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Thermally rounded depinning of an elastic interface on a washboard potential
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The thermal rounding of the depinning transition of an elastic interface sliding on a washboard potential is
studied through analytic arguments and very accurate numerical simulations. We confirm the standard view
that well below the depinning threshold the average velocity can be calculated considering thermally activated
nucleation of defects. However, we find that the straightforward extension of this analysis to near or above the
depinning threshold does not fully describe the physics of the thermally assisted motion. In particular, we find
that exactly at the depinning point the average velocity does not follow a pure power law of the temperature as
naively expected by the analogy with standard phase transitions but presents subtle logarithmic corrections. We
explain the physical mechanisms behind these corrections and argue that they are nonpeculiar collective effects
which may also apply to the case of interfaces sliding on uncorrelated disordered landscapes.
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I. INTRODUCTION

The depinning transition of elastic interfaces is a paradig-
matic example of an out-of-equilibrium critical phenomenon.
Its study is relevant for modeling diverse extended physical
systems embedded in a quenched pinning potential. Often the
pinning landscape acting in the interfaces is disordered such
as in driven ferromagnetic [1] and ferroelectric [2,3] domain
walls, tension-driven cracks [4–6], displacement of contact
lines of liquid menisci [7–9], or earthquakes [10,11]. In other
cases the pinning landscape can be highly correlated or even
periodic, such as the potential energy of the superconducting
phase difference in long current-driven Josephson junctions
[12] or as in the case of field-driven domain walls in artificial
pinning potentials [13–15].

The basic phenomenology of depinning consists of an elas-
tic manifold with an overdamped motion that interacts with
a quenched potential energy landscape that tends to trap the
interface in configurations in which the potential energy is
minimized. When a uniform external driving force is applied,
the interface remains pinned in a local minimum of the tilted
energy potential if the amplitude of the driving force is below
some well-defined threshold, whereas otherwise it sets in a
steady state of motion with a well-defined average velocity.
The threshold value of the applied driving force defines the
depinning force of the system fc. When the driving force
is slightly above the depinning threshold the velocity of the
interface is expected to grow as a power law of the excess
driving above the threshold value. This is just one indication
that the kind of phenomenon occurring near fc can be char-
acterized as a (nonequilibrium) phase transition with critical
properties [16–18].

The existence of a sharp depinning transition as a function
of the driving force of an elastic interface depends crucially on
the fact that thermal effects are negligible. If thermal fluctua-

tions are important, then the depinning transition is smeared
out, as for any finite applied force the interface can eventually
jump forward via thermally activated events over energy bar-
riers, and hence the average velocity becomes different from
zero for any nonzero driving force. It has been proposed that
the effect of a small temperature on the depinning transition
can be accounted for through an appropriate generalization
of the scaling theory used at T = 0. In this respect, it has
been suggested, either following a naive analogy with stan-
dard equilibrium phase transitions or by phenomenological
nucleation theory arguments, that the effect of temperature on
the depinning transition can be characterized by the value of
a “thermal rounding” exponent ψ that describes the average
velocity v right at fc as a function of temperature, namely
v( fc, T ) ∼ T ψ . Regarding the velocity as the order parameter,
the force as the control parameter and the temperature as a
“symmetry-breaking field destroying the pinned phase” [19]
such scaling proposal for the rounded depinning transition
is analogous to the scaling with field H of the equilibrium
Ising model magnetization M at the critical temperature Tc,
M(Tc) ∼ H1/δ with δ > 0, to cite the simplest example. How-
ever, the precise determination of the value of ψ has proven
to be quite tricky [20,21], its universality questioned [22],
and there is not yet a rigorous proof that the naive thermal
rounding scaling theory is even consistent, in contrast with the
zero temperature dynamics [18,23–25] and the subthreshold
creep dynamics [26–29].

In order to advance in the study of the thermal rounding
of depinning-like transitions, we concentrate here in a case
in which the zero-temperature limit provides an almost trivial
result for the flux curve and where the effect of temperature
can be treated in a very accurate if not rigorous manner.
This is the case of an elastic manifold evolving on a periodic
pinning potential, the same for all individual sites of the elastic
manifold, also known as a “washboard potential.” The model

2470-0045/2020/102(5)/052120(13) 052120-1 ©2020 American Physical Society

https://orcid.org/0000-0002-9050-5859
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.052120&domain=pdf&date_stamp=2020-11-19
https://doi.org/10.1103/PhysRevE.102.052120


A. B. KOLTON AND E. A. JAGLA PHYSICAL REVIEW E 102, 052120 (2020)

is, on the other hand, the celebrated overdamped Sine-Gordon
dynamical model which has been used to model many differ-
ent physical phenomena, such as the motion of dislocations
in the Peierls potential of a crystal [30] overdamped cou-
pled pendula [31], the equilibrium roughening transition [32],
crystal growth [33,34], vortex matter in layered supercon-
ductors [35–38], forced soliton gases [39], and overdamped
long Josephson junctions driven by an external current [12].
The Sine-Gordon model is closely related to the Frenkel-
Kontorova [40] and Prandtl-Tomlinson models relevant for
nanotribology [41], and it may be also used to model the
dynamics of the internal degrees of freedom of an extended
magnetic domain wall describing the axial rotation of the
local magnetization vector, relevant for spintronics [42–44].
A proper understanding of the depinning transition of the
Sine-Gordon model per se is hence also very important, as it
is, for instance, related to the onset of rotation of torque-driven
coupled pendula, the onset of dissipation in superconducting
systems such as Josephson junctions or vortex systems, or to
the Walker breakdown in magnetic domain wall systems.

In this paper we show, both through analytic arguments and
very accurate numerical simulations, that the effect of temper-
ature at the depinning transition in this simple extended model
cannot be accounted for by a simple one-parameter scaling
and that it involves the appearance of subtle logarithmic cor-
rections not precluded by any of the standard arguments made
so far for the thermal rounding of the depinning transition.
We thus expect that this qualitative behavior is not peculiar of
the model but applies, for instance, to the more standard and
complicated case of uncorrelated disorder.

II. MODEL

Consider an elastic interface (with short-range interac-
tions) in d spatial dimensions, characterized by its position
h(r). The interface feels the effect of an underlying periodic
potential V (h) and an external force f . The dynamical equa-
tions of the system are [31]

∂h(r, t )

∂t
= −dV (h)

dh
+ ∇2h + f +

√
T η(t, r), (1)

where temperature has been introduced through the use of a
standard Langevin formalism, with the white noise η charac-
terized by

〈η(t, r)〉 = 0, 〈η(t, r)η(t ′, r′)〉 = 2δ(t − t ′)δd (r − r′). (2)

At T = 0 the dynamics of the system greatly simplifies, as the
interface becomes flat [45], and its global position h follows
the one-particle equation,

∂h

∂t
= − cos(h) + f (3)

[from now on we specialize to a potential of the form V (h) =
sin(h)]. For f < fc = 1 the interface does not move, whereas
for f > fc there is a finite average velocity. For f slightly
above fc, the velocity v ≡ 〈∂t h〉 scales as

v ∼
√

f − fc, (4)

which defines the flow exponent β [from v ∼ ( f − fc)β] as
β = 1/2. At finite temperature this sharp continuous transi-

tion is smoothed and, at variance with the peculiar T = 0
case, the problem becomes a nontrivial collective problem.
In the following sections we discuss the thermally activated
dynamics below the depinning threshold for | f − fc| 	 fc

and then the subtle f = fc case at finite temperature.

III. ACTIVATED DYNAMICS SCALING NEAR THE
DEPINNING THRESHOLD

The finite-temperature activation dynamics described by
Eq. (1) well below fc was studied in Ref. [31] and also in
Ref. [46] using renormalization group methods. Here we will
follow an approach that uses dimensional analysis mainly.
Our aim is to calculate the value of v for finite temperature
and for f very close to fc = 1. If f is only slightly below
1, and T is very small [T 	 ( fc − f )], then the dynamics is
dominated by thermal activation events in which patches of
the interface (of linear size l0 to be determined below) advance
a definite spatial amount. These patches then grow in size
deterministically.

We consider a d-dimensional system with periodic bound-
ary conditions at very low temperature and assume that we
start with a nearly flat interface resting in a local minimum of
the tilted potential [sin(h) − f h], with f = fc − ε, and ε 	 1.
Then we can approximate the potential by εh − h3/6 near
the transition point [47]. The local energy minimum is thus
located at h = −√

2ε, the maximum at h = +√
2ε. Using this

expansion in Eq. (1) the resulting dynamical equations that
will describe the escape from the energy minimum can be
written in a normalized form as

∂h(r, t )

∂t
= h2

2
− ε + ∇2h +

√
T η(t, r). (5)

We first calculate the rate of nucleation of defects R (that make
the interface advance) per unit of time and unit of volume of
the system in a system with spatial extension L. R will depend
on the two parameters T and ε present in Eq. (5) and also on L,
i.e., we can write R(T, ε, L). First we sketch a scaling analysis
that allows to reduce the three-parameter dependence of R to
a two-parameter dependence. Suppose we know the value of
R for given values of T , ε and L. Then we scale all variables
and parameters in Eq. (5) according to the following table:

ε → ε̃ ≡ kε, (6)

h → h̃ ≡ k1/2h, (7)

t → t̃ ≡ k−1/2t, (8)

r → r̃ ≡ k−1/4r, (9)

L → L̃ ≡ k−1/4r, (10)

T → T̃ ≡ k(6−d )/4T, (11)

where k is an arbitrary scaling factor. It is readily verified
that tilde variables satisfy an equation formally identical to
the original one. The above scaling means that the number of
activation events in corresponding time and space intervals are
equal for the original and the scaled equation. In concrete,

R(T, ε, L)[t][r]d = R(T̃ , ε̃, L̃)[t̃][r̃]d (12)
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or

R(T, ε, L) = R(k(6−d )/4T, kε, k−1/4L)k−(d+2)/4. (13)

Since k is arbitrary we can choose k ∼ 1/ε to obtain

R(T, ε, L) = ε(d+2)/4R
[ T

ε(6−d )/4
, 1, Lε1/4

]
. (14)

Alternatively, and assuming for simplicity the large system-
size limit (Lε1/4 � 1), we can accommodate the previous
expression as

R(T, ε) = T
d+2
6−d F

[
ε(6−d )/4

T

]
, (15)

where we have dropped the L dependence and defined the
unknown function F as

F (x) ≡ x
d+2
6−d R(1/x, 1,∞). (16)

Equation (15) explicitly gives the two parameter form of
R(T, ε) in terms of an unknown function F of a single vari-
able. While Eq. (14) shows the finite-size scaling effects, the
existence of F guarantees a well-defined thermodynamic limit
for the nucleation rate, when Lε1/4 � 1 or LT 1/(6−d ) � 1.

The combination ε(6−d )/4/T in the argument of F suggests
that ε(6−d )/4 is actually a relevant energy scale of the problem
and thus we will denote α = (6 − d )/4 as the “energy expo-
nent.” In fact, its physical meaning can be unveiled by a simple
variant of the “droplet” argument [35,48]. Suppose we want
to estimate what is the optimal linear size l0 of a patch of the
surface to jump the energy barrier implied by the force density
term h2/2 − ε in Eq. (5). Assuming simple excitations, solely
characterized by its linear size l0 and displacement h, the
additional elastic energy of order (h/l0)2ld

0 must be added to
the potential energy (εh − h3/6)ld

0 , yielding the patch energy
near fc,

E (h, l0) ∼ (εh − h3/6)ld
0 + (h/l0)2ld

0 /2. (17)

For any 0 < d < 6 the excitation energy E (h, l0) has an ex-
tremum at l∗

0 ∼ ε−1/4 and h∗ ≈ √
ε, yielding the exact scaling

result

E∗ ≡ E (h∗, l∗
0 ) ∼ ε(6−d )/4. (18)

This confirms the physical connection with Eq. (15). For
d < 2 such an extremum is a saddle point and E∗ is the min-
imal barrier to advance forward. The optimal size l∗

0 ∼ ε−1/4

is such that the small (l0 	 l∗
0 ) frequently activated patches

are futile (i.e., they are quickly reversed) while large-enough
(l0 > l∗

0 ) patches trigger irreversible forward jumps of the
whole segment. This physical argument also makes clear that
the function F in Eq. (15) will contain a dominant factor
exp[−Cε(6−d )/4/T ] corresponding to an Arrhenius factor for
the activation of these kind of optimal patches, provided T 	
ε(6−d )/4 and under the assumption that the considered segment
size is larger than l0 [49].

All the previous scaling analysis can be presented also
for a nonquadratic force minimum, replacing h2 → hγ in the
right-hand side of Eq. (5), yielding (in the limit of large sizes

LT
γ−1

2γ−γ d+d+2 � 1, see Appendix A),

R(T, ε) = T σF (εα/T ), (19)

with

σ = (γ − 1)(d + 2)

2(γ + 1) − (γ − 1)d
, (20)

α = 2 − (2 + d )(γ − 1)

2γ
. (21)

Equation (19) reduces to Eq. (15) for γ = 2. In particular,
Eq. (21) generalizes the energy exponent α. The above results
are valid for estimating the thermally activated decay rate of
an initially flat segment of the interface by the production of
a single defect. We now analyze in more detail the simplest
cases, namely the particle and the elastic string, keeping the
standard γ = 2 for simplicity.

A. Single particle

For a single particle (d = 0) each activation event repre-
sents the jump over one barrier and leads to the advance of the
particle by a finite amount 2π . This means that the velocity in
the single-particle case will follow the scaling:

vd=0(ε > 0, T ) ∼ Rd=0 ∼ T 1/3F (ε3/2/T ). (22)

The explicit form of the function F in Eq. (22) and then the
form of v is in fact well known in the limit ε > 0, T 	 ε3/2,
which is the thermally activated regime. This corresponds to
the Kramers problem of escape over a barrier. The velocity
is simply proportional to the inverse of the escape time of
a thermal particle in the potential well εh − h3/6. Kramers’s
formula applied to this case provides

vd=0(T 	 ε3/2) = 2π
√

ε exp

(
−4

√
2

3

ε3/2

T

)
. (23)

This expression satisfies the scaling expression Eq. (22).
In the present single-particle case the scaling argumenta-

tion can be extended to negative (but small) ε, meaning f
slightly above the critical value fc = 1, since in this case the
dynamics is also dominated by the bottlenecks near the points
where v is very small. This means that Eq. (22) can also be
used for ε < 0. In this case, there is a finite limit for the ve-
locity as T → 0, and for this to be the case f (−x) ∼ (−x)1/3

for x → ∞, leading to

vd=0(ε < 0, T = 0) ∼ |ε|1/2, (24)

which is the expected result. Equation (22) used at ε = 0
also indicates that for a single particle vd=0(ε = 0, T ) ∼
T ψ , with a well-defined thermal rounding exponent ψ = 1/3
[21,50,51].

B. Elastic string

We now analyze the case d = 1, corresponding to an elastic
string. Equation (15) becomes in this case

Rd=1(T, ε) = T 3/5F (ε5/4/T ). (25)

In d = 1 the relation between R and the velocity of the in-
terface can be worked out as follows: R represents the rate of
creation of kink-antikink pairs. Each kink or antikink moves at
a velocity ±c [52] and then each of them contributes equally
to the velocity, so the velocity is proportional to the number N
of kink-antikink pairs present in the system. The equilibrium
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value of N is obtained by balancing the creation of kinks
(∼R) to its annihilation rate, which (like a chemical reaction
between two species) is proportional to N2 [53]. Namely

dN

dt
∼ R − N2. (26)

By requiring equilibrium (dN/dt = 0) we obtain

v ∼ N ∼ R1/2. (27)

Therefore,

vd=1(T, ε) = T 3/10G(ε5/4/T ), (28)

where G ≡ √
F . Alternatively, we can also write

vd=1(T, ε) = ε3/8G̃(ε5/4/T ). (29)

This expression is consistent with the form found in Ref. [31],
which can be written (in our notation and units and up to
preexponential numerical constants) as

vd=1(T, ε) ∼ ε11/16

T 1/4
exp

[
−24

5

(2ε)5/4

T

]
. (30)

In Fig. 1 we test the scaling in Eq. (29) numerically by
integrating Eq. (1) for d = 1 using finite differencing and the
stochastic Euler method on L elastically coupled particles. As
shown in Fig. 1(b) there is excellent agreement below the de-
pinning threshold, i.e., for ε > 0. One remarkable thing about
the scaling of Eq. (28) is that it is not compatible with the well-
known behavior of v for negative ε (i.e., f > 1) and T = 0. In
fact, if a T -independent limit is going to be extracted from
Eq. (28), then this should be v ∼ |ε|3/8, which does not co-
incide with the known exact result v(T = 0, ε < 0) ∼ |ε|1/2.
This incompatibility can be appreciated in the ε < 0 (i.e., f >

fc) part of Fig. 1(b), where clearly the curves do not collapse.
The good collapse for f > fc is obtained rescaling ε with the
same energy exponent, namely ε/T 1/α = ( f − fc)/T 1/α with
α = (6 − d )/4 = 5/4 [31], but using v/T 2/5 in the vertical
axis, in order to obtain β = 1/2 [Fig. 1(c)]. The conclusion
is that a unique thermal rounding scaling is not valid in this
problem for d equal to (or larger than) one. In particular, if
we try to define a single thermal rounding exponent, then we
should choose ψ = 3/10 from the f < fc part of the scaling,
but ψ = 2/5 from the f > fc part. We will see below how this
incompatibility manifests in the true form of v(T ) at f = fc

having a nontrivial logarithmic correction.

IV. THERMAL ROUNDING OF THE DEPINNING
TRANSITION

The results in Sec. III clearly show that a unique global
scaling of the form

v = T ψF (εα/T ) (31)

is valid only for the simplest case of a single particle but does
not apply to interfaces in finite dimensions.

For an extended interface the form of the activated dy-
namics scaling below fc (ε > 0) cannot be extrapolated to the
ε < 0 region. Moreover, the form of the velocity as a function
of temperature predicted by Eq. (31) when ε = 0, namely

v ∼ T ψ (32)
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0

(f − fc)/T
0.80

FIG. 1. Velocity force characteristics around the depinning
threshold of an elastic string in the washboard potential at different
temperatures T = 0.003, 0.02, 0.03, 0.01, 0.001. (a) Whole range
around fc = 1. Best scaling collapses just below the threshold f � fc

(b) and just above the threshold f � fc (c). The exponents are clearly
different above and below threshold, in contrast with the one-particle
case.

is not accurately satisfied, as we will show below. It turns out
that this scaling has important logarithmic corrections that we
will now address.

We will make a detailed analysis of the dynamics of the
system right at the critical force fc (i.e., ε = 0). Thus the
model to be studied is that of Eq. (1) for a sinusoidal pinning
potential at the critical force, namely

∂h(r, t )

∂t
= − cos(h) + 1 + ∇2h +

√
T η(t, r), (33)

as a function of temperature, in the T 	 1 limit, where critical
scaling functions and exponents are expected.

A. Single particle

To serve as a reference we start with the analysis of the
single-particle case, that is, solving

dh

dt
= − cos(h) + 1 +

√
T η(t ), (34)

with 〈η(t )η(t ′)〉 = 2δ(t − t ′). Figure 2 displays the numeri-
cally obtained evolution of h(t ) for different temperatures. We
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FIG. 2. Position-time plot for a single particle at the critical
force, at different temperatures, as indicated. The motion proceeds
by a sequence of jumps of size 2π separated by stochastic waiting
times �i.

clearly see that the dynamics proceeds through abrupt jumps
between successive “bottlenecks” positions that occur when
h is a multiple of 2π , at which the particle spends most of
the time. These are the points at which the deterministic force
on the particle vanishes. The average velocity as a function
of temperature follows the prediction of Eq. (22) at ε = 0,
namely v ∼ T 1/3. However, we emphasize that this scaling
applies not only to the average velocity (which is related to the
average waiting time at the bottlenecks) but also to the whole
distribution of time intervals spent at the bottleneck positions.
This is shown in Fig. 3(a) where the cumulative probability
distribution F (�, T ) of the time intervals � spent at each
bottleneck is calculated for different small temperatures [54].
As shown in Fig. 3(b) the results adjust perfectly to the scaling
law

F (�, T ) = f (�/T 1/3). (35)

Therefore, for the average particle velocity v ∼ �−1 we get
v ∼ T 1/3, as it has been observed with high accuracy (see,
for instance, Fig. 20 in Ref. [21]). This simply confirms that
the particle accurately obeys the thermal rounding scaling of
Eq. (32).

As shown in Figs. 3(c) and 3(d), f (�) displays an expo-
nential decay at large � and a sort of “pseudogap” at small
�, where f (T 1/3�) is almost zero. The existence of this
“minimum time” for a jump [55] will play an important role
in the analysis of the movement of the one-dimensional string
that we consider in the following.

B. Elastic string

1. Kink-antikink dynamics at f = fc

To gain insight in the form in which a one-dimensional
elastic string moves at f = fc, we solve numerically Eq. (33)
for d = 1. In Fig. 4 we display a few snapshots of the config-
uration of the system in a well-equilibrated state, at slightly
increasing times. We see a characteristic structure in which
pieces of the interface are located at positions corresponding
to the bottlenecks of the potential. For convenience we will
number successive bottlenecks with an integer index ν, such
that the interface stays at h = 2πν. Different pieces of the
interface are connected through “kinks” in which the interface

0 1000 2000 3000 4000 5000 6000 7000 8000

0 200 400 600 800 1000

10−4
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0 200 400
10−4

10−3
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F
(Δ

,T
)

Δ

F
(Δ

,T
)

x ≡ T 1/3Δ

F
0
(x

)

x

1
−

F
0
(x

)

x

FIG. 3. (a) Cumulative distribution [F (�, T ) ≡ Prob(�i < �)]
of the stochastic waiting times �i (see Fig. 2) between successive
jumps of a single particle (d = 0) in a tilted washboard potential,
exactly at f = fc = 1, for different temperatures. (b) The distribution
can be collapsed onto a single curve by plotting it as a function of
T 1/3�. The left (c) and right (d) tails of the cumulative distribution
highlight, respectively, the slower-than-exponential growth of the
probability for short waiting times and its exponential decay for large
waiting times.

passes from ν to ν ± 1, as again shown in Fig. 5(a). It is
important to realize that the kinks move in a very deterministic
and predictable way. In fact, as a piece of interface at position
ν has a potential energy per site of −2πν, a kink connecting
ν and ν + 1 decreases its energy by moving in the direction
that increases the extent at ν + 1 an decreases that at ν. This
produces that all kinks in the system move at a constant
velocity c ≈ fcξ/2π [31], where ξ is the kink width. For our
numerical setup [Eq. (33)] we find c ≈ 0.24, in consistence
with fc = 1 and the observed ξ ≈ O(1) (see Fig. 4), always in
the direction of producing a net advance of the interface.

Figure 5(b) is an alternative and comprehensive view of
kink movement in the system. It is a space-time plot of all
kinks or antikinks trajectories in the system. As kinks move
always at the velocity ±c, their trajectories are seen as straight
lines in Fig. 5(b). When kink and antikinks collide, they an-
nihilate at the “�”-shaped points. In addition, kink-antikink
pairs nucleate at the “V”-shaped points. Note that Fig. 5(b)
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FIG. 4. A sequence of numerically generated configurations
h(r, t ) for an elastic string of size L = 1024, T = 5 × 10−5, exactly
at the critical force fc = 1. Consecutive configurations at increasing
times (from bottom to top) have been differently colored and slightly
shifted vertically by ∼0.1 for clarity.

can be described as a “contour plot” of the funcion h(x, t ),
each contour (characterized by an increasing integer number
ν) indicating the time at which the interface first reached the
height h = 2πν. The space-time plot of Fig. 5(b) is a full
picture of the dynamics of the string in spatial scales larger
than the typical size of the kinks. Figure 5(b) hence reveals
the sparse and localized activity of the interface.

In Fig. 6 we can qualitatively appreciate the kink dy-
namics at f = fc for different temperatures in the steady
state. The four panels correspond to four different increasing
temperatures. The space and time extent of the four panels
is the same. We observe in particular that the slope of the
straight segments (corresponding to kink propagation) has
the same value c−1 for all temperatures. As described above
the space-time segments describing kink trajectories form a

h
(r

,t
0
)

t
t 0

r

FIG. 5. (a) Snapshot of a configuration h(r, t0 ) of the interface at
t = t0, exactly at the critical force fc = 1 and T = 10−5, generated
from Eq. (33) for L = 1024. (b) Kink trajectories in space time. Red
dots correspond to kink positions at t = t0. Dashed vertical lines
show their correspondence with h(r, t0) kinks.

FIG. 6. Numerically generated kink trajectories exactly at the
critical force for different temperatures, T = 10−6 (a), T = 10−5 (b),
T = 10−4 (c), and T = 10−3 (d), for a string of size L = 1024. The
vertical and horizontal directions are time and position, respectively,
and have the same extent in the four panels. The time gaps between
the zig-zagging contours formed by many kink and antikink trajec-
tories arise naturally from the dynamics.

well-defined sequence of activity contours that percolate in
space but are separated by distinguishable time gaps (i.e.,
different lines do not get close vertically in practice). It is
worth stressing, however, that, in spite of these time gaps,
the one-dimensional interface at the steady state is actually
never completely trapped in a metastable state: For given time
t a large-enough interface always has pairs of kinks evolving
quasideterministically. In other words, a line with t = const
in space time always cuts the trajectory of some kinks in
a thermodynamic system at any finite temperature. Another
interesting property that can be appreciated in Fig. 6 is that
increasing temperature increases both the space-time density
of annihilation and creation events and decreases the time
gaps, strongly suggesting a space-time-temperature scaling
relation, which we will discuss now in detail.

In Sec. III, and working below the critical force, we con-
sidered the nucleation of kink-antikink pairs to occur at a rate
R that was simply a function of temperature. This led to the
estimation that the velocity interface is v ∼ R1/2 [Eq. (27)].
This analysis was appropriate because in that case there was
a finite energy barrier to be surmounted, and the dynamics of
this activation is statistically a Poisson process: If an attempt
to climb the barrier has failed, then the next one has to start
over, independently of how many previous attempts have been
made. But right at fc, the transition between successive bot-
tleneck positions does not require the climbing of any energy
barrier. The bottlenecks are characterized by a flat potential in
which the deterministic force vanishes, and the transition time
displays the typical time gap already seen in the single-particle
case (Fig. 3). Therefore in this case the nucleation rate R
previously used is not a useful concept. Instead, it will be
useful to consider (as in the 0-dimensional case) the function
F , which measures the time in which a kink-antikink pair is
first observed starting with an originally flat interface at fc.
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FIG. 7. Waiting-time cumulative distributions for the activation
of the first pair of kinks in a flat (d = 1) elastic string exactly at
f = fc, for different temperatures T and string sizes L, such that
T L1/5 = const. (a) The rightmost curve corresponds to L = 216, T =
1.25 × 10−9, each following curve to the left doubles the temper-
ature. (b) Master curve using the time-temperature-length scaling,
F (�, T, L) ∼ F̃ (T 2/(6−d )�, T 1/(6−d )L) ≡ F0(T 2/(6−d )�) in the case
d = 1. (c) The dashed line ∼ exp[−4.58/x3] is an empiric fit of the
left part of F0(x). (d) Detail of the right tail of F0(x), to be compared
with the single-particle case in Fig. 3.

We consider a system of size L (with periodic boundary
conditions) and start at t = 0 with a flat configuration at h =
h0 < 0. This configuration moves deterministically toward the
saddle located at h = 0 and would remain there if T = 0.
However, thermal fluctuations produce the surpassing of the
saddle, and we determine the time � at which the first point
of the interface is detected at some positive h1, indicating a
kink-antikink pair has been created. The value of � becomes
large as T → 0, and therefore the precise values of h0 and h1

are not important. We choose h0 = −1, h1 = 1. The numerical
procedure is repeated many times to collect statistics of �

values. Figure 7(a) shows the cumulative distribution function
F of the first nucleation time �, for different temperatures T
and system sizes L. The form of F (�, T, L) can be simplified
using the general scaling theory of Sec. III, which can be
applied to the present calculation without change, simply con-

sidering ε ≡ 0. Since F is a dimensionless function, it must
remain the same when its arguments are changed according to
the scaling in Sec. III. Therefore, we obtain:

F (�, T, L) = F̃ (T 2/(6−d )�, T 1/(6−d )L). (36)

Since d = 1, and we are fixing LT 1/5 in the simulations; for
simplicity we will omit the L dependence everywhere and
simply write F (�, T, L) = F0(x) with x ≡ T 2/5� and F0(x)
the master curve. In Fig. 7(b) we show the excellent collapse
obtained for the different curves in Fig. 7(a) obtained using
this scaling.

It is interesting to compare the tails of F0(x) for the string
and the particle. In the single-particle case F0(x) is exponential
for large x, while the elastic string displays a clear faster-
than-exponential decay at large x. On the other hand, for
small x, both cumulative distributions display a slower than
exponential growth.

The results in Fig. 7 clearly display the “gap” effect in the
nucleation time (also observed for the single-particle case in
Fig. 3), pointing also to the fact that this nucleation cannot
be considered anymore (as it was in the activated regime)
a Poisson process. Thus the probability to nucleate a kink-
antikink pair in a piece of interface at height h = 2πν depends
on how much time the surface has stayed at 2πν already. To
get an idea of this phenomenon and its importance, it is worth
looking again in Fig. 6 to the ubiquitous time gaps appearing
in sequences of many contours for different temperatures.
The rather well-defined values of the vertical gaps between
different contours in the plot in Fig. 6 is a consequence of the
fact that nucleation time cannot be arbitrarily small, as seen
also in Fig. 7. The numerical results for the function F just
presented will be useful in the next section to calculate the
interface velocity at f = fc.

2. v(T ) curve at f = fc

Armed with the qualitative understanding of the dynam-
ics we gained in the previous section (Sec. IV B 1), we can
address quantitatively the expected form of the temperature
dependence of the velocity v right ar fc, namely the thermal
rounding law. Referring to the plots in Fig. 6, the value of
v is nothing more than 2π divided by the average temporal
separation between successive contours, that we call �0. We
must estimate �0 in order to calculate v as v = 2π/�0.

One may naively expect that �0 is simply given by the
average value of the nucleation time � that can be extracted
from the data in Fig. 7. However, this is not quite so. Kink-
antikink pairs nucleated with particularly small values of �

(at the left of the distribution in Fig. 7) will have a stronger
influence and produce that �0 < �. In order to understand
correctly this fact and its importance, let us consider the sketch
in Fig. 8. In Fig. 8(a) we depict with the thick black line
one of the contours (with label ν) already shown in Fig. 6.
This contour represents, for all spatial positions, the time
at which the interface reaches the height 2πν. Suppose that
each horizontal position in Fig. 8 represents a portion of the
interface to which the analysis in Fig. 7 can be applied. This
means that for each horizontal position we can draw a point
from Fig. 7 and plot a nominal time at which a kink-antikink
pair would be nucleated at that position. This is represented
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Δ i (a)

(b)

time

space

ν+1

ν

ν

FIG. 8. (a) Thick line: Sketch of contour ν of the space-time
configuration of an interface (see Fig. 6). In principle, at each spatial
position, the next kink-antikink is nucleated at the time indicated by
the small circles. (b) The actual ν + 1 contour is constructed by kinks
and antikinks emanating from the nucleation points. Only the earliest
kink-antikink actually contribute to the contour ν + 1 (shown in red).
Notice that the average time position of contour ν + 1 is smaller than
the average time position of all circles.

in Fig. 8(a) as the open circles. The average temporal distance
between contour ν and all open circles is simply the value
� extracted from the Fig. 7. However, each nucleation point
generates a kink-antikink pair that propagates in the system as
indicated in Fig. 8(b). The actual ν + 1 contour is the lower
envelope of all these kink-antikink pairs. It is apparent from
Fig. 8 that the average time separation �0 between contours ν

and ν + 1 is smaller than �.
In order to calculate �0 explicitly we notice that the con-

tour ν + 1 is composed of kinks and antikinks originated in
the lowest values of the nucleation times at all sites or, in other
words, the lowest circles in Fig. 8. If M is the average number
of sites affected by a single kink-antikink pair, then the typical
value of �0 corresponds to the typical value of the minimum
of M variables �i with cumulative distribution F (�, T ) (the
function plotted in Fig. 7). This minimum is roughly given by
the condition

MF (�0, T ) = 1, (37)

and the velocity of the interface will be given by v = 2π/�0.
The main temperature dependence of v comes from the
temperature dependence of F (�0, T ). The temperature de-
pendence of M will account for a logarithmic correction, as
we will now see. From the numerical results in Fig. 7(c),
F (�0, T ) can be very well approximated (particularly when
F 	 1) as

F (�0, T ) � exp[−C/(T 2/5�0)3] (38)

with C � 4.58 a numerical constant. Note that the form of
the combination T 2/5� comes already from the scaling of
time and temperature, in the analysis of Sec. III applied to the
d = 1 case. The third power instead, is just a rough numerical
fitting [see the dashed line in Fig. 7(c)]. The dependence of M
on temperature is roughly given by the following argument:
A kink-antikink starting at one of the lowest circles in Fig. 8
will be part of the ν + 1 contour for a number of sites M,
such that M/c ∼ ω, where ω is the width of the F (�, T )
function. According to Eq. (38) ω scales with temperature as
ω ∼ T −2/5. Putting the pieces together, and since c is just a
constant, this gives simply

M ∼ T −2/5. (39)

Using now Eqs. (38) and (39) in Eq. (37) we finally obtain

v = c1T
2
5 [− ln(c2T )]

1
3 , (40)

where we have dig into c1 and c2 all unknown constants of
the analysis. In general dimension d , the kink-antikink pair of
the d = 1 case is replaced by a (d − 1)-dimensional domain
wall describing a droplet boundary, allowing d-dimensional
patches to advance from one position to the following in an
isotropic way. The mechanism just described of nucleation,
expansion and coalescence of defects qualitatively applies in
general dimension and the expected form of v at fc is

v = c1T
2

(6−d ) [− ln(c2T )]δ, (41)

where the exponent δ of the logarithmic correction is 0 in d =
0 and 1/3 in d = 1. For d > 1 we expect it to be different
from zero, but we have not attempted a precise determination.

The result we have obtained for the dependence of v(T )
shows a main power-law dependence but also an important
logarithmic correction that can have an important effect on ex-
perimentally observed values. Qualitatively, the origin of the
two parts can be traced back to the particular dynamics of the
problem. The T 2/(6−d ) factor in the velocity comes from the
average transition time between bottleneck configurations at
which the interface spends most of the time. The logarithmic
factor is a consequence of the linear-in-time increase of the
extent of the interface at position 2πν before nucleating the
defect that will allow the transition to the 2π (ν + 1) position
(see Appendix B for a more formal derivation of the necessity
of such a logarithmic correction, independently of the details
of the dynamics).

We now check the form of v(T ) from Eq. (40) against
numerical simulations. The results span seven orders of
magnitude in temperature (10−7 � T � 1) in a large-enough
system (L = 223) such that T 1/5L � 1 so to avoid finite-size
effects (also implying a large number of evolving kinks at any
instant). Figure 9(a) shows the results of a simulation in the
full model at f = fc. If we were trying to fit a power law,
we would probably fit an exponent �0.38 (yellow line) at
least in the left part of the figure. Yet our proposed behavior
[Eq. (40)] produces a more satisfactory and consistent result.
By fitting appropriately c1 and c2 we find the green curve,
which fits the data in a much broader range of temperatures.
This is even clearer in Fig. 9(b), where an effective power-
law exponent as a function of temperature is obtained ψeff ≈
d ln v/d ln T , using the method of consecutive slopes, and
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FIG. 9. (a) Velocity as a function of temperature (T ∈
[10−7, 10]) at f = fc, for an elastic string of size L = 8 388 608. The
yellow line is a naive pure power-law fitting of the form v � T ψ0 ,
ψ0 � 0.38. The green line is a fit from our Eq. (40), consisting in
a power law T 2/(6−d ) = T 0.4 multiplied by a logarithmic correction.
The blue line, with slope 2/(6 − d ) = 0.4, is used only for refer-
ence. (b) Effective power-law exponent ψeff ≈ d ln v/d ln T , using
the method of consecutive slopes (see text). (c) The same results
as in (a) but plotted as [v/T 0.4]3 vs ln T , highlighting the loga-
rithmic corrections. The accuracy of Eq. (40) is very good, except
for large temperatures where some nonconsidered effects enter into
play.

fitting pure power law in windows of size [T − �T, T + �T ]
with ln[(T + �T )/(T − �T )] = 3. This effective exponent
shows a dependence compatible with very slow convergence
to 0.4 when T → 0, as Eq. (40) implies. Also, in Fig. 9(c) the
data are plotted in such a way that they must follow a straight
line if Eq. (40) is followed. We see in fact that they follow
very well this behavior, except for large temperatures in which
some effects not considered in our analysis enter into play

(particularly when temperature becomes a sizable fraction of
the total amplitude of the corrugation potential and the system
crossovers to the fast-flow regime where v ∼ fc).

V. CONCLUSIONS

The naive analogy of the depinning transition with stan-
dard phase transitions suggests that the average velocity of
an extended elastic manifold exactly at the threshold should
scale as v ∼ T ψ for small temperatures T , with ψ the ther-
mal rounding exponent. Pioneer arguments testing this idea,
and yielding the first nontrivial predictions for ψ , were first
given in the context of charge density wave models with
quenched disorder [19,22,56] and later proposed for models
of disordered elastic interfaces. In particular, they led to the
relation ψ = β/α, with β the zero temperature velocity ex-
ponent [v( f , T = 0) ∼ ( f − fc)β] and α the barrier exponent
describing how barriers U for nucleation of forward-moving
modes vanish approaching the depinning threshold from
below [U ( f ) ∼ ( fc − f )α]. In spite of several subsequent ana-
lytical [26,57,58], numerical [20,21,29,59–62] (some of them
with different predictions for ψ), and experimental [20,63,64]
studies, a proper understanding of the thermal rounding of the
depinning transition remains elusive.

We have analyzed a simple version model of the depin-
ning transition, namely the interface in a washboard potential,
and found that right at the threshold the velocity follows by
Eq. (41), which contains an important logarithmic correction
(when d �= 0) compared with the pure power-law behavior.
We have shown that the logarithmic correction in this model
can be physically explained in terms of a competition between
the droplet nucleations (bounded by a kink-antikink pair in
d = 1 or a d − 1-dimensional domain wall for d > 1) and the
expanding deterministic motion they immediately trigger. In
either case the later deterministic motion is hence not only
responsible for displacing pieces of the interface one period
further but also responsible for the deactivation of the nucle-
ation in nearby sites (see Fig. 8). It is worth stressing that the
left tail of the waiting time distribution for nucleation plays
a fundamental role in producing logarithmic corrections. At
this respect we note that the characteristic space-time structure
we observe at the depinning transition (see Fig. 6) is clearly
different from the one observed in the polynuclear growth
model [65] (and other similar solid-on-solid growth models)
where droplet nucleations are randomly sampled from a Pois-
son distribution before expanding them. As shown in Fig. 7,
a Poisson distribution does not apply at all to the thermally
assisted dynamics at the critical force. Interestingly, the expo-
nent 2/(6 − d ) in Eq. (41) still agrees exactly with the relation
ψ = β/α (with β = 1/2 and α = (6 − d )/4) proposed in
Ref. [22]. Furthermore, we have shown that the same prefactor
exponent β/α actually holds for an infinite family of periodic
potentials with different values of α and β (Appendix A). Our
results hence predict that, in practice, the effective thermal
rounding exponent will approach β/α slowly and from below
in the limit of small temperatures.

Based on the above findings, we conjecture that the thermal
rounding of the depinning transition in the more generic case
of interfaces in disordered pinning landscapes for d > 0 also
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displays logarithmic corrections, which may be written as

v = c1T β/α[− ln(c2T )]δ, (42)

where δ � 0 is a new exponent describing the left tail (or
“pseudogap”) of the waiting time distribution for nucleation
of localized modes exactly at the critical force. Such modes
may be related to the marginally stable localized (at the Larkin
length scale) soft modes found at the critical depinning con-
figuration [66]. In this scenario, the deterministic expansion of
thermally nucleated droplets would be replaced by the analo-
gous avalanche motion observed near the depinning threshold.
Noteworthy, some interface models with disorder gave already
evidence of logarithmic corrections [21]. Testing this conjec-
ture more broadly may help to advance our understanding
of the thermal rounding of the depinning transition of elastic
manifolds.
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APPENDIX A: GENERALIZATION OF THE NUCLEATION
RATE SCALING AND THERMAL ROUNDING

Here we consider the motion of a flat interface segment
near the depinning transition ( f = fc − ε) using a more gen-
eral form for the bottleneck at h = 0,

∂h(r)

∂t
= hγ − ε + ∇2h +

√
T η(t, r) (A1)

with γ characterizing the normal form of the periodic force
−V ′(h) ≈ −hγ around h = 0 and all its periodic images. Us-
ing the same arguments leading to 11 we now arrive at its
generalization,

ε → ε̃ ≡ kε, (A2)

h → h̃ ≡ k
1
γ h, (A3)

t → t̃ ≡ k
1
γ
−1t, (A4)

z → z̃ ≡ k
1−γ

2γ z, (A5)

T → T̃ ≡ k2− (2+d )(γ−1)
2γ T, (A6)

which reduces for γ = 2 to Eq. (11). Repeating the same
steps than for γ = 2 we obtain the generalized γ -dependent
nucleation rate per unit volume,

R(T, ε, L) = ε
(2+d )(γ−1)

2γ R
(
T/ε

2− (2+d )(γ−1)
2γ , 1, LT

γ−1
2γ−γ d+d+2

)
.

(A7)
Alternatively, for large sizes LT

γ−1
2γ−γ d+d+2 � 1, we can write

R(T, ε) = T
(γ−1)(d+2)

2(γ+1)−(γ−1)d F
(
ε

2− (2+d )(γ−1)
2γ

/
T

)
(A8)

with F (x) a master function,

F (x) ≡ x
(γ−1)(d+2)

2(γ+1)−(γ−1)d R(1/x, 1,∞). (A9)
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FIG. 10. (a) Velocity vs temperature at the depinning transi-
tion for an elastic string (d = 1) of size L = 132 768 in a periodic
potential characterized by the normal form exponent γ . Larger γ

imply shallower force minima (see text). Lines display the power-
law behavior v ∼ T ψ (γ ,d ), where ψ = 2γ−2

2γ−γ d+d+2 . (b) Same data but

highlighting the corrections to the power law by plotting v/T ψ (γ ,d=1)

vs T .

At T = 0 is easy to see that the velocity at the depinning
transition in this family of periodic potentials is v ∼ ( f − fc)β

with β = 1 − 1/γ , since the problem reduces to the particle
case [21]. If we use that ψ ≈ β/α, then we find the thermal
rounding exponent ψ = 2γ−2

2γ−γ d+d+2 . In d = 1 we get in par-

ticular ψ = 2γ−2
γ+3 , so for γ = 2 we have ψ = 2

5 .
In Fig. 10 we compare with v data at fc = 1, vs temper-

ature T . As can be appreciated in Fig. 10(a) the ansatz ψ =
2γ−2

2γ−γ d+d+2 works reasonably, but corrections to the pure law

scaling manifest already for temperatures T > 10−4 (in units
of the microscopic energy scale which we have set to unity).
Interestingly, as shown in Fig. 10(b), these corrections are ac-
centuated for larger γ , corresponding to shallower bottlenecks
hγ − ε around h = 0. As we have discussed for γ = 2 case,
logarithmic corrections are originated in the wide distribution
of the nucleation times. The enhancement of corrections for
increasing values of γ indicates that this distribution becomes
wider as γ increases.
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FIG. 11. Sketch of a function of which we know its limiting
forms vp and vm as x → ±∞. A possible interpolating function v(x)
for all x consists in fixing some value v0, and choosing x such that
x ≡ v−1

p (v0) + v−1
m (v0).

APPENDIX B: AN INDEPENDENT JUSTIFICATION FOR
THE EXISTENCE OF LOGARITHMIC

CORRECTIONS AT f = fc

In the main part of this work, we have analyzed the velocity
of an interface in a washboard potential at finite temperatures.
When the driving force f is larger than the critical force fc, the
limiting velocity as T → 0 corresponds to the athermal limit
v ∼ ( f − fc)β , with β = 1/2. In the case in which f < fc,
and for d = 1 the velocity vanishes in the limit T → 0 fol-
lowing an activation scaling that includes an Arrhenius factor
of the form ∼ exp(−C| f − fc|5/4/T ). We then analyzed the
behavior of the velocity right at the critical point, namely
f = fc, showing that this velocity has a dominant power-law
term in T , plus some logarithmic correction.

In the present Appendix, we want to show formally why
this kind of logarithmic correction appears naturally in this
problem. To this end, we pose the following mathematical
problem which, however, is clearly related to the physical
problem we have studied. Suppose we consider a function v

(to be associated to the velocity of the interface) as a function
of x ≡ fc − f , and temperature T . Suppose we know that
v(x, T ) → |x|β as x → −∞ [67] for any T . Also, suppose
that as x → +∞ we know v(x, T ) � T A exp(−xα/T ) (com-
pare with Eq. (30); for simplicity we do not consider here the
possibility of a preexponential power of x). The problem we
pose is to find a consistent family of functions v(x, T ) for
all x, satisfying the previous limiting forms. Once the family
of functions has been found, we are mainly interested in the
thermal rounding function v(x = 0, T ).

In this very general form there will be of course many
different solutions to the problem. Our goal here is to show
how in one possibly (arguable one of the simplest) solutions
that can be obtained, a logarithmic correction in the thermal
rounding function appears, which is originated in the expo-

nential form of the limiting function for x → +∞. In fact, in
Fig. 11 we can see the formal problem we are posing. There
we see plotted with thin lines the two limiting functions for
x → ±∞. We call them vp and vm for concreteness. The thick
line is an example of a possible function interpolating between
these two limits. One simple form of analytically obtaining
one such interpolation function consists in the following: Fix-
ing a generic value v0 of v (v0 > 0) we obtain the two points
xp and xm such that xp = v−1

p (v0), xm = v−1
m (v0). Then we

define the interpolating function v(x), choosing x = xp + xm.
Being more explicit, we define the inverse function v−1 as

v−1(v0) = v−1
p (v0) + v−1

m (v0). (B1)

Using the explicit forms vp(x) ≡ T A exp(−xα/T ), vm(x) ≡
|x|β we obtain

x ≡ v−1(v0) = v
1/β

0 + [−T ln(v0T −A)]1/α. (B2)

Let us note the following. As the two terms of this definition
have positive derivatives, the function v−1 can be reinverted
to obtain a single valued v0(x) ≡ v(x) function. In addition,
when v0 → ∞, the first term in (B2) dominates, whereas
when v0 → 0 is the second term that dominates. Then the two
limits of the function v(x) are satisfied.

Expression (B2) cannot be inverted analytically in general,
but we can advance further considering the thermal rounding
function, namely the case x = v−1(v0) = 0. We obtain

0 = v1/β + [−T ln(vT −A)]1/α (B3)

or

vα/β = −T ln(vT −A). (B4)

This expression can be considered as it stands, as an implicit
form of the thermal rounding curve. Alternatively we can get
an explicit form by working iteratively: Taking into account
the slow variation of the logarithmic factor, we can solve it
first by considering the log term is a constant, to obtain v �
(CT )β/α , and then using this zero-order approximation inside
the log in Eq. (B4), to obtain:

v � T β/α{− ln[(CT )β/αT −A]}β/α. (B5)

Either from this approximate expression, or from the gen-
eral solution [Eq. (B4)], we can see that in the particular case
in which A = β/α, the logarithmic correction vanishes and
the solution is v ∼ T β/α . This is just the case in which the
activation form of the function we are looking for in the limit
x → −∞ is compatible (in the sense discussed at the end of
Sec. III B) with the form |x|β in the limit x → ∞. Except in
this particular case, logarithmic effects are expected.

We see that the appearance of a logarithmic correction
seems to be a very general result associated to (i) the impossi-
bility of fitting the two limiting expressions for x → ±∞ with
a single scaling relation [as the one in Eq. (31)] and (ii) the
exponential activation form for x → ∞, whose inversion is
responsible for the logarithmic factor in the thermal rounding
law.
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