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Recently the present authors proposed the nonequilibrium-to-equilibrium scaling (NE-ES) scheme for the crit-
ical Monte Carlo relaxation process [Nonomura, J. Phys. Soc. Jpn. 83, 113001 (2014)], which scales relaxation
data in the whole simulation-time regions regardless of functional forms, namely, both for the stretched-
exponential critical relaxation in cluster algorithms and for the power-law critical relaxation in local-update
algorithms. In the present study, we generalize this scheme to off-critical relaxation process and scale relaxation
data for various temperatures in the whole simulation-time regions. This proposal of the off-critical scaling in
cluster algorithms cannot be described by the dynamical finite-size scaling theory based on the power-law critical
relaxation. As an example, we investigate the three-dimensional classical Heisenberg model previously analyzed
with the NE-ES [Nonomura and Tomita, Phys. Rev. E 93, 012101 (2016)] in the Swendsen-Wang and Metropolis
algorithms.
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I. INTRODUCTION

The nonequilibrium relaxation (NER) method is one of
the improved Monte Carlo schemes to study phase transitions
against the critical slowing down. In general, basic formula-
tion of the NER method is based on the critical relaxation,
and off-critical behaviors are described by scaling analyses.
In local-update algorithms, the critical relaxation is charac-
terized by the power-law behavior of physical quantities, and
the critical point is determined as the most probable point to
exhibit such a behavior [1]. This NER behavior is derived
from the dynamical finite-size scaling (DFSS) theory [2,3],
and the off-critical scaling behavior is also derived from it.

Recently the present authors revealed that the critical NER
behaviors in cluster algorithms [4,5] are described by the
stretched-exponential simulation-time dependence in various
classical spin systems [6–8] and in a quantum phase transi-
tion [9]. Although the critical point can be determined from
such early-time relaxation behaviors, more precise estimation
is possible from the nonequilibrium-to-equilibrium scaling
(NE-ES) [6,8,9], which connects the early-time and equi-
librium behaviors smoothly. In addition to these numerical
findings, the present authors derived this relaxation formula
phenomenologically in the Ising models in the Swendsen-
Wang (SW) algorithm [10].

Although the DFSS is not defined in cluster algorithms,
in the present article we generalize the NE-ES to the off-
critical region and confirm this “temperature scaling” in the
three-dimensional (3D) classical Heisenberg model in the SW
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algorithm, which we analyzed precisely with the NE-ES [8].
Here we also show that this extended formalism is applicable
even to local-update algorithms.

The outline of the present article is as follows: In Sec. II
we briefly summarize the model and Monte Carlo method
used in the present article and review the NER method, the
DFSS, and the NE-ES. In Sec. III we derive the temperature
scaling in cluster and local-update algorithms and compare
the formula with the one obtained from the DFSS. In Sec. IV
we numerically confirm the temperature scaling with the mag-
netic susceptibility in the 3D classical Heisenberg model.
As typical cluster and local-update algorithms, the SW and
Metropolis [11] ones are utilized. In the Metropolis algorithm,
the conventional scaling analysis based on the DFSS is also
made for comparison. In Sec. V these results are compared
with each other and with the previous numerical results, and
we propose a general framework to investigate critical phe-
nomena efficiently by combining the present scheme and the
NE-ES. The above descriptions are summarized in Sec. VI.
In the Appendix, similar analyses of the absolute value of
magnetization are summarized.

II. MODEL AND METHOD

In the present article, the 3D classical ferromagnetic
Heisenberg model on a simple cubic lattice described by the
Hamiltonian

H = −J
∑

〈i j〉∈n.n.

�Si · �S j, |�Si| = 1 (1)

with summation over all the nearest-neighbor bonds and J >

0, is simulated with the SW-type cluster algorithm in which
all the spin clusters are flipped with 50% probability at each
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Monte Carlo step (MCS). Although the original SW algo-
rithm [4] can be applied only to the Potts model [12], vector
spin models such as the Heisenberg model can be treated by
constructing spin clusters with respect to the Ising element
of vector spins projected onto a randomly chosen direction at
each MCS [5].

At the critical point Tc, all the physical quantities can be
treated with the NER scheme. However, in the off-critical
region, the situation changes drastically. The spontaneous
magnetization is vanishing above Tc and its temperature de-
pendence can be analyzed only for T � Tc. Although the
absolute value of it shows a diverging behavior for T > Tc,
such a behavior is nothing but that of the square root of
the magnetic susceptibility. While the magnetic susceptibility
shows diverging behaviors in both sides of Tc, such a be-
havior is observed after subtracting the contribution from the
spontaneous magnetization for T < Tc. Critical exponents of
the susceptibility and magnetization are different, and NER
analysis of a quantity including two critical exponents is quite
complicated. Moreover, discontinuity of relaxation behaviors
below and above Tc results in the restriction of initial states
in the NER process. That is, NER started from the perfectly
ordered state (corresponding to the configuration at T = 0)
can be applied only for T � Tc, and that from the perfectly
disordered states (one of the configurations at T = ∞) for
T � Tc.

To summarize the above arguments, the spontaneous mag-
netization can be analyzed from the perfectly ordered state
for T � Tc, and the magnetic susceptibility from the perfectly
disordered states for T � Tc. Although other physical quan-
tities can also be treated in principle, those derived from the
temperature derivative (i.e., correlation with energy, e.g., the
specific heat) show larger fluctuations, and the correlation
length is evaluated indirectly (from the scale dependence of
the correlation function or from the wave-number dependence
of the magnetic susceptibility), and therefore they are not
preferred for precise estimation. The scaled critical exponents
β/ν and γ /ν can be evaluated from the NE-ES, and the bare
exponent γ from the temperature scaling of the magnetic sus-
ceptibility as will be seen later. All the critical exponents can
be obtained from these three exponents through the scaling
relations. Although the bare exponent β can also be estimated
from the temperature scaling of the absolute value of magne-
tization, it is not as accurate as γ . Details will be explained in
the Appendix.

Next, established scaling formulas are briefly reviewed.
The DFSS for a quantity Q is expressed as [2]

Q(t, L; T ) ∼ LxQ/ν f [L/ξ (T ), t/τ (T )], (2)

with the simulation time t , linear size L, critical exponent xQ

defined in Q(∞,∞; T ) ∼ (T − Tc)−xQ for T → Tc, scaling
function f , correlation length ξ (T ) ∼ (T − Tc)−ν , and cor-
relation time τ (T ) ∼ (T − Tc)−zν in local-update algorithms.
Assuming equivalence of the functional form of f with respect
to t and L, these two parameters are related with each other as
L ∼ t1/z, or

Q(t, T ) ∼ t xQ/(zν) f [t1/(zv)(T − Tc)] (3)

for a fixed system size [1]. From this formula, the
critical point Tc can be evaluated from the power-law

simulation-time dependence of Q(t, Tc), and an off-critical
scaling t−xQ/(zν)Q(t, T ) versus t1/(zν)(T − Tc) is derived.

Such a formula does not hold in cluster algorithms, because
the stretched-exponential critical relaxation is not consistent
with the power-law size dependence. Then, the NE-ES is de-
rived from the critical simulation-time dependence, Q(t ; Tc) ∼
exp(ctσ ) (in the NER from the perfectly-disordered states),
and equilibrium size dependence at Tc, Q(L; Tc) ∼ LxQ/ν .
Combining these formulas, we have L−xQ/νQ(t, L; Tc) ∼
exp(ctσ − ln LxQ/ν ) [6], or in a more general form correspond-
ing to Eq. (3),

Q(t, L; Tc) ∼ LxQ/ν fsc(ctσ − ln LxQ/ν ), (4)

with a scaling function fsc on the NE-ES. This scaling form
has been confirmed in classical spin systems [6,8] and in a
quantum phase transition [9].

III. TEMPERATURE SCALING

Similarly to the NE-ES, the temperature scaling in clus-
ter algorithms is derived from the onset and equilibrium
behaviors. Namely, from the initial-time critical relax-
ation Q(t ; Tc) ∼ exp(ctσ ) and the temperature dependence in
equilibrium Q(∞, T ) ∼ (T − Tc)−xQ , we have Q(t, T )(T −
Tc)xQ ∼ exp[ctσ + ln(T − Tc)xQ ], or

Q(t, T ) ∼ (T − Tc)−xQ ftsc[ctσ + ln(T − Tc)xQ ], (5)

with a scaling function ftsc on the temperature scaling. Al-
though the above derivation seems more nontrivial than that
of the NE-ES, usage of the initial-time critical-relaxation
formula can be justified in comparison with the off-critical
scaling (3), which consists of the initial-time dependence at
Tc and its modification by a scaling function with temperature
dependence.

The above derivation is also possible in local-update al-
gorithms. From the initial-time critical relaxation Q(t, Tc) ∼
t xQ/(zν) and the temperature dependence in equilibrium
Q(∞, T ) ∼ (T − Tc)−xQ , we result in Q(t, T )(T − Tc)xQ ∼
[t1/(zν)(T − Tc)]xQ , or

Q(t, T ) ∼ (T − Tc)−xQ ftsc[t1/(zv)(T − Tc)]. (6)

In comparison with the conventional off-critical scaling form
(3), the prefactor of the scaling function is changed from
t xQ/(zν) to (T − Tc)−xQ in the present formalism.

IV. NUMERICAL RESULTS

A. Swendsen-Wang algorithm

First, we verify the temperature scaling in cluster algo-
rithms (5) with the Swendsen-Wang (SW) algorithm. Here
we concentrate on the magnetic susceptibility, i.e., Q(t, T ) →
χ (t, T ) and xQ → γ in Eq. (5). In our previous article to
investigate the 3D classical Heisenberg model with the NE-ES
based on the SW algorithm [8], the maximum system size
was L = 560. Here we also take L = 560 and 225 Monte
Carlo steps (MCS) and average 4 × 104 random-number se-
quences (RNS). The raw data for various temperatures (from
T = 1.4436 J/kB to 1.4520 J/kB) are shown in Fig. 1, to-
gether with the data at the most probable value of the critical
point, Tc = 1.442987 J/kB [8]. At t = 225MCS, χ for T =
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FIG. 1. Simulation-time dependence of the magnetic suscepti-
bility for L = 560 at Tc and various temperatures used for the
temperature scaling in the SW algorithm. The susceptibility de-
creases monotonically as the temperature increases.

1.4436 J/kB is about 1/6 of that at T = Tc, while that at
T = 1.4520 J/kB is about 1/40 of that at T = 1.4436 J/kB.
Although the range of temperature for scaling does not seem
so wide, that of χ is actually wide enough. In general, the
temperature range of scaling is determined by the system
size in the vicinity of Tc, and by the temperature itself far
from Tc. Although the present formulation is based on the
diverging behavior χ (t = ∞, L = ∞, T ) ∼ (T − Tc)−γ for
T → Tc, the actual finite-size behavior is saturated with χ (t =
∞, L, Tc) ∼ Lγ /ν , and the range of scaling near Tc increases as
L increases. On the other hand, as temperature becomes away
from Tc, the weight of the correction terms to scaling increases
independently of L.
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FIG. 2. Temperature scaling plot of the data in Fig. 1 using
Tc = 1.442987 J/kB and σ = 0.47 [8] with γ = 1.3945(19) and c =
1.2595(43) in a semilog scale. The arrow specifies the range of data
used for the fitting, and the dashed line corresponds to a simple
exponential curve as a guide for eyes. Here the data for t = 1 MCS
are not included.

100

101

102

103

104

105

100 101 102 103 104

χ(
t,T

)

t [MCS]

T = 1.442987 J/kB

T = 1.445000 J/kB

T = 1.446000 J/kB

T = 1.448000 J/kB

T = 1.450000 J/kB

T = 1.452000 J/kB

FIG. 3. Simulation-time dependence of the magnetic suscepti-
bility for L = 200 at Tc [8] and various temperatures used for the
temperature scaling in the Metropolis algorithm.

These data are scaled with Eq. (5) in Fig. 2, namely, the
scaling plot of χ (t, T )(T − Tc)γ versus ctσ + ln(T − Tc)γ

in a semilog scale using Tc = 1.442987(2) J/kB and σ =
0.47(1) evaluated in Ref. [8]. Since we take only the data
rather far away from Tc, precise evaluation of Tc is diffi-
cult within the present scheme. It is also the case in the
relaxation exponent σ . This exponent is characteristic to the
critical relaxation in cluster algorithms, and appearance of it
in Eq. (5) is just a trace of behaviors at Tc. Then it should be
determined from the critical-relaxation data, not from the off-
critical ones. The fitting parameters γ and c are estimated by
minimizing the mutual residuals of these data. Although every
two sets of the data can be scaled with each other, they are
not independent and error bars cannot be evaluated in a sim-
ple way. Then we average the mutual residuals between the
nearest-neighbor temperatures, determine the range of fitting
by minimizing the averaged residual as shown by arrows in
Fig. 2, and obtain

γ = 1.3945 ± 0.0019, c = 1.2595 ± 0.0043. (7)

Combining this estimate with γ /ν = 1.972 ± 0.007 obtained
from the NE-ES at Tc [8], we have

ν = 0.707 ± 0.003. (8)

B. Metropolis algorithm

Next, we test the temperature scaling in local-update algo-
rithms (6) based on the Metropolis algorithm, and compare
it with the standard off-critical scaling (3) for the same data.
Here we also consider the magnetic susceptibility and take
Q(t, T ) → χ (t, T ) and xQ → γ in these formulas. We take
L = 200 and 3 × 104 MCS, and average 2 × 104 RNS. The
raw data at Tc [8] and for various temperatures (from T =
1.445 J/kB to 1.452 J/kB) are plotted in a log-log scale in
Fig. 3. Since the power-law relaxation at Tc is much slower
than the stretched-exponential critical relaxation in the SW
algorithm, much longer MCS are required and therefore the
system size is reduced. The data at Tc still show a power-law
behavior at t = 3 × 104. When we attempt to evaluate Tc
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FIG. 4. Temperature scaling plot of the data in Fig. 3 using
Tc = 1.442987 J/kB [8] with γ = 1.4039(32) and zν = 1.4866(64)
in a log-log scale. The arrow specifies the range of data used for the
fitting. Here the data for t = 1, 2 MCS are not included.

with the conventional NER, relaxation data at T = 1.443 J/kB

cannot be distinguished from the present data at Tc, and the
resolution of Tc becomes of one order lower than the one
in Ref. [8]. In comparison with the previous subsection, the
lowest temperature for scaling is increased in response to
reduction of the system size, and the highest one is the same.

These data are scaled with Eq. (6) in Fig. 4, namely,
the scaling plot of χ (t, T )(T − Tc)γ versus t1/(zν)(T − Tc)
in a log-log scale using Tc = 1.442987(2) J/kB [8]. The
fitting parameters γ and zν are estimated by minimizing
the mutual residuals of these data. Since the relaxation pro-
cess is much slower than that in the previous subsection, the
number of data is further increased. When all the data are
scaled with an equal weight, the contribution in the vicinity
of equilibrium becomes dominant and the functional form in
the whole simulation-time regions cannot be reproduced any-
more. Then we reduce the density of data as sparse as that for
51–100 MCS in a log scale by averaging the sequential data
points. That is, we take 100 points for 1–100 MCS, 50 points
for 101–200 MCS, 60 points for 201–500 MCS, 50 points for
501–1000 MCS, 50 points for 1001–2000 MCS, 60 points for
2001–5000 MCS, 50 points for 5001–10 000 MCS, 50 points
for 10 001–20 000 MCS, and 20 points for 20 001–30 000
MCS; totally we take 490 points for 1–30 000 MCS for the
fitting. Based on this set of data and the fitting scheme simi-
larly to that in the previous subsection, we have

γ = 1.4039 ± 0.0032, zν = 1.4866 ± 0.0064. (9)

Combining this estimate with ν in Eq. (8), we arrive at

z = 2.10 ± 0.01. (10)

Finally, we analyze the same data (those in Fig. 3 after
the above thinning-out process) with the standard off-critical
scaling (3), namely, the scaling plot of t−γ /(zν)χ (t, T )
versus t1/(zν)(T − Tc) as shown in Fig. 5. Using Tc =
1.442987(2) J/kB [8] and the above fitting scheme, we have

γ = 1.4024 ± 0.0057, zν = 1.4773 ± 0.0067. (11)

Combining this estimate with ν in Eq. (8), we obtain

z = 2.09 ± 0.01. (12)
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FIG. 5. Off-critical scaling plot of the data in Fig. 3 based on
the DFSS using Tc = 1.442987 J/kB [8] with γ = 1.4024(57) and
zν = 1.4773(67) in a log-log scale. The arrow specifies the range
of data used for the fitting. Here the data for t = 1–3 MCS are not
included.

V. DISCUSSION

According to the most precise evaluation of the critical
exponents of the 3D classical Heisenberg model to date [13],
the exponents treated in the present article were given by
γ = 1.3957(22) and ν = 0.7113(11) by equilibrium Monte
Carlo simulations. Our estimate of γ based on the SW al-
gorithm (7) is comparable with this one. Although ours of
ν (8) is rather underestimated, it is still within the error bar.
Note that this tendency is not due to the present analysis, but
the one based on the NE-ES at Tc, γ /ν = 1.972(7) [8]. From
the estimates in Ref. [13], it is given by γ /ν = 1.962(4), and
the underestimation of ν simply originates from the overesti-
mation of γ /ν. Actually, in Ref. [13] the above MC analysis
was coupled with the high-temperature expansion analysis,
and they obtained more precise estimates γ = 1.3960(9) and
ν = 0.7112(5). Our estimate of γ is still consistent with it,
even though it is rather underestimated.

The tendency of underestimation can be understood from
the finite-size behavior of physical quantities in the vicinity of
equilibrium. As explained in the previous section, the temper-
ature scaling is based on the diverging behavior of physical
quantities, e.g., χ (T ) ∼ (T − Tc)−γ for T → Tc. However,
such a behavior is observed only in the thermodynamic limit,
and in finite systems it saturates as χ (L, Tc) ∼ Lγ /ν even at
T = Tc. Then, when the data too close to Tc in comparison
with L are taken for the fitting, those become smaller than the
ones expected from Eq. (5), which results in the underesti-
mation of γ . On the other hand, the data far from Tc do not
converge as sharply as a power with respect to T − Tc. When
the data too far away from Tc are used for the fitting, those
become larger than the ones expected from Eq. (5), which also
causes the underestimation of γ .

Our estimate of γ based on the temperature scaling in the
Metropolis algorithm (9) is overestimated (it is consistent with
the previous estimate within 2σ ). Although that based on the
conventional off-critical scaling in the Metropolis algorithm
(11) is consistent with the previous one, it is due to large error
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bars and the most probable value itself is comparable with
the one in Eq. (9) and is also overestimated. This tendency of
overestimation originates from the early-time nonequilibrium
behavior, not from the difference of system sizes (L = 560
and 200 in the SW and Metropolis algorithms, respectively).
When we make a similar analysis with the L = 200 data in
the SW algorithm, the tendency of underestimation is rather
enhanced. As shown in Fig. 4, the data in the vicinity of equi-
librium are actually not used in the fitting in the Metropolis
algorithm. The dynamical critical exponent z is specific to
the power-law critical relaxation in local-update algorithms,
and the present estimate (10) may be comparable with that
in the 3D Ising model, z = 2.055(10) [14]. There were no
previous studies on the dynamical critical behaviors in the 3D
classical Heisenberg model, and we cannot argue this slight
discrepancy in z too seriously at present.

Although the temperature scaling holds in both the SW and
Metropolis algorithms, combination with the SW algorithm
seems much better in the present analysis. Much larger sys-
tems can be treated owing to faster relaxation, and therefore
critical phenomena can be evaluated more precisely. More-
over, the origin of the discrepancy from the previous estimate
can be understood naturally. In addition, the temperature scal-
ing can be compared with the conventional off-critical scaling
in the Metropolis algorithm. While the two fitting parameters
are separated in the temperature scaling, they are coupled in
the conventional off-critical scaling. Then the error bar be-
comes twice larger in the latter, even though the most probable
value of the estimate is comparable.

In the present article, we proposed the following proce-
dure to determine critical phenomena with the cluster NER
scheme:

(1) Determine Tc by the NE-ES on the magnetization
and/or magnetic susceptibility.

(2) Determine β/ν and γ /ν by the NE-ES together with
the above Tc.

(3) Determine γ by the temperature scaling using the
above Tc.

(4) Evaluate other critical exponents through the scaling
relations.

This is a minimum procedure, and precise evaluation of
β within the present scheme seems difficult at present, as
explained in the Appendix. However, from the scaling relation
α + 2β + γ = 2 and the hyperscaling relation 2 − α = dν,
we have 2β/ν + γ /ν = d . That is, evaluation of β is actually
not necessary for the study on critical phenomena. If the
critical exponent ν can be estimated from the temperature
scaling of the correlation length ξ , the universality class can
be identified only with the present scheme. Nevertheless, pre-
cise evaluation of Tc is not possible within this scheme, and
the NE-ES of the critical relaxation is indispensable for the
cluster NER.

VI. SUMMARY

In the present article, we proposed an extended scaling
theory in the nonequilibrium relaxation process called temper-
ature scaling, and we confirmed this theory on the magnetic
susceptibility in the 3D classical Heisenberg model. When
the temperature scaling was combined with the Swendsen-

Wang (SW) algorithm, it worked very well and our estimate
of the critical exponent γ = 1.3945(19) is comparable with
the previous best estimate. When it was combined with the
Metropolis algorithm, it worked as well as the conventional
off-critical scaling, but not as well as the case with the SW
algorithm, because of limitation of system sizes owing to slow
relaxation.
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APPENDIX: MAGNETIZATION IN THE SW ALGORITHM

Even if Monte Carlo simulations are started from the per-
fectly ordered state, the sign of magnetization may change
in each step by a global flip of large clusters in the relax-
ation process in cluster algorithms. When the data of different
random-number sequences are averaged, cancellation of signs
takes place and the averaged results become meaningless.
Then, in the cluster NER, we take the absolute value of
magnetization. Here we start from the perfectly ordered state,
simulate the L = 560 system during 225 MCS with the SW
algorithm, and average 4 × 104 RNS. The relaxation data
for various temperatures (from T = 1.360 J/kB to 1.435 J/kB

and at Tc) are displayed in Fig. 6.
Although the data at Tc decay on a stretched-exponential

curve and do not arrive at equilibrium at t = 225 MCS, other
data for T < Tc seem to be already in equilibrium at that
simulation time. Such relaxation behaviors are described by
the following formula:

〈|m(t, T )|〉 = ms(T ) + A(T ) exp[−C(T )t], (A1)

FIG. 6. Simulation-time dependence of the absolute value of
magnetization for L = 560 at Tc and various temperatures in the
SW algorithm. The magnetization decreases monotonically as the
temperature increases.
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FIG. 7. Simulation-time dependence of the decaying part of the
absolute value of magnetization based on Eq. (A1) in a semilog scale
at T = 1.360 J/kB, 1.410 J/kB, and 1.435 J/kB (from bottom to top).

with the spontaneous magnetization ms(T ) and fitting pa-
rameters A(T ) and C(T ). This formula was confirmed in
the 2D Ising model in the Wolff algorithm [6], while the
stretched-exponential relaxation was reported in the local-
update algorithms [16,17]. This relaxation formula is verified
in Fig. 7 by fitting the data with Eq. (A1) and plotting
〈|m(t, T )|〉 − ms(T ) versus t in a semilog scale at T =
1.360 J/kB, 1.410 J/kB, and 1.435 J/kB (from bottom to top).
Linearity of the data reveals validity of Eq. (A1), and vari-
ance of the initial value and slope of the data represents
explicit temperature dependence of the parameters A(T ) and
C(T ) in Eq. (A1), respectively. Such nontrivial T dependence
other than that of ms(T ) makes a scaling analysis based on
Eq. (A1) difficult. Nevertheless, the temperature scaling still
holds on this quantity. From the stretched-exponential criti-
cal relaxation from the perfectly ordered state, 〈|m(t, T )|〉 ∼
exp(−ctσ ), and the temperature dependence in equilibrium,
〈|m(t = ∞, T )|〉 ∼ (Tc − T )β , we have

〈|m(t, T )|〉 ∼ (Tc − T )β ftsc[ctσ + ln(Tc − T )β]. (A2)

The data in Fig. 6 are scaled with Eq. (A2) in Fig. 8. Al-
though the initial-time data are not scaled well owing to the
discrepancy with the exponential decay (A1) as shown in
the inset of Fig. 8, the scaling formula (A2) actually holds
very well for the data from 16 MCS (in the main panel of
Fig. 8). Similarly to the temperature scaling of the magnetic
susceptibility, we minimize the mutual residuals of these data
using Tc = 1.442987(2) J/kB and σ = 0.47(1) [8]. We find
that the averaged residuals are minimized when all the data in

FIG. 8. Temperature scaling plot of the data in Fig. 6 after
16 MCS using Tc = 1.442987 J/kB and σ = 0.47 [8] with β =
0.3553(10) and c = 0.3244(3). The plot including the relaxation data
for the initial 15 MCS is shown in the inset.

the main panel of Fig. 8 are used for the fitting, and we have

β = 0.3553 ± 0.0010, c = 0.3244 ± 0.0003. (A3)

Although the error bars seem small enough, this estimate is
not consistent with the most precise estimate to date, β =
0.3689(3) [13].

The background of this discrepancy can be explained by
the evaluation of β from the temperature dependence of ms(T )
in Eq. (A1). Up to the leading term, it is given by ms(T ) =
B1(Tc − T )β , and using all the data for T < Tc in Fig. 6, we
have β = 0.3574(2). This estimate is not so different from
that in Eq. (A3), and not consistent with the one in Ref. [13],
either. On the other hand, when we take the next-order term
into account as

ms(T ) = B1(Tc − T )β + B2(Tc − T )2β, (A4)

we obtain

β = 0.3691 ± 0.0010, (A5)

B1 = 0.988 ± 0.005, B2 = −0.107 ± 0.007. (A6)

This estimate is consistent with the one in Ref. [13], and the
coefficient of the next-order term is about 10% of that of
the leading term. These results tell that the next-order term
is crucial for the description of the critical phenomena in
the 3D classical Heisenberg model based on the temperature
dependence of the magnetization, and that the temperature-
scaling formalism based only on the leading term of the
temperature dependence of physical quantities is not suit-
able for the magnetization, at least in the present model.
This mechanism is independent of the update algorithms,
and therefore we do not consider the Metropolis algorithm
here.
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