PHYSICAL REVIEW E 102, 052119 (2020)

Non-Clausius heat transfer: The method of the nonstationary Langevin equation
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Compared to other formulations of the second law of thermodynamics, the Clausius statement that heat does
not spontaneously flow from cold to hot concerns a system in nonequilibrium states, and in that respect is more
ambitious but also more ambiguous. We discuss two scenarios when the Clausius statement in its plain form does
not hold. First, for ergodic systems, the energy transfer may be consistent with the statement on a coarse-grained
timescale, but be anomalously directed during time intervals shorter than the thermalization time. In particular,
when an initially colder system is brought in contact to a hotter bath, the internal energy of the former increases
with time in a long run but not monotonically. Second, the heat transfer may not respect the Clausius statement
on any timescale in nonergodic systems due to the formation of localized vibrational modes. We illustrate the
two scenarios with a familiar model of an isotope atom attached to a semi-infinite harmonic atomic chain.
Technically, the discussion is based on a Langevin equation for the isotope, using the initial condition when the
isotope and chain are initially prepared in uncorrelated canonical states under the constraint that the boundary
atom between the isotope and chain is initially fixed and later released. In such setting, the noise in the Langevin

equation is nonstationary, and the fluctuation-dissipation relation has a nonstandard form.

DOLI: 10.1103/PhysRevE.102.052119

I. INTRODUCTION

Of the many formulations of the second law of thermo-
dynamics (the book [1] counts 21 of them), the most versatile
one is the Clausius inequality AS > %. It establishes the low
bound for the change of entropy AS = S, — S of an open sys-
tem which passes from equilibrium state 1 to equilibrium state
2 as a result of receiving the amount of heat AQ from the en-
vironment at temperature 7. Transition 1 — 2 may be either
reversible (in which case AS = AQ/T) or nonreversible (then
AS > AQ/T), but since S is defined only for equilibrium
states, the second law in the form of the Clausius inequality
assumes that the initial and final states are equilibrium ones.

On the other hand, there are other formulations of the
second law where the equilibrium nature of initial and final
states is not mentioned explicitly, and as a matter of fact is
not assumed. In particular, the Clausius statement reads as
follows [2]: “No process is possible whose sole result is the
transfer of heat from a body of lower temperature to a body
of higher temperature.” In short, heat does not spontaneously
flow from cold to hot. This statement does not elaborate the
nature of initial and final states. Applied literally to a system
in a thermal contact with a hotter (colder) bath, the Clausius
statement implies that the internal energy of the system U (¢)
increases (decreases) monotonically until the system reaches
thermal equilibrium with the bath. The monotonicity is essen-
tial here because the Clausius statement tacitly implies that
the derivative U'(¢) is of the same sign at any time, namely,
U’'(t) > 0 if the system is initially colder, and U’(¢) < 0 if the
system is initially hotter than the bath.
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Clearly, the two formulations cannot be equivalent. The
Clausius inequality is applied to two equilibrium states, while
the Clausius statement about the heat flow’s direction im-
plies no such restrictions. The application ranges of the two
formulations are overlapping but not identical. For instance,
when two semi-infinite systems of different temperatures are
brought into a thermal contact, our expectation about the di-
rection of the heat flow is based on the Clausius statement, not
on the Clausius inequality. The latter cannot be applied here
(except perhaps when the temperature difference is infinitesi-
mally small) because the overall combined system of infinite
size does not reach thermal equilibrium on a finite timescale.

It therefore may appear that the Clausius statement is more
general formulation of the second law than the Clausius in-
equality. However, the Clausius statement has restrictions of
its own. In this paper, we consider a specific model of a
microscopic system in contact with an infinite bath and show
that the Clausius statement may be violated in the following
two scenarios.

Scenario 1 assumes that the system is ergodic in the sense
that eventually it comes to thermal equilibrium with the bath.
Suppose the system is initially colder than the bath. Then we
show that the system’s internal energy U (¢) increases with
time but not monotonically. There are time intervals, albeit
microscopically short, when the derivative of U(¢) is nega-
tive, i.e., the colder system temporary releases heat into the
hotter bath. However, on larger timescales, i.e., for sufficiently
long time intervals , — #; > 0, the internal energy’s change is
positive, U(t;) — U(t;) > 0, in accordance with the Clausius
statement.

Scenario 2 assumes that the system is nonergodic in the
sense that it does not reach thermal equilibrium with the bath.
For example, a light isotope atom does not reach equilibrium
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with a uniform harmonic atomic chain due to formation of
the localized vibrational mode (see below). In that case, the
system, which is initially colder than the bath, reaches a sta-
tionary but not equilibrium state, in which its average over
time energy may be lower than in the initial state. In other
words, the colder system may permanently release heat into a
hotter bath.

Both scenarios manifestly contradict the Clausius state-
ment, involving heat transfer from a colder system to a hotter
one. We refer to this phenomenon as the non-Clausius heat
transfer. In scenario 1 the non-Clausius heat transfer is tran-
sient, in scenario 2 it is permanent. On the other hand, both
scenarios involve a system in nonequilibrium final states and
therefore do not violate the second law in the form of the
Clausius inequality.

For a similar reason our discussion has no direct connec-
tion to the fluctuation theorem for heat exchange by Jarzynski
and Wojcik [3]. The theorem establishes the ratio of proba-
bilities of system’s trajectories corresponding to Clausius and
non-Clausius heat transfers (i.e., for trajectories with the same
amount but opposite signs of absorbed heat), but as the Clau-
sius inequality, the theorem assumes that the initial and final
states are equilibrium ones. Also, the fluctuation theorem by
Jarzynski and Wéjcik is proved under the assumption of weak
coupling between the system and thermal bath. In contrast, in
this paper we consider a small system strongly coupled to the
environment.

The possibility of anomalously directed heat transfer was
recently discussed in the literature from different perspec-
tives, both general and system specific [4-10], sometimes
with conflicting conclusions. In recent work [10], we dis-
cussed non-Clausius heat transfer within familiar and exactly
solvable Rubin’s model [11,12] where the system is an iso-
tope atom embedded in the otherwise homogeneous harmonic
chain. Rubin’s model and its modifications have been ex-
ploited in very many studies but, with only a few exceptions
[13-15], with a very special initial condition. That condi-
tion, which is commonly used in microscopic derivations of
Langevin and Fokker-Planck equations [11,16,17], implies
that at ¢+ < O the isotope (system) is fixed and the chain (bath)
is equilibrated in the field of the fixed system. At ¢ = 0O, the
system is released and instantaneously acquires a desirable
initial distribution, for instance, the equilibrium canonical dis-
tribution with temperature 7. The latter can be interpreted as
the initial temperature of the system. Considering thatat? < 0
the bath is correlated to the system, the instantaneous change
of the state of the system alone at t = 0 appears to be a rather
artificial assumption.

In this paper, we consider a model similar to that of
Ref. [10] except that at + < 0 we fix not the system but the
system-bath boundary. This has the advantage that at t < 0
both the system and bath are mobile and have an opportunity
(by means of coupling to external reservoirs) to thermalize
and acquire uncorrelated initial canonical distributions with
given (in general different) temperatures. Such setting appears
to be more natural, at least conceptually, in the context of the
heat transfer problem compared to standard Langevin models
where the bath’s initial distribution is correlated to the posi-
tion of the initially fixed system, and the system acquires a
desirable initial distribution instantaneously at ¢ = 0.

The aforementioned modification, while it may appear
only incremental, significantly reshapes the theory and alters
some predictions. Within the presented model it is still pos-
sible (as in the model of Ref. [10]) to describe the system
by the generalized Langevin equation, but now it involves
a nonstationary noise related to the dissipation kernel via
a nonstandard fluctuation-dissipation relation. The Langevin
equation with a nonstationary noise, which we refer to for
brevity as the nonstationary Langevin equation, emerges
naturally in many fields, particularly for the description of
open systems interacting with nonequilibrium thermal bath
[18-26]. New phenomena in nonequilibrium environments
came into limelight in recent years, noticeably diffusion in
living cells [25,26]. In this paper we have a situation when
the bath is initially in equilibrium, but not in equilibrium with
the system. For that peculiar yet quite generic case we derive
the generalized Langevin equation with a nonstationary noise
but with a stationary (depending only on the time difference)
dissipation kernel. The fluctuation-dissipation relation we ob-
tain for that case seems to be not covered by other models
discussed in the literature. Although in this paper the themes
of non-Clausius heat transfer and of a nonstationary Langevin
equation are intertwined, the latter is of interest of its own.

II. MODEL

For weakly coupled macroscopic systems the expres-
sion “to place system A in a thermal contact to system B”
does not involve any ambiguity. In contrast, for strongly
coupled (small) systems such placing in general requires non-
negligible mechanical work, which affects the systems’ initial
energy distribution. As a result, the initial condition is deter-
mined not only by initial temperatures of the two systems, but
also by the specific protocol according to which the systems
are brought into a physical contact.

In the microscopic theory of Brownian motion is is usually
assumed that the system of interest and thermal bath are ini-
tially prepared according to the following protocol: At < 0
the system is fixed and the bath evolves in a potential created
by the fixed system and reaches the constrained equilibrium.
In this protocol the bath’s initial distribution at + = 0 is de-
veloped as a result of the natural dynamical evolution, while
the system, immediately after it is released at r = 0, instan-
taneously acquires an arbitrary initial distribution assigned
“by hand.” Because of the latter feature, we may refer to
this protocol as “sudden preparation.” The advantage of the
sudden preparation protocol is its simplicity, in particular, in
the derivation and applications of the Langevin equation and
fluctuation-dissipation relation. The disadvantage is an artifi-
cial way of assigning the initial condition for the system. It is
often not clear what physical setup, if any, can be responsible
for a given initial distribution of the system.

In this paper, we wish to overcome the above-mentioned
disadvantage of the sudden preparation protocol modifying it
in the following way: At ¢t < 0, instead of fixing the system,
we fix the position of the boundary between the system and
bath. In such setting, not only the bath, but also the system
is allowed to evolve naturally at < 0. With an additional
assumption that at ¢ < O the system and bath are connected
to external thermal reservoirs with given temperatures, this
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FIG. 1. Left: The system under consideration at times r < 0. The isotope (black circle) is connected to an external thermal reservoir
(smaller rectangle) with temperature 7. The chain atoms (white circles) are connected to an external thermal reservoir (larger rectangle) of
temperature 7. The symbols A indicate that boundary atom i = 0 is fixed in its mechanical equilibrium positions blocking the heat exchange
between the isotope and the chain. As a result of such setting, at # < O the isotope and the chain are prepared in uncorrelated canonical states
with temperatures 7y and T, respectively. At the moment ¢ = O the coupling to external reservoirs and the constraint A are removed, and
for t > 0 the overall system evolves as an isolated one. Right: The same system but the part of the chain consisting of atoms i =1...N is

represented as N independent oscillators, or normal modes (gray circles).

protocol allows a more natural way to assign initial canonical
distributions for the system and bath. As was mentioned in
Introduction, this improvement comes with a price that a
Langevin equation for the system involves a nonstationary
noise and the fluctuation-dissipation relation has a more com-
plicated form.

We consider an isotope atom (or adatom) of mass m; at-
tached by the linear spring with the stiffness constant &, to
the left end of the harmonic chain consisting of N + 1 atoms
of mass m connected by springs with the stiffness constant k
(see Fig. 1). The isotope plays the role of a system of interest
(hence the subscript s in my and k), while the chain is an ide-
alization of the thermal bath. We shall use the terms “system”
and “isotope,” as well as “bath” and “chain,” interchangeably.
The two parameters of the model are the mass ratio « and the
ratio of stiffness constants S:

m kq

a=—, f=_—. (1
my k

Comparing to a more familiar model of an isotope in a uni-
form chain and characterized by a single mass ratio parameter
« (such model is often referred to as Rubin’s model [11]), the
presence of the second parameter § offers more flexibility. In
particular, the model with two parameters (1) gives a broader
condition of the localized mode formation, the phenomenon
we shall find important in the present context. The atoms of
the chain are labeled by index i = 0...N. The limit N — oo
will be eventually taken. The right boundary atom of the chain
i = N is attached to the wall for all time by the same spring as
for the rest of the chain. The left boundary atom of the chain
i = 0 1is fixed in its mechanical equilibrium position for t < 0
and released at ¢ = 0.

The model also involves implicitly two external thermal
baths whose role is to prepare the system (isotope) and bath
(chain) in states described by uncorrelated canonical dis-
tributions with given temperatures 7y and 7', respectively.
Therefore, we assume that at # < O the system is connected
to the external thermal bath with temperature Tp, and the

bath to another external bath with temperature 7. At ¢t =0
the connection to external baths and the constraint on the
boundary atom i = 0 are removed, and the overall system (the
isotope plus chain) evolves as an isolated one.

Fort > 0, i.e., for the stage of the unconstrained free evo-
lution, the Hamiltonian of the overall system is

H =

Pk 2 k 2
2ms+;ﬁ+3(q—qo)+5(qo—q1)

+"'+§(QN—1_‘]N)2+§%2\]7 2)
where (g, p) and {g;, p;} are coordinates and momenta of
the isotope and chain’s atoms, respectively. As usual, as
coordinates we choose displacements of atoms from their
mechanical equilibrium positions.

Fort < 0, i.e., for the stage of the constrained initial prepa-
ration, the boundary atom i = 0 is fixed, so that gy = po = 0,
and the Hamiltonian (2) takes the form

H — H' = H, + H,, 3)
where H; is the Hamiltonian of the system (isotope) in the

field of the fixed boundary atom i = 0,

2
)4 ks 5

Hi=—+—¢q", 4

2, + >4 4)

and H, is the Hamiltonian of the bath (chain) with fixed

boundary atom i = 0,

> pio ko, k 2 k 2
Hh=2%+541+5(‘]1—6]2) ot 5 v = an)
i=1

k
+ zqﬁ. (5)

One recognizes H; as the Hamiltonian of an oscillator with
frequency

W5 = +/ ky/mg, (6)
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and H, as the Hamiltonian of a chain of N atoms labeled
i =1...N with boundary atoms i = 1 and N connected by
springs to the walls. We shall refer to H; and H, as the
Hamiltonians of the system and bath, respectively, but of
course they have such meaning only for ¢t < O while the bath’s
boundary atom i = 0 is fixed. For # > 0 the overall system is
described by Hamiltonian (2) which includes the sum of H,
and H,, but also the coupling terms involving the coordinate
and momentum of the boundary atom.

As mentioned above, we assume that for # < 0 the system
and bath are weakly coupled to external thermal baths with
temperatures 7y and T, respectively. As a result, the system
acquires the canonical distribution

ps = Z;l e*H.v/TO7 (7)
while the chain acquires the distribution
Py = Z;l e T, 3

Here and below we express temperature in the energy units so
that Boltzmann’s constant is unity, kg = 1, Hamiltonians H,
and H, are given by Egs. (4) and (5), respectively, and Z;, Z,
are the partition functions of the corresponding distributions.
Att = 0 the connection to external baths and the constraint on
the atom i = 0 are removed, and the overall system evolves as
an isolated mechanical system. Our goal is to find the internal
energy of the system U (¢),

1 2 kf 2
U@) = p ) + 5 (lg@) = qo ("I, (€))

with an attention to the sign of the difference U (t) — U(0),
which determines the direction of the net heat exchange
between the system and bath at a given time. Here and
throughout the paper the angular brackets denote the average
over initial coordinates and momenta of the system and bath
with the initial distribution

0 = Ps Pp- (10)

This distribution implies that the system and bath are initially
prepared in uncorrelated canonical states with temperatures T
and T, respectively.

II1. BATH IN TERMS OF NORMAL MODES

It is in many respects convenient and instructive to make
a canonical transformation of coordinates and momenta of
the bath {g;, p;} in order to diagonalize the bath Hamiltonian
H,, given by Eq. (5), representing it as a sum of independent
normal modes (see the right part of Fig. 1). Recall that Hj, is
the Hamiltonian of a uniform chain of N atoms with terminal
atoms i = 1 and N attached by springs k to the walls. For such
system, which is a linear version of the chain in the Fermi-
Pasta-Ulam-Tsingou model, the normal mode transformation

{q,,pl}—>{Pj,Q]}, l,J:lN (11)
is known to have the form
1 X N
gi=—= AijQ;, pi=+m) AyPj, i=1..N
Vm j=1 j=1
(12)

with the transition matrix

2 wij

—— 8in ———,
N+1

Aii =
! N+1

i,j=1...N (13)
satisfying the orthogonality relation Z?’:IAiinjr =4;y. In
terms of new coordinates {Q;} and momenta {P;} the Hamil-
tonian H, is diagonalized into a sum of N independent
oscillators, or normal modes, with frequencies w;,

N .
1 2 2.2 . )
H},:E]X:;{P] +CU]QJ}, w; = o Slnm, (14)
where the characteristic frequency
wy = 2/ k/m (15)

has the meaning of the highest normal mode frequency in the
infinite chain.

For ¢t > 0 (after the boundary atom is released), the Hamil-
tonian H of the overall system is given by Eq. (2). It can be
recomposed as

H =Hy+H, + H,, (16)

where Hj involves only variables of the system (isotope) and

the boundary atom i = 0 of the bath,
2

14 Po kg

H=—+—+—

= 2 Tom 2

the bath’s Hamiltonian H, is given by Eq. (5) or (14), and H.

describes the bilinear coupling of the boundary atom with the

rest of the bath,

RV k-,
(g — qo0) +5 (17)

H. = —kqoq. (18)

Expressing g in terms of normal modes with Eq. (12), H, can
be expressed as

N
He=—q0 ) c;Q;, (19)
j=1
with the coupling coefficients
k 4 k 2 . Tmj 20)
¢i=——A|, = — ., —— sin .
T m Y T mVN+1 T N+

With bath variables expressed in terms of the normal modes,
the overall system can be viewed as a two-atom cluster com-
posed by the isotope and the boundary atom i = 0, the latter
being bilinearly coupled by bounds of strength c¢; to N in-
dependent oscillators with frequencies w;. Such view, which
makes the connection to the popular Caldeira-Leggett model
[11], is illustrated on the right side of Fig. 1.

IV. LANGEVIN EQUATION FOR THE BOUNDARY ATOM

We describe the overall system using natural coordinates
and momenta for the system (g, p) and boundary atom
(90, po), and normal mode coordinates and momenta {Q;, P;}
for the bath. Such description is illustrated on the right part of
Fig. 1 and corresponds to Hamiltonian (16) with H, and H, in
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the normal mode representation given by Egs. (14) and (19).
Equations of motion have the form

0H,
p=-"" = k(g — q0), 1)
q
8 N
)y = — —— H HL. = _ks - _k j o
Po aqo( o+ H.) (g0 —q) QO+;CJQJ
(22)
. 9 ) .
Pj:_a_Qj(Hb+Hc)=—ijj+c,-qo, j=1...N.
(23)

Since Q; = dH,/dP; = P;, the last equation (23) can be writ-
ten in terms of normal coordinates Q;:

0j=-0;Q;+cjq. j=1...N. (24)

Solving Egs. (24) for Q;(t) and substituting the results into
Eq. (22), one can write the equation of motion of the boundary
atom in the form of the generalized Langevin equation

Bo() = —ks [qo(t) — q(6)] — / Ko(t — ') polt') dt’ + n(@).
0
25)

Except the term —k(qo — q), this equation is the familiar
Langevin equation for the terminal atom in a semi-infinite
harmonic chain (see, e.g., [11]). In order to make the paper
self-contained, we provide details of the derivation of Eq. (25)
in Appendix A.

In Eq. (25), n(¢) is a fluctuating force for which an explicit
expression is available in the form of a linear function of
initial coordinates and momenta of the bath [see Eq. (A7)
in Appendix A]. With that expression, one can show that the
fluctuating force is zero centered and stationary,

@) =0, W0 +0)=MmO)n),  (26)

and related to the memory kernel Ky(t) by the standard
fluctuation-dissipation relations

(nt)yn@)) =mT Ko(t —1'). 27

Here, as before, the angular brackets denote the averaging
over the initial coordinates and momenta of both the system
and bath with the distribution p = p; p,. However, since ()
depends on bath variables only, the average in above expres-
sions is taken, in effect, with the bath distribution p; only.

As shown in Appendix A, the memory kernel Ky(¢) in the
Langevin equation (25) in the limit of the infinite bath can
be expressed in terms of the Bessel functions of the first kind
Ju(x) as

2 J
Ko(t) = % [o(wot) + Ja(wot)] = wo 1(;‘; o),

where the second expression is defined at t = 0 by continu-
ity. One recognizes Ky(s) as the kernel in the generalized
Langevin equation for a terminal atom of a semi-infinite
harmonic chain [11]. Note also that expression (28) is two
times smaller than the kernel for a Langevin equation describ-
ing a tagged atom in the infinite homogeneous chain (see,

(28)

e.g., [10]). We shall need the Laplace transform of Ky(z),

Ro(s) = L{Ko()) = / e Ko(t) di (29)
0

which has the form
_ w?/2 1
Ky(s) = —2——= (/s> + o —5).  (30)
s+ /52 + a)% 2

In our approach, the Langevin equation (25) for the boundary
atom plays an auxiliary role. Our next goal in the next section
will be to integrate that equation (in the Laplace domain) and,
substituting the result into the equation of motion (21), to
derive a Langevin equation for the system.

V. NONSTATIONARY LANGEVIN EQUATION
FOR THE SYSTEM

With bath degrees of freedom being integrated (see the pre-
vious section), the system of relevant dynamical equations is
reduced to two equations, namely, the equation of motion for
the system and the Langevin equation for the bath’s boundary
atom:

pt) = —ksq(t) + ksqo(1), €1y

Po(t) = —ksqo(t) + keq(t) —f Ko(t —1") po(t") dt’ + n(t).
0
(32)

The initial conditions for the boundary atom, which is initially
fixed, are

qo(0) = pp(0) =0, (33)

while initial coordinate ¢(0) and momentum p(0) of the sys-
tem may be arbitrary. Later, we shall assume that ¢(0), p(0)
are drawn from a canonical ensemble with the distribution py
given by Eq. (7).

Expressing coordinates in terms of momenta,

1 t 1 t
q(t) =q0) + — / p(t)dr, qot)=— / po(t)dr,
ms Jo m Jo

s

(34)

we can write Egs. (31) and (32) in the Laplace s domain as
follows:

0 ks p ks p
5 p(s) — pl0) = —k, %) - @ += P - 35
m N mg S
— Ro(s) po(s) + 7i(s). (36)

Here, the symbol tilde denotes the Laplace transforms defined
in the standard way as in Eq. (29), and the Laplace variable
s should not be confused with with the s (“system”) subscript
of parameters my and k. Eliminating from the above equations
Po, one finds

s p(s) — p(0) = =K (s) p(s) + &(s) — ms q(0) K (s), (37)
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with
5o« B a)(z) s + Ko(s)
Koy=—"7"3% ¥ sRo(s) + Ba/4’ %)
z B 0)0/4 .
0= ko g para 1O (39)

Note that in the right-hand side of Eq. (38) the first factor has
the meaning of the square of the internal frequency w; of the
system,

W, = — = — wy, (40)
so we can write the expression for K(s) a bit more
compactly as

s+ Ko(s)
K(s) = o; s2+sKo(s)+/3wO/4 41)

In the time domain Eq. (37) has the form of the generalized
Langevin equation for the system

P(t)z—/o K@ —1)p(r)dt +5@1) —msq(0) K1), (42)

where the dissipative memory kernel K (¢) and the fluctuating
force £(¢) are defined by their Laplace transforms (38) and
(39), respectively.

Equation (42) plays the central role in our approach. Com-
pared to a generalized Langevin equation of the standard form
[11,17], it has two special features. The first one is the pres-
ence of the force —my q(0) K(¢) which depends on the initial
position of the system and is often referred to as the initial
slip [17]. The presence in the Langevin equation of additional
terms depending on initial conditions appears to be a generic
feature when the bath is not in (constraint) equilibrium with
the system [13—15]. The second feature is that the fluctuating
force £(¢) is not stationary. This can be seen from Eq. (39),
which shows that in the time domain &£(¢) is a convolution
of stationary noise 7(¢) and thus in general is not stationary
itself. The nonstationarity of &£(¢) will be confirmed below,
in particular, by the explicit evaluation of the second moment
(€2(t)), which will be shown to be time dependent. In contrast,
the noise n(¢) in the Langevin equation (25) for the boundary
atom is stationary and, according to Eq. (27), has a time-
independent second moment (n*(¢)) = m T Ky(0). Physically,
the nonstationarity of £(¢) is to be expected because the force
on the system is exerted by the boundary atom, which is not in
an equilibrium or stationary state after being released atr = 0.

For a nonstationary noise &(¢), the correlation (£(z) &(¢'))
is not a function of the time difference ¢+ — ¢’ only. Clearly,
in that case the standard fluctuation-dissipation relation like
Eq. (27) cannot be valid:

(E@EW)) #mTK(E —1"). (43)

We shall address the derivation of an adequate relation be-
tween &(¢) and K(¢) in the next section. Meanwhile, let us
discuss the properties of those functions separately.

Using Egs. (38) and (30), the Laplace transform of the
memory kernel K(s) can be brought to the following more

explicit form:

/2 2
(1,360% s+ ,/5° + wq . )
4 §2+5,/8% + o) + Bwj/2
By factorizing the denominator
§*+s5y/s2 + @} + Bag/2

=5 (Y +0f+5) (B +0f+ 2= B)s), (45)
the expression is further simplified to

op a)g/2
Bt +wi+Q2—B)s

K(@s) =

R(s) = (46)

In the time domain, the kernel K(¢) is available in the closed
form only for 8 = 1 and 2. For 8 = 1, Eq. (46) reads as

oca)(z)/Z

VP o) +s

Thus, for B = 1 the kernel K (¢) in the Langevin equation for
the system differs from that for the boundary atom Ky (¢) just
by the factor «:

K(s) = =aky(s), B=1 (47)

Ji(wot)
K1) = o Kntt) = 2 (o) + Jo(on)] = o —
B =1 (48)
For g = 2, Eq. (46) takes the form
_ o a)g/Z
K(s)= —, B=2. (49)
Jst+ o}
In the time domain this corresponds to
2
K(t) = %Jo(wt), B =2. (50)

In both cases B =1 and 2 the kernel K(¢) is a decaying
oscillatory function, with the oscillation amplitude decaying
as t~3/2 and t~'/2, respectively. Such asymptotic behavior can
be viewed as an example of a general trend that the stronger
the system is coupled to the bath, the slower is the decay
of relevant correlation functions. The connection between the
kernel K () and the correlation function of the noise will be
discussed in the next section.

An important property of K (t) is its initial value K (0). For
any values of « and 8 we find from Eq. (46)

Ly Y (51)

K(0) = hm sK(s) =
where, recall, w, = +/k;/my is the internal frequency of the
system.

Now, consider properties of the fluctuating force £ (7). As
follows from Eq. (39), in the time domain £(¢) is given by the

convolution

S(t)Z/O Lt —t)n(r)dr (52)
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of the stationary noise 7(t) and the kernel L(¢) with the
Laplace transform

P B wi/4
M= TR + Bars

As follows from Eq. (52), since the noise 7n(¢) is zero centered
then so is £(¢):

(53)

(@) =0. (54)

In order to evaluate time correlations and moments of & () we
need to discuss properties of the kernel L(¢) and its connec-
tions with kernels Ky(#) and K(¢) in the Langevin equations
for the boundary atom and system, respectively.

Substituting expression (28) for Ky(s) into Eq. (53) yields
L(s) as an explicit function of s:

Bwi/2

L(s) = . (55)
$2+5,/s* + i+ Bwi/2
From here we find that the initial value of L(¢) is zero,
L(0) = lim sL(s) = 0. (56)
§—> 00

Next, using expressions (53) and (41) for L(s) and K(s) one
finds that in the time domain L(¢) is given by a negative
derivative of the dissipative kernel K (¢):

L(t) = —w* K(1). (57)

Indeed, multiplying Eq. (41) by s and then adding and sub-
tracting 8 w? /4 in the numerator, one gets

sK(s) = w? [1 — L(s)]. (58)

Recalling that wf is the initial value of the kernel K(¢) [see
Eq. (51)], the above relation can be written as

L(s) = —o;* [s K (s) — K(0)]. (59)

In the time domain this gives Eq. (57).
Another useful property is the relation between the kernels
L(t), K(t), and Ky(¢) in the Laplace domain

K(s) = asL(s)+ aL(s)Ky(s). (60)

This follows directly from expressions (38) and (53) for K(s)
and L(s). Since L(0) = 0, in the above expression sL(s) is the
transform of L(t). Therefore, in the time domain relation (60)
reads as

K)=aL(@)+a / dt L(t) Kot — 7). 61)
0

To finish this section, let us use the above relations to
evaluate the second moment of the noise & (¢):

(%) 2/0 dt L(Tl)/o dt, L(r2) (n(t — 1) n(t — 12)).
(62)

Since the noise 7(t) is stationary and satisfies the fluctuation-
dissipation relation (27), the above expression takes the form

(£2(0) =mT/0 dTlL(fl)/O dty L(12) Ko(r — 1) (63)

or
t

(E20) = 2mT/0 dTlL(fl)/O 1dsz(Tz)Ko(tl — 7). (64)

Here, the inner integral is the convolution of L(¢) and Ky(¢),
which can be found from Eq. (61):

) 2mT (! ! .
&) = —/ dt L(t)K(t) —2mT / dt L(t) L(7).
o
0 0 65)
Next, we use property (57) to get

<§2(t)>=—2mf/ dt K(t)K(t) — 2mT/dtL(r)L(r).
o w 0 0

(66)
The integration yields
mT

2
o Wy

E@) =— [K*(t) — K*(0)] —mT L*(t), (67)

where we recall that L(0) = 0. Substituting here L(¢) in the
form (57) and K (0) = o? finally yields

2 2 msT oo mT o e
(& (t)):mSwST—7K (f)—?[K(f)] . (68)

This expression shows explicitly and quantifies the nonsta-
tionarity of the noise & () and its connection to the dissipative
kernel K(¢). In the next section we shall be able to derive
this expression in a more general way from the fluctuation-
dissipation relation for the correlation (£(¢) £(¢')).

Note also that although for ¢ > 0 the function &£(z) =
f(; L(t — t)n(r)dt fluctuates, at + = 0 it takes a predeter-
mined zero value £(0) = 0. This is consistent with Eq. (68),
which gives (§2(0)) = 0, taking into account that K (0) = w?
and K(0) = 0.

VI. NONSTATIONARY FLUCTUATION-DISSIPATION
RELATION

In this section we shall find a (fluctuation-dissipation) re-
lation between the correlation function of the nonstationary
noise £(¢) and the dissipative kernel K(¢) in the Langevin
equation (42) for the system. Such a relation is of interest
of its own, but we shall also use it in sections to follow to
evaluate the system’s internal energy as a function of time.
Recall that £(¢) is given by the convolution integral &£(¢) =
f(; L(t — t)n(r)dt, where 7(t) is the noise in the Langevin
equation (25) for the boundary atom. The noise 7(t) is station-
ary and satisfies the standard fluctuation-dissipation relation
27), (n(t)n")) = mT Ky(t — t). Then, the two-time corre-
lation function of & (¢) is

n %)
Eegw) =t [ dn [Cdnie - L6 -
0 0
x Ko(t2 — 11). (69)
This expression has the form of the double convolution
n 15
(f *xx8)(t1,12) Ef dTl/ dn f(ti — 11, h — 12)
0 0

X g(‘L’l, 7,'2) (70)
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of the two-variable functions

f(t, ) =L(t) L),

A convenient mathematical tool to handle expressions with
double convolutions is the double Laplace transform of a two-
variable function f(t;, t,):

g1, ) =mT Ko(t, —11). (71)

Lolf (1, 1)) = / dty e / diy e f(i1.1). (T2)
0

0

The convolution theorem for the double Laplace transforms
reads as

Lo{f=x gt = La{f} L2{g} (73)

(see, e.g., Ref. [27]). Applying the theorem to the double
convolution (69) yields

Lof(E@) &)} =mT Lo{L(t)) L(12)} L2fKo(t2 — 11)}.
(74)

It is clear that
Lo{L(1) L(t)} = LIL(1)} L{L(82)} = L(s1) L(s2),  (75)

where £ and the tilde denote, as in the previous sections,
the Laplace transform of a single variable function L{f (1)} =
f(s) = J¥ e f(t)dt. Therefore, Eq. (74) takes the form

Lo{(5(0)§(2))} = mT L(s1) L(s2) Lo{Ko(tz —11)}.  (76)

Next, we use the following property of the double Laplace
transform for an even function [27]:

1 ~ ~
Lo{f(tr — 1)} = 515, [f(s1) + f(s2)], if f(2) = f(=0).
(77)

According to Eq. (27), the kernel Ky(¢) is proportional to the
correlation function of a stationary noise 7(¢) and therefore is
an even function. Then, applying Eq. (77) we get

1 . _
LofKo(ty — 1)} = ——— {Ko(s1) + Ko(s2)}, (78)
s1+ 52
and Eq. (76) takes the form

T L(s1) L(s2)
st + 52

The next step is to use relation (60), which we can write as

Lr{(E(t1) (1))} = m [Ko(s1) + Ko(s2)]. (79)

- 1 -
L(s)Ko(s) = 5 K(s) — sL(s). (80)

From Egs. (79) and (80) one gets

Lo{(Et) E(n))} =

mT L(s1)K(s2) + L(s2)K (51)
o ST+ 52
—mT L(s1) L(sy). (81)

The inverse transform £ ! of this expression is

T
(@) &) = mT (f #x&)t1, ) —mT L(1)) L(t2), (82)

where the double convolution (f 3 g) involves the functions

f(ll,t2)=£z_l{sl+sz}=5(f2—f1), (83)
gt1, 1) = L "{L(s1) K(s2) + L(s2)K (s1)}
= L(t)) K(t2) + L(t2) K(11). (84)

One can verify that the double convolution of f(t,%) =
8(t; — t1) and an arbitrary function g(z, ;) is

min(t;, 1)
(f % 901, 1) = f ot — 7.1y — )d7. (85)
0

In our case, the function g(t, ;) is given by Eq. (84) and
has the symmetry property g(t;, 1) = g(t2, t;), which allows
a further simplification. Making in Eq. (85) the substitutions
t=H—1 fortp >t and Tt =1, — v/ for t; > t,, in other
words, T = min(t;, t,) — t’, one gets

min(ty, 1)
(f % 8)(t1.12) = / ol —tl+1.0)dr (86)
0

or, more explicitly,

min(t;,1)
(f **xg)(t1, 1) = f {L( —t|+7)K(7)
0

+L(D)K(lt — 11| + 1)} dr. (87)

Next, recall that the kernels K(¢) and L(¢) are connected by
relation (57),

L(t) = - K(t), (88)
where w; = +/k;/my is the internal frequency of the system.
Combining Egs. (82), (87), and (88) yields

mT min(ty,t) .
EW)EMn) =—— / {K(ltp —t1| + 1) K(7)
o w 0

s

+K@OK(t — 11|+ 1)} dt

mT . .
—?K(h)K(fz)- (89)

N
Noticing that here the integrand is the total derivative
L [K(lt — 1] + 7) K(7)] and recalling that K(0) = ?, we
finally obtain

my T
- KK (@)

s

(E@)E@)) =m; T K(lta — 1)) —

mT . .
- FK(tl)K(tZ)- (90)
s
This is the fluctuation-dissipation relation for the present
model. For t; =1, it gives expression (68) for the second
moment of the fluctuation force (£2(¢)), which we derived
previously by another method.

The last two terms in Eq. (90) are not functions of the
time difference and thus reflect the nonstationarity of the
noise £(t). We observe that for the present model the de-
pendence of the nonstationary terms on f; and #, is simply
factorized. If the kernel K(¢) and its first derivative vanish at
long times, the nonstationary terms in Eq. (90) vanish faster
than the stationary one, and the noise & () becomes stationary
at asymptotically long times.
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In the next two sections we shall exploit the fluctuation-
dissipation relation (90) to evaluate the internal energy of the
system as a function of time. For that application, the nonsta-
tionary terms in Eq. (90) are essential and cannot be neglected
even if they are relatively small at long times. The reader not
interested in the mathematical aspects of the evaluation may
skip the next two sections and go directly to Sec. IX where the
results are summarized and discussed.

VII. KINETIC ENERGY

In this section we evaluate the average kinetic energy of the
system E(t) = (p*(t))/2ms, solving the Langevin equation
(42):

P(t)=—/o K@ —t)p(r)dr + &) —meq(0)K (). (91)

The evaluation of the second moment of a targeted stochastic
variables, in our case (pz(t)), from a generalized Langevin
equation is a straightforward exercise provided the noise is
stationary and the fluctuation-dissipation relation has the stan-
dard form (see, e.g., [10]). For the present model the noise & (¢)
is nonstationary, and more elaboration is needed.

The solution of the Langevin equation (91) in the Laplace
domain reads as

p(s) = p(O)R(s) — m; q(0) K(s)R(s) + E(s)R(s), (92)

where

~ 1

We shall call the function R(¢) the resolvent. It is also of-
ten called the relaxation function. As follows from Eq. (92),
the physical meaning of the resolvent R(¢) is that it gives a
solution p(t) for the specific initial condition when p(0) =
1, g(0) = 0, while atoms of the bath are initially at rest in
equilibrium positions p;(0) = ¢;(0) =0 for i =0...N [in
that case £(r) = O atany time ¢ > 0, see Appendix A]. As will
be discussed in the following sections, the resolvent may show
either decaying or oscillating behavior at long times depend-
ing on specific values of parameters « and S. In this section
we focus on general relations and make no assumptions about
asymptotic properties of the resolvent at long times.

Writing Eq. (93) as sR(s) — 1 = —K(s) R(s), one notices
that in the time domain the function R(¢) satisfies the follow-
ing initial value problem:

R(t) = —/ K@ —t)R(r)dtr, R(0)= lim sR(s) = 1.
0 §—>00
(%94)

Here, the initial condition follows from Eq. (93) and
expression (46) for the kernel K(s), which shows that
lim,_, o, K(s) = 0. As follows from Eq. (94), the Laplace
transform and initial value of the resolvent’s first derivative
are

L{R(t)} = —K(s)R(s), R(0)=0. (95)

We shall also need the Laplace transform and initial value of
the resolvent’s second derivative. Since R(0) = 0 we get

L{R(@)} = s L{R(1)} = —s K(s) R(s),
R(0) = — lim S’ K($)R(s) = —?. (96)

s

The latter relation follows from the initial value theorem and
the asymptotic behavior of the kernel for large s:

2 2
r\,aﬂ—a)(’:&’ s — 00 (97)

K(S) 45 K

[see Eq. (46)]. Taking into account Eq. (95), one observes that
expression (92) in the time domain reads as

p(t) = p(O)R(t) + mj q(O)R(t)+/ R(t —t)&@")dr'.
0
(98)

For the last term here let us introduce a temporary notation
t
Po(?) E/ R(t —t) &) dr. (99)
0

The function py(z) gives the system’s momentum for ini-
tial conditions with ¢(0) = p(0) = 0. Since the noise & () is
zero centered, the first moment of py(¢) vanishes (po(¢)) = 0.
Then, squaring Eq. (98) and taking the average with the dis-
tribution (10) we obtain

(P’ () = (P*) R*(0) +m3 (") [R@F + 2m, (pq) ROR()
+{p5 (). (100)
Here, g = ¢(0) and p = p(0) are initial values of the system’s
variables. Their moments in Eq. (100) are calculated, in effect,
with the distribution p; given by Eq. (7):
1

1
@)=—-Th=—=,

=0,
A P (g p)

(P =m T,
(101)

where Tj is the initial temperature of the system, then

T
(P 0) = m T R(0) + =52 [ROF + (ph(0)). (102)

s

As the next step we need to work out the last term in the
above expression:

(@) = /0 dvi Rt —11) /0 4t R(t — 1) (E(1) £(2).
(103)

Using the fluctuation-dissipation relation (90) we get

(R(0) = m, T fo dr R(1)) fo dry R(m) K (|12 — 11])

mg T , mT . 2
— [(R * K)(1)] —?[(R*K)(I)]. (104)

Here, we use the notation (f * g)(t) for the convolution
f(; f(t — t)g(t)dt. To proceed, let us denote the three terms
in the right-hand side of the above expression as A;(¢),

(A1) = A1 (1) + As(1) + As(0),

and evaluate each term separately.

(105)
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The first term A; can be worked out with the standard trick
of replacing the integral over the square (0, ¢) x (0, ¢) by the
two times integral over a triangle:

Ayt = m, T/ dr, R(mf dt R() K (2 — 1))
0 0

= 2m; T/ dT; R(tl)/rl dt R(1) K(t1 — 10).
0 0
(106)

Here the inner integral, according to Eq. (94), equals —R(t),
then

A(t) = —2mXT/ dT R(x)R(x) = my T[1 — R*(1)).
0
(107)

The second term, again due to Eq. (94), is

"ZZT [(R* K)YD)P = -2

s

A1) = —

T
SSIROP. (108)

In order to evaluate the third term

mT . )
A3(t) = o [(R*K)(1)] (109)
we use the relation
(R+K)1t) = —R(t) — K(O)R(), (110)

which can be obtained by differentiating Eq. (94), or by eval-
uating the convolution R * K in the Laplace domain using
Eq. (96). Recalling that K (0) = ?, one finds

As(t) = —m T [R(t) + 072 R@)]'. (111)

Combining the above results according to Eq. (105), we obtain

"L RaP

(Po()) = mT 11 = RA)] — —

—mT [R(t) + 02 RD)]. (112)
Substituting this into Eq. (102) yields

(P0) = mg T +my(Ty — T) [R*(t) + w;? R(1)*}

—mT {R(t) + 0> R(t)). (113)

Then, for the system’s average kinetic energy E = (p*)/2m;
we finally get the following expression:
Th—T

T
E(f)=5+

[R*(t) + o, > R(t)*}

_or [R() + 0 2R (114)

2
Since R(0) =1, R(0) =0, and R(0) = —w?, the above
expression for t =0 gives E(0) = Typ/2, which is the cor-
rect equilibrium value for the given setup. The behavior
of E(t) at long times is governed by asymptotic properties
of the resolvent and its derivatives. For an ergodic system
R(t), R(t), R(t) — 0 at long times. Then, Eq. (114) describes,

in accordance with the equipartition theorem, relaxation to the
equilibrium value at the bath temperature 7', E(t) — T/2,
while the last two terms in Eqs. (113) and (114) describe
the transient. Because of the last term, the transient is not
identically zero even if T = Ty. From the point of view of
macroscopic thermodynamics this is an anomaly contradict-
ing the zeroth law, but microscopically this is a result to
anticipate since the initial distribution (10) does not involve
the system-bath interaction and is not the equilibrium distri-
bution for the overall system even when 7o, = T.

VIII. POTENTIAL ENERGY

According to the equation of motion for the system (21),
q(t) — qo(t) = —p(t)/ks. Then the average potential energy
of the system can be written as

ks ) |
V)= 2 {lg(t) = qo®OF) = 7~ (p@)). (1135

2 kg
Differentiating solution (98) of the Langevin equation we get

p(t) = pO)R(t) +m;qO)R(t) + E(t) + o(t), (116)

where the last term is a new fluctuating force defined as

t
o(t) = / Rt —t)E@W)dt . (117)
0
Both fluctuating forces £(¢) and ¢(¢) are zero centered,
(E(1)) = (p(t)) = 0, and the moments of p = p(0) and g =
q(0) are given by Eq. (101). Taking that into account, squaring
and averaging of Eq. (116) yields
. . meTy ..
(p)) = m Ty [ROF + =52 [ROF + (€7(1)

s

+ (921 + 2 (£ (1)), (118)

Here, the second moment (£2(¢)) of the Langevin force is
given by Eq. (68), so what remains to evaluate in the above
equation is the last two terms.

Consider the second moment of ¢(z):

@) = /0 dniR(t — ) /0 doR( — 1) (1) £(12)).
(119)

Using the fluctuation-dissipation relation (90), we can write
this expression as a sum of three terms

(@%(1)) = B\ (1) + By(t) + B3(1), (120)

t
Bi(t)=m,T / dt Rt — 1)
0

x f dnR(t — ) K(lt — a]),  (121)
0

myT . 2
(R K)(D)],

By(t) = — )

(122)

mT . . 2
Bs(t) = e [(R* K)(®)]". (123)

s

052119-10



NON-CLAUSIUS HEAT TRANSFER: THE METHOD OF THE ...

PHYSICAL REVIEW E 102, 052119 (2020)

Here, as before, the symbol * stands for a convolution. Con-
sider first the function By (¢):

Bit)=m, T / duiR() / doR(e) K(1t1 — 1)
0 0

=2mST/ an(z,)/ ]dtzR(rz)K(tl - ).
0 0
(124)

The inner integral in the last expression is the convolution (R %
K)(71). From Eq. (94) one finds
(R*K)(1) = —R(t) = K(1), (125)

then

Bl(t):—ZmST/ R(I)R'(r)dt—meT/ R(t)K(7)dt
0 0
(126)

or, taking into account that R(O) =0,
t
Bi(t) = —m, T [R()]* — 2mXT/ R(t)K(z)dr. (127)
0

The second term B,(¢), with the help of Eq. (125), can be
worked out to the form

mg T

2
Wy

By(t) = — [R(t) + K (D). (128)

E);pre‘ssion (123) for the term B3(¢) involves the convolution
(R % K)(¢). By differentiating Eq. (94) twice and using inte-
gration by parts one can get

(R* K)(t) = —R(t) — 0* R(t) — K(1). (129)
Alternatively, this relation can be derived evaluating the con-

volution (R %K) in the Laplace domain with the help of
Eq. (96). With Eq. (129), Bs(t) takes the form

T .. . .
Byt) = —— [Ro)+ ol RO+ K], (130)

s

Substituting the above expressions for By, B;, and Bj into
Eq. (120) yields

. T
(0*(0) = =mT ROF = =

s

[R(t) + K@)

mT ... 9 . 2
iy [R(1) + w] R(t) + K(1)]

s

—ZmST/ R(T)K(1)dT. (131)

0

Let us now evaluate the last term in Eq. (118):
2(6@)p@)) = 2/0 dTR(t —T) (E(DE®D).  (132)

Using the fluctuation-dissipation relation (90), one gets

2 (E(1) (1)) =2msTf Rt —1)K(t — 1)dt
0

2m, T

2
o8

(R+K)t)K(t)

2mT

4
a)S

(R K)®)K (). (133)

Changing variables in the first term and using Eqgs. (125) and
(129) for convolutions (R * K) and (R * K) yields

2 () o)) = ZmST/ R K(x)dr
0

2my

2
wy

+ 2T B+ KOTK @)

+—[R(®) + o] Rt) + K(1)] K(2).
ws

(134)

Substituting Egs. (68), (131), and (134) into Eq. (118) one
finds

(Pp@)*) = mg@* T +my (Ty — T) [R(t)2 + %R'(t)z}

s

T [w? R(t) + fé(t)]z.

135

Then, according to (115), the average potential energy of the
system is

V() = g BT o R + w7t B

M

aT

- ol RO+ 07 ROY

(136)

Remarkably, this result can be obtained from expression (114)
for the average kinetic energy E(7) by making in the latter the
replacement R(t) — w; 'R(t).

IX. INTERNAL ENERGY

Combining findings of the previous two sections, i.e.,
adding up Eq. (114) for the average kinetic energy E(¢) and
Eq. (136) for potential energy V(¢), for the total internal
energy of the system U(¢) = E(t) + V(t) we obtain the fol-
lowing result:

U)=T+To—-T)y1(t) —aT y@),

where dimensionless functions v (¢) and v, (¢) are
V(1)

() = L[R0) + 02 RO)] + Lo Rt) + 07 R)]'.
(138)

(137)

R0 + 20,2 R(t)* + o, R(t )],

Since R(0) = 1, R(0) = —w?, R(0) = R(0) =0, the initial
values of the functions are

Vi) =1, ¥»(0)=0, (139)
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and therefore the initial value of the internal energy is

U©) =Tp. (140)

This is consistent with our model’s assumption that at r < 0
the system is equilibrated with an external bath at temperature
Ty. The behavior of U (¢) at long times is governed by asymp-
totic properties of the resolvent and its derivatives. Namely, if
the resolvent and its first three derivatives vanish at long times,
then so do v (¢) and ¥, (¢):

Yi(t), Ya(t) — 0,

In that case it follows from Eq. (137) that the system is
ergodic, i.e., thermalizes with the bath at temperature T,

ui)—T,

t — oo. (141)

as t — oo. (142)

This situation is what we called in the Introduction scenario
1. On the other hand, if the resolvent and its derivatives do not
vanish at long time, then it follows from the above relations
that the system is not ergodic, i.e., U(¢t) does not converge
to T. Such situation was referred to in the Introduction as
scenario 2.

At a given time the direction and magnitude of heat transfer
between the system and bath is characterized by the change of
the internal energy of the system

AU =U@®)-UO0)=U@)—Tp. (143)
From Egs. (137), (140), and (143) we find
AU@) =T =To)[1 =y1@] —aT yo@). (144)

Because of the term —a T ¥, (¢), this expression is manifestly
in disagreement with the zeroth law of thermodynamics: the
energy exchange between the system and bath is not iden-
tically zero when T = Ty. If the system is ergodic, ¥ (t)
vanishes at long times, and the heat transfer between the
system and bath at the same temperature is a transient process,
not observable on the macroscopic timescale. On the other
hand, if the system is nonergodic, ¥, (z) does not vanish and
the heat exchange between the system and bath does not
respect the zeroth law on any timescale.

The limitation of the zeroth law for the present model is
remarkable but hardly a surprise. For a nonergodic system,
which does not reach thermal equilibrium, the zeroth law does
not apply anyway. For an ergodic system the violation occurs
on a microscopic timescale, i.e., beyond the application range
of macroscopic thermodynamics. As we mentioned before,
from the point of view of statistical mechanics, the transient
heat exchange between the system and bath at T = Tj is to
be expected because the the initial distribution p = p,p; for
the given setup does not take into account the system-bath
interaction and therefore is not an equilibrium distribution
for the overall system even if T = Tj. From this perspective,
one may say that the term —a T ¥, (¢) in Eq. (144) describes
effects of the strong coupling between the system and bath.
Note that we did not absorb the factor « in the definition of
function ¥, (¢) in order to make it more visible that in our
model effects of the strong coupling are linear in «. In the
Brownian limit & > 1, i.e., when the system is much heavier
than atoms of the bath, such effects are small.

It is clear that expression (144) for AU(¢) is in general
inconsistent with the Clausius statement that heat goes from

hot to cold. Indeed, if T and T are sufficiently close, then
the first term in Eq. (144) is small, and the sign of AU(¢),
and therefore the direction of heat transfer, is determined by
the strong coupling term —a T ¥, (¢), which does not depend
on the temperature difference. Here again the disagreement
with macroscopic thermodynamics emerges as a result of the
strong coupling of the system and bath.

In order to find precise conditions and time intervals of
validity of the Clausius statement we need to evaluate AU (t)
as an explicit function of time. That requires to evaluate the
resolvent R(¢) and functions v () and 1, (¢) in explicit forms.
Recall that the resolvent R(¢) is defined in the Laplace domain
by relation (93), R(s) = 1/[s + K(s)]. With the transform of
the memory kernel K (s) given by Eq. (46) one gets

Q2—PB)s+ B>+
R(s) =

Q2—PB)s>+ Bs s>+ )+ 20?2

where, recall, w} = 4k/m and w? = k;/m; = o B wj/4. The
inversion of a transform of this form was discussed, for in-
stance, in Appendix D of Ref. [28]. In this paper, instead of
inverting transform (145) for arbitrary o and B, we prefer
to focus on two specific cases § =1 and 2 (with o being
arbitrary), for which the results are more compact and reflect
all relevant physics, covering both ergodic and nonergodic
systems.

(145)

X. RESOLVENTFOR 8 =1

In the case 8 = k;/k = 1 all springs of the overall system
are the same and the only parameter of the model is the mass
ratio o« = m/my. The transform of the resolvent (145) takes

the form
s+ /824 o
245,/ + 0} +awl/2

Factorizing the denominator

2
2 +5,/5? +a)%+ _O‘;"O

:%(s—i— 24+ ) (/s> + @} + 2 —a)s), (147)

R(s) =

(146)

the above expression is further simplified to
1

(@/2) /s> + w3+ (1 —a/2)s

R(s) =

(148)

If we replace in this expression «/2 — «, it would coincide
with the familiar result for the normalized equilibrium cor-
relation function C(r) = (p(t) p(0))/ (p?) (here the average
is taken with the equilibrium canonical distribution for the
overall system) for an isotope atom in a otherwise uniform
harmonic infinite chain [12]

1

a2+l +(1—a)s

The inverse transform of expression (149) is well known [12]
(see also Appendix B of paper [10] for technical details), so

Cs) =

(149)
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we can use it for the inversion of (148) just replacing o —
o /2. Closed-form expressions for R(t) are available only for
a=2and I:

Jo(wot), if a=2

150
wio,Jl (wot), (130)

R(t) = {

if a=1.

For other values o < 2 the resolvent can be presented in the

integral form
/@3 — @? cos(ot)
d

o [
R(t) = —
® T /0 (1-a)w?+a?w}/4

The resolvent R(t) of the forms (150) and (151) vanishes
at long time. Therefore, the system demonstrates an ergodic
behavior when o < 2, i.e., when the system’s mass is larger
than the half-mass of the bath’s atoms, m; > m/2.

For « > 2 a remarkable phenomenon of a localized vibra-
tion occurs [12,29]. The resolvent takes the form

w.  (151)

R(t) = A(a) cos(wyt) + Ro(t), o > 2. (152)

Here, the function Ry(¢) is given by the right-hand side of
Eq. (151) and vanishes at long times, while the frequency and
amplitude of the localized vibrational mode are

o A a—2
a1 A=
Thus, for o > 2 the resolvent does not vanish at long time
but oscillates with frequency w,. The system is nonergodic,
it does not reach equilibrium with the bath. According to
Egs. (137) and (138), the internal energy of the system U ()
oscillates with time, but its time-average value U takes a
stationary value. We shall see in the next section thatif 7o < T
then the time-averaged energy change AU = U — U(0) may
be positive, i.e., the colder system releases heat into a hotter
bath, in contradiction with the Clausius statement.

Mathematically, a condition of the emergence of a local-
ized vibrational mode with frequency w, in a harmonic lattice
is that the function R(s) has simple poles +iw, located on
the imaginary axis, provided the frequency w, is outside the
frequency spectrum of the lattice [12,29]. The latter condition
implies w, > wp because wp has the meaning of the highest
frequency of the infinite lattice representing the bath. Ana-
lyzing expression (146) for R(s) one finds that it has indeed
simple poles +iw, with frequency w, given by Eq. (153).
There is, however, a subtlety at this point. With w, given by
Eq. (153), the condition w, > wy is satisfied for « > 1. From
this one may erroneously conclude that the condition of the
localized mode is o > 1, rather than « > 2. The puzzle is
resolved by noting that the function R(s) has two branches,
and only one of them is physically meaningful, i.e., consistent
with the correct initial condition R(0) = 1. One can show that
s = Fiw, are the pole for the physical branch of R(s) only for
a > 2. For 1 <« < 2 the function R(s) still has the poles at
s = Fiw, with w, > wy, but they correspond to the unphysi-
cal branch and thus should be discarded (see Appendix B of
Ref. [10] for details).

Now equipped with explicit expressions for the resolvent
(although so far only for 8 = 1), we can exploit expressions
(137) and (138) for the internal energy to explore the energy

wy (o) = (153)

. . .
0 10 20 30 40 50 60
gt

FIG. 2. The relative change of the internal energy of the system
AU@) =U()— U(0), in units U(0) = Ty, as a function of scaled
time for « = 2 and g = 1, for different values of the temperature ra-
tio T /Ty (Ty is the initial temperature of the system, T is temperature
of the bath).

exchange between the system and bath. We shall consider
ergodic and nonergodic systems separately.

XI. HEAT TRANSFER FOR ERGODIC
SYSTEM (¢ =2, g =1)

As an example of an ergodic system, consider the case
B =1 and @ = 2, when the resolvent has a simple analytical
form R(t) = Jy(wot) [see Eq. (150)], and the system internal
frequency is ? = o B a)(z) /4= a)(z) /2. Substituting of that ex-

pression into Eqs. (138) we get ¥ and ¢, in the following
explicit form:

5, 1 , 4
Yi(r) = EJO(T) +2 <1 + ;) Ji() — ;JO(T)Jl(f)y

(154)
1 4 6 16
Yo(t) = (5 + ;) Jo(1)* + (1 = + F) Ji(7)?

2 16
+ (— - —3>J0(T)J1(T)-
T T

Here, T = wyt, and we have chosen to use the Bessel functions
of zeroth and first orders only. These expressions are defined
for T > 0, and at 7 = 0 they should be defined by continuity:

Y1(0) = lim ya(r) = 1, ¥2(0) = lim (1) = 0.
(156)

(155)

According to Eq. (139), those are the correct initial values.
Substituting the above expressions for v, (¢) and ¥, (¢) into
Eq. (144),

AU =U@)-UQ) =T —To)[1 =] — 2T vr2(2)
(157)

gives AU (t) as an explicit function of time. Figure 2 shows
the result for three values of the temperature ratio 7' /7. In all
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three cases, the energy change converges at long times to the
value AUy = T — Ty, which is consistent with the Clausius
statement: the colder system absorbs heat from the hotter bath
(AUy > 0), the hotter system releases heat into the colder
bath (AU < 0), and the net heat exchange is null when the
temperatures of the system and bath are the same.

However, one observes from Fig. 2 that while the Clausius
statement holds on the asymptotically long timescale, at short
times it does not. The function AU (¢) is not monotonic; on
short time intervals it increases or decreases regardless of
whether the system hotter or colder than the bath. Such behav-
ior is what was referred to as scenario 1 in the Introduction.
In particular, one observes from Fig. 2 that regardless of the
sign of the temperature difference T — Tj the system initially
loses energy: the function AU (¢) first decreases, reaches an
absolute minimum, and then on a much longer timescale ap-
proaches nonmonotonically the equilibrium value from below.
Such an initial transient cooling (the term is suggested by the
referee) may be interpreted as a result of the initial energy
transfer from the system to the boundary atom of the bath. The
latter is initially fixed (see Fig. 1), and immediately after being
released at r = 0 it is always “colder” than the system, even if
the bath’s temperature is higher than that of the system. The
net energy balance results from the interplay of two processes.
The first process is the system releasing heat to to the colder
boundary atom, the second process is the system absorbing
heat from the hotter bath. The initial transient cooling may
be viewed as the result that the first process dominates on a
shorter timescale. The second process dominates on the longer
timescale, and one expects the transient cooling to be more
conspicuous when the second process is weaker, i.e., when
the temperature of the bath is lower. This trend is visible
in Fig. 2: for a fixed initial temperature of the system Ty,
the extent of the initial transient cooling increases when the
temperature of the bath T decreases. Instead, at higher T
one expects the transient cooling to be unimportant. Indeed,
plotting AU (¢) according to Eq. (157) one finds that the initial
transient cooling is practically invisible for 7'/Ty > 10.

XII. HEAT TRANSFER FOR NONERGODIC
SYSTEM (¢ > 2, f=1)

As discussed in Sec. X, for 8 =1 and « > 2 the system
shows nonergodic behavior due to formation of the localized
vibrational mode. The resolvent is given by Eq. (152), R(¢) =
A cos w,t + Ry(t). At long times the function Ry(¢) vanishes,

and the resolvent oscillates
R(t) =~ A cos(wyt) (158)

with the amplitude and frequency given by Eqs. (153). The
functions ¥ (¢) and v, (¢ ), given by Eqs. (138), take the forms

AZ r » 49 o 2
Ui(t) = — |1+ (-*) cos(wyt)? +A2<—*) sin(wyt)?,
2 L ws ) | Wy
(159)
AT o\ 1? 0\
Yo(t)y=—|1— (—*> |:cos(a)*t)2 + (—*) sin(w*t)2:|.
2 L Wy _ Wy
(160)

V(o)

0.75 -

A

0.25 |-

oy (o)

FIG. 3. Dimensionless functions ¥ (), « ¥»(«), and y(a), de-
fined by Eqgs. (162) and (167), which determine the time-average heat
exchange of a nonergodic system for the case (¢ > 2, = 1), as
discussed in Sec. XII.

The time averages of these expressions, which we denote with
the overbar, are

S ws\ o\
e Ut ) B A ) N
4 Wy Wy
Taking into account that A= (¢ —2)/(¢ —1) and
(a)*/a)s)2 =o/(e — 1) [see Egs. (153) and (40)], we can
express the above expressions as functions of the mass ratio
o as follows:
(@—=2Qu—-172> —— (@ —2P2Qa—1)
. e =
4(a—1) 4(a—1)
(162)
The plots of the functions V() and o (), as well as
another relevant function y (@) defined below, are shown in
Fig. 3.
According to Eq. (137), the time-average change of the
system’s internal energy is

AU=U-U@O0)=(T -T)[l —¥1]1—T a .

Yi(a) =

(163)

The direction of the time-average heat transfer is determined
by the sign of this expression. The heat transfer is anoma-
lously directed (non-Clausius) if AU < 0 when the system is
initially colder than bath (T — Ty > 0), or if AU > 0 when
the system is initially hotter than bath (T — Ty < 0). It is
easy to see that the latter case actually does not occur for
the present model. Indeed, the inequality AU > 0 can be
written as

(T —To)A — Y1) > Tayn,

If T — Ty < 0, it has no solutions because for any o > 2 the
left-hand side is negative and the right-hand side is positive
[note that E(oe) < 1 and %(a) > 0, see Fig. 3]. Thus, if the
system is initially hotter than the bath, the heat transfer is in
agreement with the Clausius statement, i.e. is directed from
the hotter system to colder bath.

(164)
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The situation is more interesting when the system is ini-
tially colder than the bath, T — Ty > 0. For that case the
Clausius statement suggests that the system absorbs heat from
the bath, so that AU > 0. However, solving the inequality

AU =(T -T)[l—y11—Tay, >0 (165)

one finds that the Clausius transfer only occurs if the system’s
initial temperature 7y is not too high, namely,

Th<T.=y@)T, (166)
where the function y («) is
a%(a) 20 — 40 + o
o) =1- ——— = :
1 —y(e) 4o’ —=13a*+13a—4
(167)

For o > 2 the function y(«) monotonically decreases from
from y(2) =1 to y = 0.5 at asymptotically large o (see
Fig. 3). Therefore, for any o > 2 the critical temperature T is
lower than temperature of the bath, but bounded from below
by the half-temperature of the bath,

T/2<T. <T. (168)
If the initial temperature T of the system is in the interval
T.<Ty<T, (169)
then one finds
AU =T -T)[l —y11-Tay, <0, (170)

which corresponds to the non-Clausius heat transfer from the
initially colder system to hotter bath. The anomalous heat
transfer from the system to bath also occurs when their tem-
peratures are the same, in which case AU = —T a 9, < 0.

These results may be interpreted as follows. Due to the
formation of a localized vibrational mode, the system ex-
changes heat not with the entirety of the bath, but only with
a finite fragment of the bath adjacent to the system. Suppose
one wishes to introduce an effective local temperature of that
fragment. Clearly, it must be lower than the bath’s bulk tem-
perature T because the fragment includes the initially frozen
boundary atom i = 0. It is tempting to identify the fragment’s
effective temperature with the critical temperature 7, defined
by (166). Then, our results indicate that the Clausius statement
breaks down when applied to the whole bath, yet is still valid
when applied to the heat exchange between the system and
the boundary fragment of the bath provided the latter has an
effective temperature 7;.: Heat is transferred from the system
to the fragment if the system’s temperature is higher than
temperature of the fragment 7y > 7. (though perhaps lower
than the bulk temperature of the bath Ty < T), and in the
opposite direction otherwise.

XIII. HEAT TRANSFER FOR NONERGODIC
SYSTEM (B = 2)

In the previous two sections we discussed the model for
B = 1, which shows both ergodic (for ¢ < 2) and nonergodic
(for o > 2) behavior. The condition of nonergodicity « > 2
implies that the isotope representing the system is at least
twice lighter than atoms of the bath. In contrast, for § =2 a

localized mode emerges, and the system is nonergodic, for any
value of the mass ratio «, including the Brownian limito < 1.
This peculiar feature is the incentive to consider the case
B =2 in this section as our second showcase example. We
shall see, however, that the results for 8 = 2 are qualitatively
similar to those for the case (¢ > 2, B = 1) discussed in the
previous section.

We have seen in Sec. V that for § = 2 the memory ker-
nel in the Langevin equation takes a simple form K(¢) =
(a w(z) /2) Jo(wot ). However, this simplicity does not offer any
particular advantage for the evaluation of the resolvent R(z).
The general expression for the resolvent’s transform (145) for

B = 2 reads as
JsE+od
5,/2 + 0} +aw}/2

and cannot be inverted in terms of standard functions. One has
to be aware of a subtlety related to this expression: If one tries
to evaluate the long-time limit of the resolvent using the final
value theorem one gets zero,

R(s) = a71)

lim R(t) = limsR(s) = 0, (172)
t—00 s—0

which suggests ergodicity. Actually, result (172) is incorrect
because, as we shall see, the long-time limit of the function
R(t) with transform (171) for any positive o does not exist,
and the final value theorem cannot be applied.

The inversion of transform (171) is discussed in detail in
Appendix B. It is similar to that for the case 8 = 1, but also
involves some peculiar details. As was mentioned above, the
inversion is not a merely mathematical exercise because the
function R(s) has two branches, and one has to be careful to
chose a physically meaningful branch. Function (171) has four
simple poles, but only two of them are on the physical branch.
Those two are located on the imaginary axis and have the form
s = +i w, where

1++/14+a?

Wy = | ————— wyp.

> (173)

For any value of the mass ratio «, the frequency w, is higher
than wy and thus lies outside the spectrum of the bath’s normal
modes. This is just the condition of the localized mode forma-
tion. The detailed calculation (see Appendix B) gives for the
resolvent the result structurally similar to the one for the case
B=1 a>2)

R(t) = Ry(t) + A cos w,t, (174)
where the function Ry () is now defined by the integral

Q[ cos(wt),/wj — &?
Ro(t) = dw.
O( ) T /0 0120)8/4+602 (wg_wZ)

(175)

As for the case (8 =1, o > 2), at long times Ry(t) van-
ishes, and the resolvent oscillates R(t) &~ A cos w,t with the
frequency w, given by (173) and the amplitude

1

A=1—- ——.
V1 +a?

(176)
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The internal energy change of the system AU (#) also oscil-
lates at long times. Its time average AU is given by the same
expression (163) as for the case (8 =1, o > 2)

AU=U-UO)=(T -T)[1 -y 1-Tavy,, (177

where the time-averaged functions v/, and v/, are still given
by Egs. (161). For § = 2 the squared internal frequency of
the system is w? = o w}/2, and

(a)*>2_ 14++/1+a2

o

(178)

s

Substituting this and Eq. (176) for A into Eqs. (162) yields for
Y1 and vy as explicit functions of « the following expressions:

Wa2+14+a—1)?

Tt = A
_ |- Va2 1
wmnzﬁ%a:%;f (179)

While these expressions are different than those for the case
(B =1, a > 2), the qualitative behavior of functions E(a)
and %((x) in two cases is similar (see Fig. 3), except that the
functions domain in the present case 8 = 2 is o > 0 instead
of o > 2.

Repeating the analysis of Sec. XI1, i.e., solving inequalities
AU > 0 and AU < 0 for different signs of the temperature
difference T — Tp, one finds results similar to the case (8 =
I, o > 2). Namely, if the system is initially hotter than the
bath Ty > T, then the heat transfer is normal, i.e., the system
loses energy AU < 0. On the other hand, one finds that the
system may lose energy even if it is initially colder than the
bath,

AU <0, for Ty <T, (180)

i.e., the heat transfer may be non-Clausius, provided the sys-
tem temperature is higher than a critical temperature 7,:

T.<Ty<T. (181)

Solving inequality (180), one finds for the critical temperature
the expression 7, = y (a) T with

ayy 1+Vo2+1
1—%_ l+a+a2++/1+a2 —av1+a?
(182)

y(@) =1-

The function y (o) behaves in a way qualitatively similar
to that for the case (8 =1, @ > 2), i.e., it monotonically
decreases from 1 to % Thus, we find for the critical tem-
perature the same lower bound 7, > T /2 as for the case
B=1, a>2).

Similar to the case (¢ > 2, § = 1), we can interpret the
results arguing that the boundary region of the bath is charac-
terized by the effective temperature 7. Since T, is lower than
the bath’s bulk temperature 7', a non-Clausius heat transfer
from the colder system to hotter bath can be interpreted as
a Clausius transfer from the system to the bath’s boundary

region when the former is hotter than the latter.

XIV. CONCLUSION

Thermodynamics is a macroscopic theory, and at present
there is no consensus on to what extent and under what
conditions it can be extended to microscopic and mesoscopic
systems. Quoting Ref. [30]: “The conclusions of thermody-
namics apply to macroscopic systems only. A system with
small number of particles will not obey the laws of thermody-
namics, especially the second law.” Nevertheless, many efforts
and progress have been made in recent years in constructing
thermodynamics of small systems strongly coupled to the
environment [31-34]. In this paper, we have followed a some-
what opposite route studying conditions when properties of
microscopic open systems may be at odds with macroscopic
thermodynamics.

We found that the second law in the form of the Clausius
statement (heat does not spontaneously flow from cold to hot)
does not generally hold, yet it is quite robust. For ergodic
systems we found that the Clausius statement may be violated
on microscopically short-time intervals, yet it still holds on
a coarse-grained timescale with a sufficiently low (“macro-
scopic”) time resolution. In particular, if one measures heat
transfer for a transition with initial and final states being
equilibrium ones (which means that the transition occurs on
a timescale longer than the thermalization time of the sys-
tem), the Clausius statement is valid and in agreement with
other forms of the second law. The violation of the Clausius
statement on a timescale shorter than the thermalization time
involves the system out of equilibrium and does not contradict
the second law in the form of the Clausius inequality since the
latter refers to transitions with initial and final states (but not
necessarily intermediate states) being equilibrium ones.

Perhaps a more interesting result is that the Clausius state-
ment may not hold in any sense for a nonergodic system,
which does not reach thermal equilibrium with the bath due to
the formation of a localized vibrational mode. Again, this find-
ing by no means compromises macroscopic thermodynamics,
which concerns ergodic systems only. Still, we believe that
the result is of interest as a concrete example which shows
limitations of the (simple) thermodynamic description of a
(complex) dynamical process of heat transfer involving small
systems. Specifically, we found that the anomalously directed
heat transfer from a cold nonergodic system with initial tem-
perature Tj to a hotter bath with temperature 7 > T; occurs
if the system temperature is higher than a certain critical
temperature 7;:

T.<Ty<T. (183)

This suggests to interpret 7, as an effective temperature of a
fragment of the bath adjacent to the system and involved in
a localized vibrational motion. That fragment, in the studied
setup, is effectively cooler than the rest of the bath because the
boundary atom is initially fixed. Then, our results are naturally
accounted for by the assumption that the Clausius statement
is still valid if we replace the bulk temperature of the bath T
by the bath’s local temperature 7, at the boundary: Although
the system is colder than the bath, 7y < T, in the presence of
a localized vibrational mode the system effectively interacts
only with a bath’s small boundary region with the effective
temperature 7, < T. Then, the system releases heat into the
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boundary region if T > T, and absorbs heat from the region
if Ty < T.. The value of T, depends on parameters of the
models « and B, but in all considered cases it is found to
be bounded from below by the half-temperature of the bath
T. > T/2.

A simpler model of Ref. [10], where the system acquires
the equilibrium distribution instantaneously, shows a similar
behavior, but the result in that case is reversed in the sense that
an anomalously directed heat transfer occurs from a colder
bath to a hotter nonergodic system (instead of from a colder
system to a hotter bath in the present model). In view of
these findings, it is natural to ask whether the protocol studied
here can be used to design a perpetual motion machine of
the second kind. It is clear that one can use the setup with a
nonergodic system (e.g., when 8 = 2,orwhen f = 1, o > 2)
to transfer some (small) amount of energy AU from a colder
system to a hotter one. However, in order to arrange such
transfer in a systematic way, we need to return the overall
system into the initial configuration, depicted in Fig. 1, with
the boundary atom fixed at the position corresponding to the
mechanical equilibrium of the chain. Physically, a periodic
protocol can be arranged by trapping the boundary atom in an
external potential well, which can turned on and off in proper
moments. This, however, appears to be impossible without
some Maxwell’s demonlike apparatus.

As a technical tool, we derived and exploited the general-
ized Langevin equation (42) with a nonstationary noise. The
nonstationarity of the noise reflects the nonstationarity of the
heat transfer in the studied setting. The fluctuation-dissipation
relation we found [see Eq. (90)] differs from the standard one
by the presence of additional terms involving not only the dis-
sipative kernel, but also the kernel’s first derivative. Although
the forms of the Langevin equation and fluctuation-dissipation
relation used in this paper are model sensitive, we believe
they may be of interest as a simple example of the Langevin
dynamics extended beyond the standard assumptions.

J

. 1 t
Q) = QY1)+ C—’z {Clo(l) - — / cos w;(t — t’)po(t’)dt’}.
a)j m Jo

Although the linearity of the presented model is essential
for all calculations, we believe that qualitatively our findings
are not specific for linear systems only, in particular, because a
nonergodic behavior, similar to that considered here, is known
to occur in nonlinear systems as well [35].

APPENDIX A: DERIVATION OF LANGEVIN EQUATION
FOR THE BOUNDARY ATOM

In this Appendix we derive the generalized Langevin equa-
tions (25) for the boundary atom i = 0. According to Eq. (22),
the equation of motion of the boundary atom is that of an
oscillator linearly coupled to the system and also to normal
mode oscillators of the bath:

N

Po=—ki(qo—q)—kqo+ Y _ c;Q;. (A1)
j=1

The right part of Fig. 1 gives a pertinent illustration. Normal

mode coordinates Q;(t) satisfy Eq. (24),

0j = -} Qj +¢; qo, (A2)

which has the general solution
. t

0;(1)=0Y) + & / sinw;(t — ") qo(t")dt’.  (A3)
. w; Jo

Here, Q?(z) is a solution of the corresponding homogeneous
equation

0%(1) = 0;(0) cos w;t + O

sinw;jt. (A4)
wj ’

Physically, Q?(z) describes evolution of normal modes when

the boundary atom is fixed gp = 0. Integrating the second term

in Eq. (A3) by parts and taking into account that g¢(0) = 0,

one gets

Substitution of this expression into Eq. (A1) gives the generalized Langevin equation

. N Cj 2 ’ I l
prt)=—{ki+k=)" <w—) qo0(t) + ks q(r)—fo Ko(t — 1) po(t')dt’ + n(t)
=1

with the fluctuating force

N
) =y e;000)

j=1

(AT)

and the memory kernel

1 e\
Ko(t) = — L 1.
0(t) mz<w) COS W

j=t >

(A8)

Equations (A6)—(A8) are exact and hold for any N. They
take a more compact form for the infinite bath N — oco. As

(A5)
t
(A6)
[
follows from Eqgs. (14) and (20),
ci\? 2k Tj
(—J> = cos? , (A9)
w;j N+ 1 2(N+1)
then one observes that
N o re\2
Z<—f> —k—— >k, asN—o0o. (Al0)
a)j N 1
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FIG. 4. Left: The definition of polar coordinates (r, 6;) and (r,, 6,) in Eq. (B4). Right: The integration contour I' in the integral (B15).

Therefore, in the limit N — oo the Langevin equation (A6)
takes the form

Pm)=—thO—ﬂﬂLime—ﬂnmﬁdﬂ+mm
0

(A11)

which is just Eq. (25) of the main text.
With Egs. (A9) and (14), expression (A8) for the kernel
Ky(t) gives

2

N .
_ 9% 2 (E_J
KO =38+1 2_cos <2N+1)

Jj=1

t si T_J
X COS sin| ———— | |,
@0 2N +1

where wy = 24/k/m. In the limit N — oo this expression
takes the integral form

(A12)

2 pn/2
Ko(t) = % / cos? 0 cos(wpt sinf)dO, (Al3)
0

which gives for the kernel expression (28) in terms of Bessel
functions
2

&m=%mmm+m%m (Al4)

Using expression (A7) for the fluctuating force n(¢) and dis-
tribution (8) for initial bath variables, one can verify directly
that n(¢) is zero centered, stationary, and related to the kernel
Ko (t) by the standard fluctuating-dissipating relation (27).

APPENDIX B: EVALUATION OF RESOLVENT
R(t) FOR THE CASE 8 =2

In this Appendix we present the inversion of the Laplace
transform (171)

~ NEywE
R(s) = (B)
5y/8% + o) + a0} /2

of the resolvent R(z) for the case B =2 and arbitrary
positive .

Function (B1) has two branches which we denote R, (s) and
R>(s) and write as

Si(s)
sfk(s)—i—aa)g/Z’

where f|(s) and f,(s) are the two branches of the square-root
function

fs) = m = s+ iwy /5 — iwp. (B3)

It is convenient to define a branch cut as a segment of the
imaginary axis connecting the branch points Fiwy, and to
define s & iwyp in a polar form

Ri(s) = k=1,2 (B2)

0

s—iwg=r1 €, s+iwg=r " (B4)

(see Fig. 4). Then, the two branches of f(s) can be defined by
the following expressions:

)

. 0140,
fils)=Jrime 2,

where the ranges of arguments 6, and 6, for the first branch
fi1(s) are the same,

k=1,2 (B5)

3 T 3 T
- <<, ——F <6<, (B6)
2 2 2 2
while for the second branch f,(s) the range of 6, is shifted
by 27,
3 b4 b4 S5t
—— <6 < =, — <0 < —. (B7)
2 2 2 2
One can verify that the functions f;(s) and f>(s) defined in
this way are continuous at any s except on the branch cut. In
what follows, we shall need to refer to the following mapping
rules for the functions f;(s) and f>(s):
(a) Let s =iy with y > w( be on the positive imaginary
axis above the branch cut. Then, the first branch fi(s) =
ST e™? =i /rir, has a positive imaginary part, while
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the second branch fo(s) = /i e /2 = —i Jrir; has a
negative imaginary part.

(b) Let s = —iy with y > wy be on the negative imag-
inary axis below the branch cut. Then, the first branch
fi(s) = Jrire ™% = —i /rir; has a negative imaginary
part, while the second branch f>(s) = \/ri 2 et = JTir
has a positive imaginary part.

(c) Let s =x > 0 be real and positive. Then, the first
branch fi(s) = \/Weio = \/r1 1, is also real and positive,
while the second branch f,(s) = \/rir €™ = —/rir; is real
and negative.

(d) Let s = —x < 0 be real and negative. Then, the first
branch fi(s) = Me’i” = —.,/r1 r; is real and negative,
while the second branch fo(s) = \/ri 2 el = /i r2 is real
and positive.

With these preparations done, let us return to the function
R(s) given by Eq. (B1). It has two branch points +iw, and
four simple poles. Two of the poles are on the imaginary axes

1 ++/1+a?

s=diw,, w,= > wo > Wy, (BS)
and another two are on the real axis
V1 21
s=dcwy, c= 1 FE T (B9)

2

Let us show that the pure imaginary poles (B8) are on the first
b~ranch R (s), and real poles (B9) are on the second branch
R>(s). According to (B1), each pole is a root of the equation

2
\8E oy = f(s) >y

for one of the two branches of the function f(s). Let us
determine for each pole the corresponding branch of f
and R.

(1) At the pole s = iw, Eq. (B10) gives for f(s) a pure
imaginary value with a positive imaginary part. According to
mapping rule (a), in this case f(s) must be represented by
the branch f(s). Therefore, the pole is on the resolvent’s first
branch R, (s) for any a.

(2) At the pole s = —i w, Eq. (B10) gives for f(s) a pure
imaginary value with a negative imaginary part. According to
mapping rule (b), in this case f(s) must be again represented
by the branch fi(s), and the pole is on the resolvent’s first
branch R, (s) for any a.

(3) At the pole s = cwy Eq. (B10) gives for f(s) a real
negative value. According to mapping rule (c), in this case
f(s) = fo(s). The pole is on the second branch Ry(s) for
any «o.

(4) At the pole s = —c wy Eq. (B10) gives for f(s) a real
positive value. According to mapping rule (d), f(s) = f2(s).
The pole is on the second branch Ry (s).

As the next step, we need to determine which of the two
branches of the function R(s) is physically meaningful. In-
terestingly, this task is more involved compared to the case
B = 1. Consider, for instance, the condition R(0) = 1. Using
the initial value theorem it can be written as

T O N
ROy = lim sR) = i S v aaz

(B10)

1. (Bl

One observes that this asymptotic relation is valid for both
branches of f(s) and R(s) as s goes to infinity along any
directions of both real and imaginary axes of the complex
plane. Instead of the initial condition for the resolvent, we can
use that for the memory kernel K(0) = o a)(z) /2 [see Eq. (51)].
For B = 2 the transform of the kernel is given by Eq. (49),

txwg/Z

K(s) = == (B12)
Then, the initial value theorem requires
2 2
K(0) = lim sK(s) = Y@ lim 5 _ O‘;’o
o N
(B13)

Suppose s goes to infinity, say, along the positive direction of
the real axis. Then, according to the mapping rules (c), condi-
tion (B13) is only satisfied if the function f(s) = /s + a)é is
represented by its first branch f(s). The same conclusion we
arrive at when s goes to zero along other directions. Thus, the
physical branch of K(s) is the one involving the first branch
f1 of the square-root function f(s). Since R = 1/(s + K), the
same is true about the resolvent. Therefore, the resolvent has
to be found as the inversion of R,(s), i.e., as a Bromwich
integral

(B14)

1 y+ioco B
R(t) = —/ e" R(s)ds.
27i Jy—ioo

As discussed above, R;(s) has two branch points =i wy and
two simple poles £i wy with w, > wy. Since all four singular
points are on the imaginary axis, the integral (B14) is over an
arbitrary vertical line s = y to the right of the origin (y is real
and positive).

The evaluation of integral (B14) is an exercise of the
standard technique based on Cauchy’s residue theorem. First,
consider the auxiliary integral

1 "
I(t) = %/e”Rl(s)ds
r

= Res[¢"R(s), i w.] + Res[¢" R (s), —iw,] (B15)

over the closed contour I" shown at the right part of Fig. 4.
Here, we use the notation Res[f(z), zo] for a residue of a
function f(z) at z = zo. One can show that contributions to the
integral I from the large arc (of radius r) and small circles (of
radius €) about branch points both go to zero when r — oo
and € — 0. The contribution from the two horizontal lines
along the negative real axis is also zero when the distance
between the lines vanishes because the integrand is continuous
on the x axis. The only nonzero contributions to / are those
from the two vertical segments along the branch cut (/) and
from the vertical segment of the length 2r on the right (1),
I =1, + L. In the limit r — oo the integral I, equals R(t),
therefore, I = I} + R(¢) and

R(t) =1(t) — L(1)
= Res[¢" R, (s), i ws] + Res [ R (s), —i wi] — I; (t).
(B16)

052119-19



ALEX V. PLYUKHIN

PHYSICAL REVIEW E 102, 052119 (2020)

The integral /; has two contributions /; = I;” + I;". Con-
sider first the contribution /;” from the vertical path just left
from the branch cut, i.e., from —iwy — € to i wy — €. Using
the path parametrization

s(y)=iy—€, —wy<y<amy (B17)
we can write /| in the form
1 “o . ,
Iy = — e Ri(s)s'(y)dy
271 o,
1 “o
- st Ldy. (B18)
2w J_p, S fi(s) +ozw0/2

As follows from Eq. (B6), on the given path for the first branch
0y = —m/2 — € and 8, = —37 /2 + €, and therefore

6 +6o .
fils) = Jrné T o= Jrine = — /.

Also, it is easy to figure out that for the given path rjr; =
(wo — y)(wo + y). Then,

(B19)

fi(9) = =/rirn=—(w—y) (@ +y)=—/o
(B20)
Then, integral /| takes the form
1 [ wj — 2
I = ~5= eV dy. (B21)
T J-w aw}/2—iy [of —y?

Separating real and imaginary parts of the fraction yields

2
I =-

2
awy [ @Y
ke I R dy

an Jow PuljAt ) (@ )
i “ iyt M (w(2) _y2)

)0 @0ty (@ )

dy. (B22)

In a similar way, using the path parametrization

s()=iy+e, —wy<y<wy, (B23)

one evaluates the second contribution /;” from the vertical path
just right from the branch cut
1 [
Ly L dy.  (B24)
27 J o, aw0/2+sf1(s)
Here, the negative sign reflects that the path is directed down-
ward. According to Eq. (B6), on the given path for the first

branch 6, = —7 /2 + € and 6, = /2 — ¢, therefore,
0p+0,
fils) = Jrme T = Jrnm = —y) (@ +y)
=/} —)? (B25)
and
2 2
1 @ wy —Yy
IF=— | o 0 dy.  (B26)

27 J o, awt/2+iy, /o — y?

As for I, itis convenient to separate real and imaginary parts
of the fraction

o 2 _ 2
I+=——aw(2) Y w0y dy
: A Jowy  @Pag/4 4y (of —)?)
M w( . (1)2 — 2
L 1yt 5 4y( 0 y) dy (B27)
27 J iy Pwt/4 4y (0? —y?)

Adding up Egs. (B22) and (B27), and taking into account that
the contribution from the odd part of the integrand is zero, one
finds

2 w,
11<r>=—°‘”°f0 >
—w O w0/4 +y? (a)o—yz)

cos(yt)/wi — y?

dy

_ ad} /wo cos(yt) \/wf — y*
T Jo oPwj/d+y* (0} —y?)

The next step is to evaluate the residues in expression
(B16). One can verify that the poles are of the first order, then

dy. (B28)

Res[¢"R(s),iw,] = lim " Ri(s) (s — i w,)

o

O
mm

iwy)

=e m ——— . (B29)
S—iws Sfl (S) + o (,()0/2
Using the L'Hospital’s rule one gets
2
Res [¢" R (s), i we] = €™ lim fl—(sz) (B30)
S—i wy S2 —+ f] (S)
According to mapping rule (a),
filiw) = i /i = i/ (@, — wo) (@, + w)
=i/} —w}. (B31)
Then,
2
- ; N -1
Res [ R (s), i ,] = el 2/ 20) (B32)

2(ws/wo)? =1

The second pole at —i w, is evaluated in a similar way, so we
get

i w,t (w*/a)O)z -1
2 (@ fan P — 1

Res [¢¥' R (s), £i w,]

e (1 ! ) (B33)
2 V1+a2)

Finally, the substitution of expressions (B28) for /; and
(B33) for the residues into Eq. (B16) yields

R() = Ro(t) + A cos w,t. (B34)
Here, the term
aw? @ cos(yt),/wi—y?
Ro(t) = =11 (1) = —2 / d
0(1) 1) =— ) @l /1y (@ =) y
(B35)
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can be shown to vanish in the limit # — o0, and the amplitude
and frequency of the oscillatory term are

1 14+ V1402

A=l —— w,=,———— .

V1+a? 2 (

Although it is not immediately obvious, one can verify numer-
ically that the result (B34) satisfies the correct initial condition
R() =1.
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