipn.mx

In order to obtain an even more flexible control of heat
energy, comparable with the richness available for electronics,
one may utilize temporal modulation that directs heat from
one part of the device to another or to an external reservoir by
means of an applied external work. Models on the mechanism
of such a nanoscale heat pump have been proposed in systems,
mostly coupled anharmonic lattices, where there is no net
thermal bias between the two reservoirs [14–16] and where
the pump works against the imposed static thermal gradient
[17–19]. Furthermore, models based on pumping phenomena
have been proposed as moving barriers in a cavity to pump
phonons from a cold reservoir to a hotter one, or driven two-
level systems or molecular junctions in asymmetric contact
with phononic baths characterized by different spectral prop-
erties [20,21]. In addition, other models employing quantum
particle pumps that differentiate and filter hot and cold par-
ticles have been proposed [22]. From the above examples it
can be inferred that among the necessary prerequisites to run
such heat machinery are nonlinearity, thermal noise, unbiased
nonequilibrium driving, and a symmetry-breaking mecha-
nism. However, other than the aforementioned information,
externally driven energy transport remains poorly understood.
Furthermore, since its study is far from trivial, contradictory
results have been reported. For example, in Ref. [18] it was
claimed that heat pumping appeared in the Frenkel-Kontorova
(FK) lattice under the influence of a periodic driving force, but
later it was demonstrated that such an effect is indeed absent
[19].

In this work we reconsider the one-dimensional (1D)
model consisting of two dissimilar FK lattices connected
together by a time-modulated harmonic coupling under the in-
fluence of a static thermal bias previously studied in Ref. [23].
Our results seem to indicate that the interpretation of some of
the results in the aforementioned work may be questionable.
More precisely, the obtained resonant heat transport regime,
i.e., maximization of heat flux for a specific value of the
external driving frequency, was explained by a shift towards
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FIG. 1. Sketch of our model system composed of two dissimilar
FK lattices connected by a time-modulated harmonic interaction and
in contact with two thermal reservoirs.

lower frequencies of the phonon bands in each segment,
induced by a transition from anharmonic to harmonic behav-
ior as the resonant frequency is approached. Nevertheless,
we have observed that such a phonon band shift can only be
attained by the imposed structural asymmetries of the model.
We have introduced them in a systematic way by means of a
scaling of the involved parameters, first proposed in Ref. [24]
to study the thermal rectification properties of this model and
extensively employed afterwards [8,25]. Once the asymmetry
is fixed, no shift in the phonon bands is observed altogether;
these are only weakly modified by the external drive. Fur-
thermore, we have determined that, for the temperature bias
employed in Ref. [23] and in the present work, the system is in
its harmonic regime. The overlap of the ensuing phonon bands
determines the frequency range wherein thermal resonance
can manifest itself, in close analogy to the way such overlap
is at the origin of thermal rectification in this and similar
systems. Thus we unravel the underlying physical mechanism
for such a resonance phenomenon.

This paper is organized as follows: in Sec. II the model
system and methodology are presented. Our results on the
dependence of the thermal resonance on the structural param-
eters of the model are reported in Sec. III. The discussion
of the results, as well as our conclusions, are presented in
Sec. IV.

II. THE MODEL

Our system consists of two segments (L, R) of nonlinear
1D lattices coupled together by a harmonic spring with a time-
modulated strength kC (t ), as shown in Fig. 1. The equations of
motion (EOM) for a given oscillator within each segment can
be written, in term of dimensionless variables, as q̇i = pi/mi

and

ṗi = kL,R(qi+1 + qi−1 − 2qi ) − VL,R

2π
sin(2πqi )

+(ξ1 − γ1 pi ) δi1 + (ξN − γN pi ) δiN , (1)

where N is the system size. kL,R and VL,R are the harmonic
spring constant and the amplitude of the FK on-site potential
in each segment, respectively; more precisely, in the above
equations we employ kL,VL if i ∈ [1, nc − 1] and kR,VR if
i ∈ [nc + 2, N]. In order to reduce the number of adjustable
parameters, we set VR = λVL and kR = λkL. Here we con-
sider only the commensurate case where the on-site potential
assumes the same spatial periodicity as the lattice constant.
{mi, qi, pi}N

i=1 are the dimensionless mass, displacement, and
momentum of the ith oscillator; see the Appendix of Ref. [8]

for a detailed procedure on how to construct such dimension-
less variables. Fixed boundary conditions are assumed (q0 =
qN+1 = 0). Henceforth we will consider a homogeneous sys-
tem, i.e., mi = 1 ∀ i. The Gaussian white noise ξ1,N has zero
mean and correlation 〈ξ1,N (t )ξ1,N (t ′)〉 = 2γ1,N kBT1,N mi(δ1i +
δNi)δ(t − t ′), with γ1,N (taken as 0.5 in all computations
hereafter reported) being the coupling strength between the
system and the left and right thermal reservoirs operating
at temperatures TL = 0.15 and TR = 0.05, respectively; the
system thus operates at a constant average temperature value
of T0 ≡ (TL + TR)/2 = 0.1. The EOM for the last oscillator in
the first segment (L) and the first one in the second (R) are
given by

ṗnc = kL
(
qnc−1 − qnc

) + kC (t )
(
qnc+1 − qnc

)

− VL

2π
sin

(
2πqnc

)
,

ṗnc+1 = kR
(
qnc+2 − qnc+1

) + kC (t )
(
qnc − qnc+1

)

− VR

2π
sin

(
2πqnc+1

)
,

(2)

with kC (t ) = k0(1 + sin ωt ) being the time-modulated ampli-
tude of the harmonic coupling, which is an external driving
with frequency ω. The aforementioned EOM were integrated
with a stochastic velocity-Verlet integrator with a time step
of �t = 0.005 for a production time interval of 2 × 107 time
units after a transient time of 108 time units.

Once the nonequilibrium stationary state is attained, the
local heat flux is computed as Ji = kL,R〈q̇i(qi − qi−1)〉, with
kL if i ∈ [2, nc − 1] and kR if i ∈ [nc + 1, N], and the local
temperature as Ti = 〈p2

i /mi〉; in both instances 〈· · · 〉 indicates
time average. In the stationary state the heat flux in each
segment becomes independent of the site, and, in order to im-
prove the statistical precision of our results, the mean heat flux
JL,R on each side of the lattice is calculated as the algebraic
average of Ji over the number of unthermostatted oscillators in
each segment. Now, the rate of work Ẇ done by the external
driving in the contact at nc is dissipated into the reservoirs,
implying that

Ẇ = JL + JR, (3)

where JL,R are defined as positive when the heat flows into the
reservoirs.

III. RESULTS

In Fig. 2 we present the results of the dependence of heat
fluxes JL, JR, and the average J as a function of the driving fre-
quency ω with VL = 5, VR = 1 kL = 1, kR = 0.2, k0 = 0.05,
and nc = N/2 for a lattice with N = 32 oscillators. Our re-
sults in Fig. 2(a) are qualitatively similar to those reported
in Ref. [23]. The observed differences are clearly a result
of the way in which we chose to implement the structural
asymmetry into the system, which is that of Ref. [24] as pre-
viously mentioned. In the adiabatic driving limit ω → 0 the
heat flows from oscillator i = 1 to i = N , with JR = −JL > 0,
and thus the averaged net power released to the system is
zero. In the opposite limit ω → ∞ the coupling oscillates
very fast and converges to a time average constant value k0

as if there is no driving. Thus the relevant phenomenology
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FIG. 2. Heat flux vs driving frequency ω. The energy currents
through the left and right segments are JL and JR, respectively; J ≡
(JL + JR )/2 is the average current with VL = 5, kL = 1, λ = 0.2, k0 =
0.05, N = 32, and nc = N/2. Maximum heat flux is at ωm = 0.6.
Continuous lines are a guide to the eye.

occurs at intermediate ω values. First, for 0.1 < ω � 0.26
there is a small net power contribution released to the system,
and now JR − |JL| = P > 0; thus, although heat still flows
from the hot to the cold reservoir, JL and JR have different
magnitudes. Then, within 0.26 � ω � 2, the power released
in the contact region is dissipated into the reservoirs, since
JL > 0. This phenomenon, due to the resonant interaction of
the external drive with the system’s intrinsic frequencies, is
known as thermal resonance [18,19,23]. Its main feature is
the maximization of the heat flux Jm at a specific frequency,
ωm = 0.6 in this particular instance.

Next we will explore the relative contribution of low- and
high-frequency phonons to the heat released into the system
through the contact region. In Fig. 3 we plot the phonon
spectra |τ−1

∫ τ

0 dt q̇i(t ) exp(−i
t )|2 of the interface oscillators
at the left and right sides of the contact for both the adiabatic
driving limit, ω = 0.001, and in the thermal resonance regime,
ωm = 0.6, which corresponds to the maximum heat flux Jm

of Fig. 2. It is evident that the spectra in the latter regime
have almost twice the spectral power as those in the former,
which results in a larger overlap in the low-frequency range
of the thermal resonance regime depicted in Fig. 3(b). The
energy transport into the reservoirs goes through the phonon
channels determined by the imposed thermal bias since the
structure, unlike the magnitude, of the spectra remains largely
unchanged. The results in our Fig. 3 can be understood if we
recall that there is a critical temperature Tcr ≈ V/(2π )2 above
which the kinetic energy is large enough to overcome the
on-site potential barrier, hence the contribution of the on-site
potential can be neglected [24]. In our particular case we have
T (L)

cr = 0.13 < TL for VL = 5 and T (R)
cr = 0.025 < TR for VR =

1. Thus both sides of the system are in a temperature regime,
well above their respective Tcr values, wherein they behave
as harmonic lattices with a phonon band of 0 < 
 <

√
4kL,R

composed mainly of noninteracting phonons, which gives 0 <


/2π � 0.32 for the left oscillator and 0 < 
/2π � 0.14
for the right one [24]. In the weak-coupling limit (k0 � 1)
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FIG. 3. (a) Power spectra of the two oscillators in the left (red)
and right (blue) sides of the contact for a driving frequency of
ω = 0.001. (b) Same as (a) but for ωm = 0.6. Vertical dashed and
dot-dashed lines correspond to the cut-off frequencies of the left
and right phonon bands respectively. Vertical solid line denotes the
ωm/2π value. Same VL , kL , λ, k0, N , and nc values as in Fig. 2.

thermal resonance can occur only for frequency values in
the overlapping region of these phonon bands, which im-
plies that ωm/2π < 0.14; our result ωm/2π ∼ 0.09 is in good
agreement with the above estimate. Therefore, the net energy
flow from the external source into the thermal reservoirs is
accomplished by the external driving due to its interaction
with—and ensuing alteration of—the phonon bands activated
by the thermal bias imposed at the boundaries.

In Fig. 4 we plot the corresponding temperature profiles for
selected ω values reported in Fig. 2. It is clear that, near and
at ωm, there is a change in the sign of the slope corresponding
to the left side of the system, which signals that there is an
energy flux into the hot reservoir. The slope of the temperature
profile in the right side is also increased with respect to its
value in the adiabatic regime because of the additional energy
flux afforded by the external driving. Due to the tempera-
ture jump at the right boundary, the slope of the temperature
profile is higher than that in the left side, which correlates
well with the fact that JR > JL for ω = ωm. Now, contrary
to Ref. [23], all of the temperature profiles reported in Fig. 4
exhibit a discontinuity at the interface. This result is consistent
with the existence of the contact between both lattices, as
shown in numerous studies [24,26,27]. We corroborated that
this temperature jump is still present when simulations where
performed with the exact values of the employed parameter
set reported in the aforementioned reference and different
production time intervals, as can be readily seen in the Fig. 4
inset.

As already explained in Sec. II, both the magnitude of the
elastic constant and the strength of the on-site potential can
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FIG. 4. Temperature profiles for selected ω values, from low to
high ones, increasing from bottom to top. Same VL , kL , λ, k0, N , and
nc values as in Fig. 2. Inset is the temperature profile for the same
values of the parameter set as in Ref. [23] with a resonant frequency
of ωm = 0.3 for production time intervals of 5 × 106 (circle), 2 × 107

(triangle), and 108 (square) time units.

be simultaneously controlled by means of the λ parameter.
Therefore, it is sufficient to study the properties of the con-
sidered system as a function of the aforementioned parameter.
Figure 5 reports the dependence of Jm versus λ. This figure
clearly shows that, for λ < 1, we have JR > JL, i.e., more heat
flows into the cold reservoir. Next, as λ increases, and thus the
asymmetry in the system decreases, JR decreases. For λ > 1
values there is an almost complete suppression of the heat flux
in the right side of the lattice. In this situation the hight of
the valley and the harmonic constant stiffness become large
enough to confine the oscillators in the potential valley, thus
preventing any significant heat flux altogether into the right
segment; only a steady heat flow into the left (hot) reservoir
through the corresponding segment is present. In the inset we
plot ωm versus λ, and it can be readily observed that, as λ

increases, the resonant frequency has a sharp increase in its
value when λ ∼ 0.6.
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FIG. 5. Heat flux Jm vs scaling parameter λ. Same VL , kL , k0, N ,
and nc values as in Fig. 2. Inset is ωm vs λ. Continuous lines are a
guide to the eye.
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FIG. 6. (a) Heat flux vs driving frequency ω for λ = 0.8. Same
VL , kL , k0, N , and nc as in Fig. 2. The two peaks of the heat flux
correspond to frequencies ωl = 0.8 and ωm = 1.6. Continuous lines
are a guide to the eye.

For the instances in Fig. 5 wherein λ < 0.6 we have ωm <

1, as can be seen in the inset, with a dependence of the heat
flux on the driving frequency very similar to that already
depicted in Fig. 2. In Fig. 6 we display the data of the heat
flux as a function of the driving frequency ω for the particular
λ = 0.8 value. It is to be noted that a peak associated with
a ω < 1 frequency is still present at ωl ∼ 0.8, but is now
accompanied by a second peak, that now becomes the absolute
maximum and thus the resonant frequency, at ωm ∼ 1.6, as
can be readily noticed, with JR > JL.

The power spectra of the oscillators to the left and right of
the contact for the λ = 0.8 value of Fig. 5 are displayed in
Fig. 7(a). The increased structural symmetry of the system is
reflected in the qualitative similarity of the two spectra, and
the ensuing overlap over the entire frequency range accounts
for the widening of the range wherein subresonant behavior
can be observed. The left peak of the J vs ω plot in Fig. 6
can be associated with the leftmost ones of the displayed
spectra since they are located at 
/2π ∼ 0.13, a value almost
identical to ωl/2π . However, the value for which thermal res-
onance appears, ωm/2π ∼ 0.254, coincides with a spike-like
value in both spectra, as can be readily appreciated. Just as
in the instance depicted in Fig. 3, ωm lies in the frequency
range wherein the phonon bands overlap. These are given
by 0 < 
/2π � 0.32 for the left side and 0 < 
/2π � 0.28
for the right one; thus ωm/2π < 0.28, as is indeed observed.
The λ = 2 instance is displayed in Fig. 7(b). As previously
mentioned, now VR becomes relevant, and thus so does the
influence of the anharmonic FK potential. In this case the
lower bound of the phonon band is raised by

√
V R and the

phonon band is shifted to
√

VR < 
 <
√

VR + 4kR [24]. For
the considered conditions the latter is 0.5 < 
/2π < 0.68,
which has no possible overlap with the left phonon band 0 <


/2π � 0.32. Therefore it is clear that the only open channel
available for heat carrying phonons in the low-frequency re-
gion is now afforded by the latter phonon band. And indeed
the resonant frequency ωm/2π ∼ 0.127 lies within this last
frequency range. Thus the heat flux into the left (hot) reservoir
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FIG. 7. (a) Power spectra of the two oscillators in the left (red)
and right (blue) sides of the contact for a λ = 0.8 value. (b) Same
as (a) but for λ = 2. Vertical dashed and dot-dashed lines correspond
to the cutoff frequencies of the left and right phonon bands, respec-
tively. Vertical solid line denotes the corresponding ωm/2π values in
each case. Same VL , kL , k0, N , and nc values as in Fig. 2.

is dominated by low-frequency acoustic phonons. Finally, ωm

coincides approximately with the location of the highest (left-
most) peak of the spectrum and exactly with a small spike-like
perturbation at that same frequency value.

The temperature profiles for various driving frequency val-
ues corresponding to the λ = 0.8 case depicted in Fig. 6 are
plotted in Fig. 8, and an asymmetry between the two sides
of the system is evident. Now for the ω values considered
the slopes in the left side are very similar, indicating that the
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FIG. 8. Temperature profiles for selected ω values, from low to
high ones, increasing from bottom to top in the case of λ = 0.8. Same
VL , kL , k0, N , and nc values as in Fig. 2.
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FIG. 9. Heat flux Jm vs k0. Same VL , kL , λ, N , and nc values as in
Fig. 2. Continuous lines are a guide to the eye.

magnitude of the heat flux towards the left reservoir is almost
the same in all cases, including ω = 0.8, i.e., the leftmost
peak. However, in the right side the slope corresponding to
ω = 1.6, i.e., the rightmost peak and absolute maximum, is
clearly greater than the other ones, indicating a heat flux
towards the right (colder) reservoir of larger magnitude than
that in the left side. We also notice that the jump in the part
of the temperature profile in contact with the cold reservoir,
that was observed for the corresponding ωm case in Fig. 4, is
now absent. This effect is most certainly a consequence of the
increased symmetry of both segments, since it is well known
that the temperature profile of the homogeneous FK lattice has
no discontinuities in the boundaries [28].

The interface elastic constant k0 is a very important pa-
rameter as it plays the role of coupling the two lattices. By
adjusting this parameter one can control the heat flow through
the system, as previous work has shown [25]. Indeed, once its
value is fixed, then the smaller the coupling is, the smaller the
heat current is through the system. In Fig. 9 we present the
variation of Jm as a function of k0. It is clear that the average
value of Jm presents a monotonic increase as the magnitude
of the elastic constant grows. However, for k0 < 0.4 values
we have JL < JR, i.e., a higher energy flux towards the colder
reservoir. On the other hand, if k0 > 0.4 the growth of JR

diminishes, whereas JL keeps increasing its magnitude.
The change in relative magnitude of JL and JR as k0 in-

creases can be explained by examining the power spectra
corresponding to low and high values of the interface elas-
tic constant that are plotted in Fig. 10; in both instances
the left and right phonon bands are 0 < 
/2π � 0.32 and
0 < 
/2π � 0.14, respectively. For k0 = 0.4 more power is
available in the right spectrum at high frequencies within
the region wherein the phonon bands overlap. Thus the ex-
ternal driving interacts more closely with the right segment,
resulting in a well defined thermal resonance with ωm/2π ∼
0.15 and, as a consequence, JR > JL. Next, by examining the
spectra for the k0 = 0.8 case depicted in Fig. 10(b) it can
be observed that they become entangled and begin to form
a whole. This behavior can be explained by noticing that,
for this high k0 value, both segments interact more strongly
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FIG. 10. (a) Power spectra of the two oscillators in the left (red)
and right (blue) sides of the contact for a value of the interface elastic
constant k0 = 0.4. (b) Same as (a) but for k0 = 0.8. Vertical dashed
and dot-dashed lines correspond to the cutoff frequencies of the left
and right phonon bands, respectively. Vertical solid line denotes the
corresponding ωm/2π values in each case. Same VL , kL , λ, N , and nc

values as in Fig. 2.

and act as a single system. Therefore a single phonon band,
i.e., 0 < 
/2π � 0.32, determines the frequency values of
the noninteracting phonons within the two segments. Thus
the ensuing resonant frequency ωm/2π ∼ 0.22 lies within
the aforementioned phonon band and in a frequency range
wherein the overlap of the two spectra is largest. Now, as these
can still be distinguished from one another, it is clear that more
power is provided by the left spectrum. This in turn entails
JL > JR, in agreement with the results of Fig. 5.

Finally, we would like to discuss the possibility of an ex-
perimental realization of this device. For typical atom lattices,
room temperature, measured in kelvins, corresponds to a di-
mensionless temperature T0 ∈ [0.1, 1] [8]; thus the employed
T0 value is within the adequate range considering future tech-
nological applications. For a lattice constant of 1 Å, a lattice of
the size herein used is about 32 nanometers long, a size scale
within the reach of current technology in order to be built.
Furthermore, at molecular levels a modulation of the coupling
between two molecules can be achieved experimentally in
molecular junctions by, for example, harmonically varying
the distance among them, therefore modulating the coupling
between the molecules.

IV. CONCLUDING REMARKS

To summarize: we have studied energy transport control
in a one-dimensional segmented system composed of two
FK lattices connected by a time modulated coupling. This
model affords a convenient way to study dynamical control
of heat transport and obtain results that might be relevant
for nanoscale devices. Our analysis reveals that, as far as
the resonance property is concerned, there is much similarity
between the FK and the harmonic models and is consistent
with previous findings on the subject [19]. By an appropriate
scaling we have reduced the number of parameters involved
in the description of the system and determined that the
phonon heat transport properties in the harmonic limit of the
undriven lattice are crucial to control the heat flux through
the segments when thermal resonance is present. If values
of the amplitude of the on-site potential and harmonic con-
stant in the left segment are greater than those in the right
one, energy flow into the colder reservoir is greater than
the flow into the hot one, whereas the reverse is true in the
opposite case. Also, heat flow into the colder reservoir is
higher than into the hotter one for low values of the harmonic
coupling constant between segments; the opposite being true
for higher values of that same constant. We expect that our
results hold for larger system sizes since the herein studied
system is essentially the same as that in Ref. [23]. Therefore,
the shift to lower frequencies of the resonant frequency value
reported in the latter work can be expected as the system size
increases.

Previously the thermal transport properties of a harmonic
lattice system consisting of two semi-infinite leads at differ-
ent temperature and connected by a time-modulated coupling
were studied by means of the nonequilibrium Green’s function
formalism [29]. There is a net energy flow out of the warmer
lead, but for the colder lead energy flow direction depends
on the values of both the driving frequency and tempera-
ture. Later, a model similar to that herein employed and in
Ref. [23], but with the thermal reservoirs modeled as infinite
harmonic lattices and the on-site potential being harmonic as
well [30], was proposed and studied analytically by the same
technique as in the last reference. One of the transport regimes
studied corresponds to a heat pump against the imposed ther-
mal gradient. It would be interesting to explore the possibility
of obtaining the same effect with the anharmonic model herein
employed.
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