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We study the history-dependent percolation in two dimensions, which evolves in generations from standard
bond-percolation configurations through iteratively removing occupied bonds. Extensive simulations are per-
formed for various generations on periodic square lattices up to side length L = 4096. From finite-size scaling,
we find that the model undergoes a continuous phase transition, which, for any finite number of generations,
falls into the universality of standard two-dimensional (2D) percolation. At the limit of infinite generation, we
determine the correlation-length exponent 1/ν = 0.828(5) and the fractal dimension df = 1.864 4(7), which
are not equal to 1/ν = 3/4 and df = 91/48 for 2D percolation. Hence, the transition in the infinite-generation
limit falls outside the standard percolation universality and differs from the discontinuous transition of history-
dependent percolation on random networks. Further, a crossover phenomenon is observed between the two
universalities in infinite and finite generations.
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I. INTRODUCTION

Percolation, originally proposed for modeling transport be-
havior in a random medium [1], has numerous applications in
various areas of science and technology [2]. In the standard
bond percolation on a given lattice, each bond is indepen-
dently occupied with probability p, and a cluster corresponds
to a set of sites connected together by occupied bonds. As
p increases, the bond percolation undergoes a continuous
transition at percolation threshold pc from a state of locally
connected sites to the percolating phase with an infinitely
spanning cluster [3]. In two dimensions, the critical expo-
nents ν = 4/3 (for correlation length) and β/ν = 5/48 (for
order parameter) are predicted by conformal field theory [4],
Coulomb gas theory [5], and stochastic Loewner evolution
[6], and confirmed exactly in the triangular-lattice site per-
colation [7]. In the renormalization-group treatment, these
exponents are related to the thermal and magnetic renor-
malization exponents as yt = 1/ν = 3/4 and yh = 2 − β/ν =
91/48. The magnetic exponent yh is also referred to as the
fractal dimension df for critical percolation clusters.

Phase transitions in unconventional percolation models
have been a compelling topic [8]. Explosive percolation tran-
sitions on random graphs [9–11] and square lattices [12,13],
were confirmed to be continuous. Rare examples of dis-
continuous percolation transition come from the bootstrap
percolation [14–16] and cascading failure [17,18] models.
Persistent attention has been paid to critical phenomena of
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the percolation models that involve manipulations of cluster
structures [19–23].

In real-world networks, there may simultaneously exist
different types of connections between pairs of sites (nodes),
and these different connections can interact with each other.
For instance, information can spread on social networks with
multiple communication channels. It is common that various
diseases coexist in society and the spread of a disease depends
on the spread of other diseases and immunization informa-
tion. The history-dependent percolation (HDP) model was
proposed as a primitive model to mimic some basic features
of such multiplex networks [23]. It has been demonstrated
[23] that the history-dependent process can extract crucial
characteristics of networks from the empirical data of brain
scans and social networks.

The HDP model has the bond-occupation probability p
as a free parameter (as in the standard bond percolation),
while it introduces the coupling between different types of
connections in a dynamic process. An example is illustrated
in Fig. 1. First, one generates two random and uncorrelated
bond configurations with probability p, labeled as generation
n=0 and 1. Then, one sequentially visits each occupied bond
in the n=0 configuration, and deletes the occupied bond iff
its two ending sites belong to different clusters in the n=1
configuration. Applying this operation to the n=0 generation
deterministically leads to a new configuration, which is speci-
fied by n=2. Analogously, the n=3 configuration is obtained
from n=1 according to its coupling to the n=2 configuration.
Repeat the procedure until no more bonds can be removed,
i.e., the configurations become saturated. For n = 0 and 1, the
model is simply the standard bond percolation, and for n � 2,
it is called HDP.
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FIG. 1. Illustration for the evolution in the HDP on a periodic square lattice. Generations n = 0 and n = 1 are independent configurations
produced by a random process as of standard bond percolation. The generation n with n � 2 evolves from the prior generation n − 2 in the
same layer, with the input from generation n − 1 in the other layer: for each occupied bond in generation n − 2, if its two ending sites belong
to different clusters in generation n − 1, then remove the occupied bond. The process is halted once two consecutive evolutions do not make
any change to the configurations. For this specific example, the generation number after the last evolution is I = 8.

The generation number I [24] of the saturated generation
is a random number depending on the initial n=0 and 1
configurations. On the square lattice, Fig. 2(a) plots the Monte
Carlo data for the statistical average nsat ≡ 〈I〉 as a function of
the initial bond-occupation probability p. For a given system
size L, nsat has a maximum at p ≈ 0.57. As L increases,
the peak location quickly converges to p = 0.576 132, which
corresponds to the percolation threshold in the n → ∞ limit
(as shown later). In addition, there is an important feature that
irrespective of the bond-occupation probability 0 < p < 1,
the nsat value diverges approximately as ln L, as illustrated
in Fig. 2(b). This means that given any finite value of n, the
configuration at the nth generation is not saturated as long

FIG. 2. Quantity nsat (a) vs p for various L and (b) vs lnL at
p = 0.576 132 (percolation threshold for infinite generation) on the
square lattice. (b) is plotted in a log-log scale. The dashed line in
(a) marks the position p = 0.576 132 and the solid line in (b) repre-
sents the logarithmic divergence nsat = 2.2(lnL)1.1 + 0.8.

as L is sufficiently large. Thus, to explore the HDP model
in the n → ∞ limit, one has to repeat the aforementioned
evolution until the saturated generation, and sample quantities
of interest from the corresponding saturated configurations.

In Ref. [23], the phase transition of HDP was studied as a
function of n on randomly networked structures, including the
Erdős-Rényi network and scale-free network. For any given
finite generation n � 2, a percolation transition was found to
be in the mean-field percolation universality class. Directly
in the n→∞ limit, for which the configurations in actual
simulations are taken from those at I, it was shown that the
percolation transition is discontinuous.

Given that lattices and random networks are complemen-
tary testbeds for the insights into percolation transitions, we
study the HDP on the square lattice. The remainder of the
paper is organized as follows. Section II summarizes the main
findings. Section III introduces the numerical methodology
with an emphasis on sampled quantities. Section IV presents
the numerical results: Secs. IV A and IV B present the de-
termination of percolation thresholds and critical exponents,
respectively; Sec. IV C demonstrates the geometric properties
of the critical clusters for infinite generation; and Sec. IV D
focuses on the crossover behavior of the critical phenomenon
from infinite to finite generation. Discussions are finally given
in Sec. V.

II. SUMMARY OF MAIN FINDINGS

We perform Monte Carlo simulations for the HDP on pe-
riodic square lattices with L ranging from L = 8 to 4096. For
each generation n�2, the connectivity of the corresponding
graph is investigated as a function of the bond-occupation
probability p, which is used to generate the n=0 and 1 con-
figurations, and the percolation threshold pc is determined. As
shown in Fig. 3, pc increases with n.
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FIG. 3. The dependence of percolation threshold pc and critical
bond-occupation density ρc on n for the HDP on the square lattice.
For n = 1, one has pc = ρc = 1/2. At a finite n, the continuous
phase transition at pc has critical exponents consistent with yt = 3/4
and yh = 91/48. At the infinite generation n → ∞, there is a con-
tinuous transition at pc with critical exponents yt = 0.828(5) and
yh = 1.864 4(7). Here, we plot pc and ρc vs e−n to indicate their
fast convergence as n increases, in the sense that pc and ρc vs e−n

relations are close to linearities. Renormalization flows around fixed
points are sketched by arrows.

For the finite generations n = 2, 4, and 7, we find that
the model exhibits a continuous transition whose critical
exponents are consistent with yt = 3/4 and yh = 91/48 for
the standard uncorrelation percolation model in two dimen-
sions. In the infinite-generation limit, a continuous phase
transition is observed at pc = 0.576 132(2). However, the
estimated thermal and magnetic renormalization exponents,
yt = 0.828(5) and yh = 1.864 4(7), are significantly different
from those for the two-dimensional (2D) percolation model,
indicating the emergence of a new universality class in the
n → ∞ limit.

The continuous transition in infinite generation is further
confirmed from the critical distribution function P(C1, L) of
the largest-cluster size C1, which follows a single-variable
function P̃(x) with P(C1, L)dC1 = P̃(x)dx [x ≡ C1/Ld f , d f =
yh = 1.864 4(7)]. In addition, at pc, the cluster-number den-
sity n(s, L) of size s obeys the standard scaling formula
n(s, L) ∼ s−τ ñ(s/Ld f ) of a continuous transition, with the hy-
perscaling relation τ = 1 + 2/d f .

To further explore the distinct universality classes for
the infinite and the finite generations, we demonstrate
the crossover phenomenon from the size-dependent behav-
ior of various quantities and self-defined effective critical
exponents.

III. METHODOLOGY, QUANTITIES OF INTEREST,
AND SCALING ANSATZ

For each generation of the percolation configurations, we
identify clusters of connected sites using the breadth-first

search, and sample observables that are analogous to those
in high-precision Monte Carlo studies of standard percolation
models [25–27] and relevant models [28–30].

In principle, the infinite generation stems from standard
bond percolation (n = 0) through an infinite number of gen-
erations. In practice, for n � I, the configurations on each
layer (Fig. 1) no longer change with increasing n and are
already in the infinite-generation limit. We further confirm the
equivalence of sampling infinite generations on the two layers;
in what follows, we analyze the results of infinite generation
with layer B.

More specifically speaking, for each generation n, the fol-
lowing observables are defined:

(i) The number of occupied bonds N remaining at the
generation.

(ii) The size C1 of the largest cluster.
(iii) The second moment of cluster-size distribution S2 =∑

C |C|2, where the summation runs over all clusters.
(iv) The observables R(x) and R(y), which equal 1 if a clus-

ter wraps around the periodic lattice in the x and y direction,
respectively, and equal 0 otherwise.

For each generation, we sample the following quantities
using the aforementioned observables:

(a) The density of occupied bonds ρ = 〈N 〉/(2L2). For
n = 0 and 1, one has ρ = p.

(b) The mean size of the largest cluster C1 = 〈C1〉.
(c) A susceptibilitylike quantity χ = 〈S2〉/L2.
(d) The wrapping probability

R(h) = 〈R(x)〉 = 〈R(y)〉, (1)

which gives the probability that a wrapping exists in the x
direction. In particular, for the 2D standard percolation, the
critical value R(h)

c = 0.521 058 290 is exact in the L → ∞
limit [31].

(e) Let N0,1 be the total number of occupied bonds in
generation 0 and 1. We define the covariance of R(x) and N0,1

as

g(h)
bR = 〈R(x)N0,1〉 − 〈R(x)〉〈N0,1〉, (2)

which relates to the derivative of R(h) with respect to p by
g(h)

bR = p(1 − p) dR(h)

d p .
For analyzing continuous phase transitions, we employ the

tool of finite-size scaling (FSS) theory, which predicts that a
quantity Q near criticality scales as

Q(L, p) = LXQ Q̃[(p − pc)Lyt ], (3)

where Q̃ is a scaling function. The scaling exponent XQ is
quantity dependent. Quantities C1 and χ can be related to
order parameter and susceptibility, and hence have scaling
exponents yh and 2yh − 2, respectively [3]. Quantity R(h) is
dimensionless (XQ = 0) [31], while the scaling exponent for
g(h)

bR is yt [26,27].

IV. NUMERICAL RESULTS

A. Percolation thresholds

Finite generations. The finite-size Monte Carlo data of the
wrapping probability R(h) are plotted in Figs. 4(a)–4(c) for
n = 2, 4, and 7, respectively. For each n, the intersections
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FIG. 4. Wrapping probability R(h) vs p for the finite generations
(a) n = 2, (b) 4, and (c) 7, and for the infinite generation (d) n → ∞
with various sizes. The black dashed lines in (a)–(c) represent the ex-
act value R(h)

c = 0.521 058 290 of standard percolation universality,
while the red dashed line in (d) denotes the estimate R(h)

c = 0.570 5
for n → ∞.

of the R(h) versus p curves for L → ∞ are around a finite
bond-occupation probability pc. Meanwhile, the vertical coor-
dinates for the intersections converge to a finite value around
0.521, which seems universal among these finite generations
and agrees with the exact value R(h)

c = 0.521 058 290 of the
continuous transition in 2D standard percolation.

By the least-squares criterion, we fit the Monte Carlo data
of R(h) to the formula

R(h)(L, p) = R(h)
c + a1(p − pc)Lyt + a2(p − pc)2L2yt + · · ·
· · · + b1L−ω1 + b2L−2 + · · · , (4)

which is an explicit form of (3) for Q = R(h) with additional
finite-size correction terms b1L−ω1 and b2L−2. The critical
wrapping probability R(h)

c is expected to be universal among
the transitions in the same universality and on the same

lattice geometry. The parameters ak and bl (k = 1, 2, . . . ; l =
1, 2, . . . ) are nonuniversal. The leading correction exponent
is denoted as ω1, while the subleading correction exponent is
fixed to be −2.

In the fits, we try to include subleading terms such as a2, b1,
and b2 terms or their combinations. This would be useful for
a systematical justification on the evidence level of the fits. In
addition, preferred fits should feature stability against varying
Lmin that denotes the minimum size incorporated, and ensure
that the Chi squared χ2 per degree of freedom (DF) is not
larger than O(1).

For the finite generation n = 2, we first include the cor-
rection terms with b1 and b2, and obtain pc = 0.552 679(6),
yt = 0.74(4), and R(h)

c = 0.522(7). These estimates for yt and
R(h)

c further imply a transition in the standard percolation uni-
versality. As R(h)

c is fixed to be R(h)
c = 0.521 058 290, we have

pc = 0.552 678(1), yt = 0.75(4), and ω1 = 1.2(4). As yt =
3/4 and ω1 = 1 are both fixed, we obtain pc = 0.552 678(2)
and R(h)

c = 0.521 1(4). On this basis, we let yt = 3/4, R(h)
c =

0.521 058 290, and ω1 = 1 all fixed for reducing uncertain-
ties, and obtain pc = 0.552 677 6(9). Similar analyses are
performed for n = 4, for which the results of fits can be found
in Table I.

As indicated by Fig. 4(c), the finite-size corrections be-
come severe for n = 7. Hence, simulation results for large
lattices are a must to achieve an extensive set of preferred fits.
As R(h)

c = 0.521 058 290 is fixed, we find pc = 0.575 613(1),
yt = 0.77(1), and ω1 = 1.2(1). As we incorporate merely
large enough sizes with Lmin = 2048 and preclude correc-
tion terms, the results are pc = 0.575 607(4), yt = 0.72(5),
and R(h)

c = 0.518(3). As yt = 3/4 is further fixed, we obtain
pc = 0.575 608(3) and R(h)

c = 0.519(3).
Finally, by comparing preferred fits, we estimate perco-

lation thresholds as pc = 0.552 678(2) (n = 2), 0.571 941(4)
(n = 4), and 0.575 61(1) (n = 7), where each error bar con-
sists of one statistical error and a subjective estimate of
systematic error. The estimates of critical wrapping proba-
bilities are R(h)

c = 0.521 2(6) (n = 2), 0.521(2) (n = 4), and
0.519(4) (n = 7), which agree well with the exact value R(h)

c =
0.521 058 290 of 2D standard percolation. Moreover, the

TABLE I. Fits of R(h) to (4) for the finite generations n = 2, 4, and 7 and for the infinite generation n → ∞.

n pc R(h)
c yt ω1 χ 2/DF/Lmin

2 0.552 679(6) 0.522(7) 0.74(4) 0(2) 3.7/15/16
0.552 678(1) 0.521 058 29 0.75(4) 1.2(4) 3.8/19/8
0.552 678(2) 0.521 1(4) 3/4 1 3.7/17/16
0.552 677 6(9) 0.521 058 29 3/4 1 3.7/18/16

4 0.571 940(3) 0.520(2) 0.743(6) 2(4) 7.4/15/64
0.571 941(1) 0.521 058 29 3/4 1.0(5) 8.8/17/64
0.571 941(2) 0.521 0(8) 3/4 1 8.8/17/64
0.571 941(1) 0.521 058 29 3/4 1 8.6/14/128

7 0.575 613(1) 0.521 058 29 0.77(1) 1.2(1) 12.3/12/128
0.575 607(4) 0.518(3) 0.72(5) 0.3/2/2048
0.575 608(3) 0.519(3) 3/4 0.7/3/2048

∞ 0.576 132 3(5) 0.570 7(2) 0.85(2) 8.1/11/256
0.576 132 2(6) 0.570 7(3) 0.85(2) 7.9/8/512
0.576 131 7(8) 0.570 2(6) 0.86(3) 6.7/5/1024
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TABLE II. Final estimates of the percolation thresholds pc, the
critical exponents yt and yh, and the critical wrapping probabilities
R(h)

c for the finite generations n = 2, 4, and 7. Exact values in the 2D
standard universality class are listed as well for comparison.

n 2 4 7 Exact

pc 0.552 678(2) 0.571 941(4) 0.575 61(1)
yt 0.751(5) 0.74(1) 0.75(2) 3/4
yh 1.896 0(3) 1.896 5(8) 1.895(2) 91/48
R(h)

c 0.521 2(6) 0.521(2) 0.519(4) 0.521 058 290

correction term with L−ω1 (ω1 ≈ 1.2) emerges in FSS, dif-
fering from the leading correction term with L−2 of critical
wrapping probabilities in standard percolation [31]. It is note-
worthy that the correction exponent ω1 = 3/2 was also found
for 2D percolation [32].

Infinite generation. For the infinite generation n → ∞, the
R(h) versus p curves are plotted in Fig. 4(d), which demon-
strates that the intersections are located around pc ≈ 0.576 13,
where R(h) is close to R(h)

c ≈ 0.570. The intersections are
nearly coincident at (0.576 13, 0.570), indicating a contin-
uous transition and minor finite-size corrections. Hence, we
perform fits to (4) by dropping correction terms. As shown
in Table I, the results obtained from the fits with Lmin = 256,
512, and 1024 are consistent. The final estimates of perco-
lation threshold and critical wrapping probability are pc =
0.576 132(2) and R(h)

c = 0.570 5(8), respectively. The value
of R(h)

c differs from that of standard percolation and indicates
a new universality class.

B. Critical exponents yt and yh

We now focus on the Monte Carlo data at the above-
estimated percolation thresholds, where the FSS formula (3)
is simplified as

Q(L, pc) = LXQ (a0 + b1L−1 + b2L−2 + · · · ), (5)

with finite-size correction terms b1 and b2, and the constant a0.
In some cases, a constant term c0 from analytic background
should be included in addition to (5).

The critical exponent yt . We estimate the critical exponent
yt from the covariance g(h)

bR which relates to the derivative
dR(h)/d p. Fits are performed according to (5) with XQ = yt .
For n = 2, we obtain yt = 0.751(3) with χ2/DF = 1.3/2
and Lmin = 128, as the constant term c0 and the correction
terms b1 and b2 are not included. Similarly, for n = 4, we
obtain yt = 0.747(3) with χ2/DF = 1.1/2 and Lmin = 256.
For n = 7, stable fits are achieved if the c0 term is present.
Accordingly, we have yt = 0.76(1) with χ2/DF = 0.1/1 and
Lmin = 256. The final estimate of yt for each of the finite
generations is achieved by comparing preferred fits. As sum-
marized in Table II, the results of yt are consistent with the
exact value yt = 3/4 of standard 2D percolation. For the
infinite generation n → ∞, as listed in Table III, we obtain
yt = 0.827(1), 0.829(1), and 0.827(2), with Lmin = 64, 128,
and 256, respectively. As given in Table IV, our final estimate
of yt for n → ∞ is yt = 0.828(5); the error bar is enlarged
since some finite-size corrections might be ignored in the
fitting formula.

TABLE III. Fits of g(h)
bR , C1, and χ to (5) for the infinite gener-

ation n → ∞. The scaling exponents XQ for g(h)
bR , C1, and χ are yt ,

yh, and 2yh − 2, respectively. Our final estimates yt = 0.828(5) and
yh = 1.864 4(7) are based on comparing all preferred fits of these
quantities.

n → ∞
Q XQ χ 2/DF/Lmin

g(h)
bR 0.827(1) 11.0/5/64

0.829(1) 3.9/4/128
0.827(2) 2.5/3/256

C1 1.864 7(1) 14.2/5/32
1.864 3(2) 4.6/4/64
1.864 0(3) 2.1/3/128

χ 1.729 1(1) 7.4/5/64
1.729 3(1) 5.4/4/128
1.729 1(2) 4.5/3/256

For illustrating yt , we plot in Fig. 5(a) the scaled covariance
g(h)

bR L−3/4 for various generations. For the finite generations
n = 2, 4, and 7, the scaled data eventually become constants
as L increases. For the infinite generation n → ∞, deviation
from the behavior of standard percolation is demonstrated by
the nonzero slope 0.078, which measures the distance from
yt = 0.828(5) to yt = 3/4.

Another verification for the estimated yt is provided by
Fig. 6, where we plot R(h) versus (p − pc)Lyt for various n.
These plots serve as simultaneous illustrations for the esti-
mated yt (3/4 for n = 2, 4, 7 and 0.828 for n → ∞), the
estimated pc, and the scaling formula (3). For each n, the
scaled data of various L collapse compactly on top of each
other as L → ∞.

The critical exponent yh. The critical exponent yh can be
estimated from C1 and χ according to (5) with XQ = yh and
2yh − 2, respectively. For n = 2, we obtain yh = 1.895 9(2)
by C1, and 2yh − 2 = 1.792 1(4) by χ . For n = 4, we have
yh = 1.896 2(5) by C1, and 2yh − 2 = 1.792(1) by χ . For n =
7, we obtain yh = 1.894 8(9) by C1, and 2yh − 2 = 1.792(2)
by χ . The final estimates of yh for finite generations are
given as 1.896 0(3) (n = 2), 1.896 5(8) (n = 4), and 1.895(2)
(n = 7), which are consistent with the exact value yh = 91/48
of standard percolation. The results for the infinite generation
n → ∞ are exemplified in Table III, and our final estimate of
yh is yh = 1.864 4(7).

In Fig. 5(b), the scaled data C1L−91/48 for finite generations
converge to constants as L increases, confirming yh = 91/48.
Meanwhile, the scaled data for n → ∞ clearly deviate from
the behavior in standard percolation universality and confirm
yh = 1.864 4(7).

TABLE IV. Final estimates of the percolation threshold pc, the
critical exponents yt and yh, and the critical wrapping probability R(h)

c

for the infinite generation n → ∞.

n pc yt yh R(h)
c

∞ 0.576 132(2) 0.828(5) 1.864 4(7) 0.570 5(8)
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FIG. 5. Illustration for the estimated critical exponents yt and yh

by scaled quantities (a) g(h)
bR L−3/4 and (b) C1L−91/48. For the finite gen-

erations n = 2, 4, and 7, the scaled data are asymptotically constants
as L increases, confirming the estimates of the critical exponents
as yt = 3/4 and yh = 91/48. For the infinite generation n → ∞,
deviations from the behavior of standard percolation universality are
indicated by the linearities of the scaled data with nonzero slopes.
These slopes take values 0.078 and −0.0314, which measure the
deviations from yt = 0.828(5) and yh = 1.864 4(7) to yt = 3/4 and
yh = 91/48, respectively.

C. Geometric properties of critical clusters

We have found that the transition in infinite generation
is continuous and falls outside the universality of standard
percolation. In the following, we explore the geometric prop-
erties of critical clusters. We investigate the critical probability

FIG. 6. Illustration for the scaling formula (3) with Q = R(h).
(a)–(c) The R(h) data for finite generations are plotted against (p −
pc )Lyt with yt = 3/4 and pc = 0.552 678 (n = 2), 0.571 941 (n = 4),
and 0.575 61 (n = 7). (d) The R(h) data for the infinite generation
n → ∞ are plotted with yt = 0.828 and pc = 0.576 132.

FIG. 7. Critical distribution function P(C1, L) for the scaled size
C1L−2 of the largest cluster in the infinite generation n → ∞. The
data are for pc = 0.576 132. In (b), the rescaled critical distribution
function P̃(x) (x ≡ C1/Lyh ) shows a single-variable behavior.

distribution of largest-cluster size as well as the critical
cluster-number density, and examine their compatibility with
the FSS theory of continuous geometric transition.

The critical distribution function P(C1, L) for the largest-
cluster size C1 is shown in Fig. 7(a). At the critical
bond-occupation probability pc = 0.576 132 (shown in the
plot) and its neighborhood, we do not find a stable double-
peaked structure, confirming the absence of a discontinuous
transition. Further, as displayed in Fig. 7(b), the distribu-
tion P(C1, L)dC1 can be rescaled into a single-variable form
as P̃(x)dx with x ≡ C1/Ld f and d f = yh. The absence of a
double-peaked structure and the single-variable behavior in
the distribution function are indicators of a continuous geo-
metric transition.

We analyze the cluster-number density n(s, L) of cluster
size s. At a continuous phase transition, it is expected that

n(s, L) = s−τ ñ(s/Ld f ), (6)

where ñ is a scaling function and τ = 1 + 2/d f . As shown in
Fig. 8(a), the large-s asymptotics of n(s, L) is consistent with
the power law s−τ , where the exponent τ = 2.072 7 relates
to d f = yh = 1.864 4. Figure 8(b) plots sτ n(s, L) versus s/Ld f

for various L and demonstrates a compact collapse. We hence
conclude that the FSS formula (6) is compatible with the
percolation transition in infinite generation.
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FIG. 8. Cluster-number density n(s, L) at the percolation thresh-
old pc = 0.576 132 of the infinite generation n → ∞, with L =
16, 32, 64, 128, 256, and 512. In (a), the dashed line has a slope of
−τ with τ = 1 + 2/df ≈ 2.072 7. A scaling analysis according to
(6) is shown in (b).

D. Continuous crossover

As displayed in Fig. 5, the quantities g(h)
bR and C1 exhibit

more severe finite-size corrections as the finite n increases.
A continuous crossover of critical behavior from infinite to
finite generation is indicated, as the n = 7 and n → ∞ data
are close at small sizes, but deviate at larger sizes. In the
following, we further illustrate the crossover phenomenon.

Figure 9 displays a collapse of the critical wrapping proba-
bilities R(h)(L, pc) versus an n-dependent rescaled size Lr . We
define Lr = L/r(n) with the rescaled factor r(n) chosen such
that the R(h) versus Lr data of various n collapse on top of
each other. As a result, the small-size data for n = 7 are close
to those for n → ∞. By contrast, the n = 7 data at large Lr

tend to collapse with the data for n = 2 and 4.
The crossover can also be seen in the size-dependent

effective magnetic exponent yh(L), which is determined
from C1 at sizes L and 2L by the formula yh(L) =
ln[C1(2L, pc)/C1(L, pc)]/ln2. The results are shown in
Fig. 10, which demonstrates a crossover between the asymp-
totics of the n = 7 data. At small sizes, the n = 7 data are
in the same profile with n → ∞, whereas at large sizes, they
collapse with the data of n = 2 and 4. Moreover, we observe
the crossover phenomenon by the effective thermal exponent
yt (L) extracted from g(h)

bR (not shown), although it suffers from
huge statistical errors.

V. DISCUSSION

By using extensive Monte Carlo simulations, we study the
critical behavior of the HDP on the square lattice. At the finite
generations n = 2, 4, and 7, we locate percolation transitions

FIG. 9. Finite-size R(h) data at pc vs rescaled size Lr = L/r(n)
for finite and infinite generations. The rescaled factor r(n) is genera-
tion dependent. The asymptotic values (represented by dashed lines)
in the Lr → ∞ limit are 0.570 5(8) and 0.521 058 290.

at pc = 0.552 678(2), 0.571 941(4), and 0.575 61(1), respec-
tively. We find that these transitions belong to the universality
class of standard percolation in two dimensions, although
finite-size corrections become larger when n increases, as
demonstrated in Figs. 4–6. At the infinite generation n →
∞, we observe a continuous transition at pc = 0.576 132(2)
with the critical exponents yt = 0.828(5) and yh = 1.864 4(7)
and the critical wrapping probability R(h)

c = 0.570 5(8), which
fall outside the standard percolation universality. The critical
distribution function P(C1, L) and the critical cluster-number
density n(s, L) follow the standard scaling behavior of a con-
tinuous geometric transition.

FIG. 10. Finite-size estimates of the effective magnetic exponent
yh, determined from C1 at pc, vs rescaled size Lr . The asymptotic val-
ues (represented by dashed lines) in the Lr → ∞ limit are 1.864 4(7)
and 91/48.
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FIG. 11. Occupied-bond density ρ vs L−1 at the percolation
thresholds of finite and infinite generations. Simulations are per-
formed at the estimated percolation thresholds pc = 0.552 678 (n =
2), 0.571 941 (n = 4), 0.575 61 (n = 7), and 0.576 132 (n → ∞).
Critical densities of occupied bonds are obtained as ρc = 0.477 9(1)
(n = 2), 0.468 7(1) (n = 4), 0.467 1(4) (n = 7), and 0.467 0(7)
(n → ∞).

As shown in Fig. 2, nsat reaches the maximum at p =
0.576 132. As we have known, the bond-occupation probabil-
ity p = 0.576 132 is the percolation threshold of the infinite
generation. Hence, at p = 0.576 132, initial percolation con-
figurations typically have the largest number of iterative bond
deletions before reaching the infinite-generation configura-
tions, which are critical.

We obtain complementary evidence confirming a contin-
uous crossover of critical behavior from infinite to finite
generation. The evidence comes from various quantities such
as g(h)

bR [Fig. 5(a)], C1 [Fig. 5(b)], and R(h) (Fig. 9) and from
effective critical exponents (Fig. 10). Here, we give more-
detailed descriptions. Notice that nsat diverges with L in the
parameter regime of interest (Fig. 2). Hence, for a finite
generation, the value of nsat at small L may be smaller than
or comparable to n, and the system behaves like infinite gen-
eration due to finite-size effects. By contrast, as L increases,

nsat ultimately exceeds the finite n, and the intrinsic finite-
generation behavior is recovered.

Recall that ρ is the density of occupied bonds remaining
at a given generation. Figure 11 shows the L dependence
of ρ at the percolation thresholds of various generations.
For each generation, let the asymptotic critical value be
ρc = ρ (p = pc, L → ∞). We obtain the critical occupied-
bond densities as ρc = 0.477 9(1) (n = 2), 0.468 7(1) (n =
4), 0.467 1(4) (n = 7), and 0.467 0(7) (n → ∞). In contrast to
the pc − n dependence, the critical density ρc decreases with
increasing n.

There are a number of open questions motivated by this
work. Some of them are as follows. What are the exact values
of the critical exponents yt = 0.828(5) and yh = 1.864 4(7)
for the infinite generation? Can they be obtained within the
framework of conformal field theories or Coulomb gas the-
ory? It is noted that the HDP can be extended such that it
has an arbitrary number N� of layers. In the present N� = 2
model shown in Fig. 1, the interlayer coupling looks like
A-B-A′-B′-..., and thus has an effective period of 2. For N� �
3, the configuration coupling looks like A-B-C...-A′-B′-C′...,
and the coupling period is longer. Specific treatment can be
that a bond gets deleted if the sites are in different clusters
in all the intermediate layers or in any of the intermediate
layers. As N� is sufficiently large, percolation clusters in the
infinite-generation limit are either very dense or very small
to resist the bond-deletion action. A first-order percolation
transition may arise for some large N� and finite generation
n. An intriguing scenario then can happen: for a given large
N�, there exists a “tricritical” value of n, separating a line
of continuous and first-order percolation transitions. The ran-
domly networked structure would be a key factor for the origin
of first-order percolation transition. More understanding can
arise from exploring the HDP in higher spatial dimensions
d � 3 and on the complete graph. We leave these questions
for further studies.
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