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Thermodynamics from relative entropy
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Thermodynamics can be developed from a microscopic starting point in terms of entropy and the maximum
entropy principle. We investigate here to what extent one can replace entropy with relative entropy which has
several advantages, for example, in the context of local quantum field theory. We find that the principle of
maximum entropy can be replaced by a principle of minimum expected relative entropy. Various ensembles and
their thermodynamic potentials can be defined through relative entropy. We also show that thermal fluctuations
are in fact governed by a relative entropy. Furthermore, we reformulate the third law of thermodynamics using
relative entropy only.
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I. INTRODUCTION

The relations between thermodynamics and information
theory are rather tight. Entropy, which has a direct information
theoretic significance, plays an important role in the derivation
of thermodynamic relations, the definition of temperature and
other state characteristics and for deriving concrete forms
of density matrices corresponding to various ensembles; see,
e.g., Ref. [1]. Entropy has also been used to characterize the
probability of thermal fluctuations [2] (see also Ref. [1], and
see Ref. [3] for a recent exposition).

The approach and concepts of thermodynamics are so pow-
erful and successful that one would also like to extend them
beyond the regime where they are applicable most directly,
namely static situations in full thermal equilibrium. While
general out-of-equilibrium situations may be rather complex,
at least the approach toward equilibrium should be governed
by information theoretic aspects, similar to equilibrium itself.
Also, spatially nonuniform situations are obviously of interest.

One motivation is to understand fluids of various kinds
in more detail. Fluid dynamics uses locally the concepts of
thermal equilibrium, such as the thermodynamics equation of
state, but usually out-of-equilibrium in a global sense. Particu-
larly interesting are fluids that are governed on a microscopic
level by the laws of quantum field theory, for example, the
quark-gluon plasma (e.g., Refs. [4,5]) or the cosmological
fluid dominated by dark matter in the early universe (e.g.,
Refs. [6,7]). To build a direct connection between fluid dy-
namics, quantum field theory and information theory one is
eventually forced to understand how thermodynamic concepts
can be applied locally in a quantum field theory.

One difficulty here is that quantum fields are typically
strongly entangled between different regions in space. For a
quantum field theoretic density matrix ρ one can formally
define a local density matrix ρA describing a region A in space
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as the reduced density operator

ρA = TrB{ρ}. (1)

The corresponding von Neumann entropy [8]

S(ρA) = −Tr{ρA ln ρA}, (2)

also known as entanglement entropy, diverges according to an
area law [9,10] (D is the number of space dimensions),

S(ρA) = gD−1[∂A]ε−(D−1) + ... + g1[∂A]ε−1

+ g0[∂A] log ε + S0(A). (3)

Here ε > 0 is a small length so that 1/ε is an ultraviolet
momentum cutoff and gi[∂A] are coefficients depending on
the boundary of the enclosed volume in space.

Especially over the last years, information theoretic
concepts and in particular entanglement entropy became sig-
nificantly more important in various areas of quantum field
theory, for example, black holes [11–15], holography [16–18],
or high energy physics [19–25].

Instead of working with the divergent entanglement en-
tropy, it may be possible to tackle some of these problems
by working with quantum relative entropy [26], which is the
quantum analog of the Kullback-Leibler divergence or relative
entropy [27,28].

Classically, relative entropy can be understood as a mea-
sure of distinguishability between two distributions p and q,

S(p‖q) =
∑

j

p j ln(p j/q j ). (4)

It is a nonnegative quantity that is zero if and only if the two
distributions are equal, a property that qualifies it as a diver-
gence. If the support condition supp(p) ⊆ supp(q) is violated,
the value of S(p‖q) is set to +∞. Relative entropy can not be
considered as a true distance measure or a metric on the space
of probability distributions because it fails to be symmetric
and also does not obey a triangle inequality.
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So what does relative entropy actually mean? To answer
this question suppose that events are distributed according to
a distribution p. Unfortunately, we mistakenly consider the
events to be distributed according to q instead. In other words,
p is here the true distribution, while q serves as a model
distribution. Then S(p‖q) measures the uncertainty deficit due
to the wrong assumption q [29,30]. Formally the latter can
be defined as the average surprise 〈− ln qj〉 = −∑

j p j ln q j

minus the real information content −∑
j p j ln p j . Seen in

this way it is intuitively clear that relative entropy has to
be nonnegative and that the model should predict nonzero
probabilities for all events that indeed can happen according
to p. (If this support condition were violated, then the model
could be ruled out with certainty for a particular outcome).

Relative entropy also has a significance in the following
context. Consider an experiment, which can have n possible
outcomes x j with j ∈ {1, ..., n}, distributed according to q,
and it is done N times. This produces a sequence of events,
say x = (x2, x5, ...). If the true distribution q is not known,
then one may take as an empirical proxy to it the relative pro-
portions, or frequencies, of the different events p j = N (x j )/N .

The question is now, what is the probability to find an em-
pirical distribution or frequencies p if the true distribution is
q? It turns out that for large N this probability asymptotically
tends to [29,30]

e−NS(p‖q). (5)

In other words, Eq. (5) describes the probability for a fluctu-
ation in the frequencies pj = N (x j )/N deviating from their
expectation value 〈pj〉 = q j . If either p j and q j are very
distinct (measured in terms of relative entropy), or if the
experiment is repeated often enough, then the probability for
such fluctuations tends to zero. The result can be generalized
to what is known as Sanov’s theorem [31].

As one can see from the discussion above, it depends on
the context whether q and p in Eq. (4) play the role of model
distribution and true distribution or vice versa. However, the
first situation, where q is a model for p, appears more often.

It turns out that relative entropy has many crucial ad-
vantages over entropy. First, it is well-defined for discrete
and continuous random variables. To be precise, for relative
entropy one can simply take the continuum limit from the
discrete case p j → f (x)dx, q j → g(x)dx, because dx cancels
in the ratio appearing in the logarithm of Eq. (4). This yields

S( f ‖g) =
∫

dx f (x) ln[ f (x)/g(x)]. (6)

Similar arguments fail for the classical Shannon entropy [32].
Second, relative entropy is invariant under a reparameteri-
sation of coordinates x → x′(x) on the underlying statistical
manifold.

Its main advantage, in particular for our purposes, becomes
clear when we turn to quantum (field) theory. There the quan-
tum relative entropy between two states ρ and σ is defined
as [29,33]

S(ρ‖σ ) = Tr{ρ(ln ρ − ln σ )}. (7)

When ρ and σ are reduced density matrices this becomes
relative entanglement entropy. The latter can also be defined
rigorously in terms of modular theory [34]. One may expect

that relative entanglement entropy will be finite also for gen-
eral nonequilibrium situations.

Consequently we want to suggest a more regular use of
relative entropy. Recent literature on relative entropy in the
context of entanglement and quantum field theory encom-
passes Refs. [15,35–39].

References were relative entropy was used to study aspects
of thermodynamics encompass Refs. [40,41]. Furthermore,
one of the key properties of relative entropy, its monotonicity
under a quantum channel, was used to obtain second-law like
inequalities in Ref. [42].

In this paper we focus on the role of relative entropy in
thermodynamics. Basically we show how thermodynamics
can be formulated from a statistical approach with relative
entropy essentially replacing entropy. Besides the fact that this
is itself an interesting way of rethinking statistical physics we
want to pave the way for using relative entropy in fluid dy-
namics, quantum field theory and in particular to understand
nonequilibrium dynamics.

Usually the conceptual starting point for the development
of thermodynamics based on microscopical statistical physics
is to formulate fundamental principles which allow then to
define equilibrium ensembles. One way of doing so is the
maximum entropy principle [32,43–45], which can be applied
to classical and quantum theories. Another possibility is the
ergodic hypothesis [46,47] in classical physics. Its quantum
analog is considered to be the eigenstate thermalization hy-
pothesis [48–52]. Approaches based on entanglement were
put forward too, for example, Ref. [53].

Let us mention that entropy can also be introduced in an
operational way directly within thermodynamics, i.e., without
alluding to an underlying microscopic description [54–64].
Such a formulation can be developed from a set of basic ax-
ioms, introducing as a further concept adiabatic accessibility
to establish an ordering relation between states. This approach
provides rigorous mathematical arguments for a well-defined
notion of entropy, which go also beyond the equilibrium case.
Compared to this, our aim in the present manuscript is more
modest in the sense that we explicitly rely on the microscopic
description in terms of probability distributions or density
operators. The interesting question whether an operational
definition could also be found for relative entropy directly in
a thermodynamic context will be left for future investigations.

We will discuss different entropy principles in Sec. II and
also propose there a principle of minimum expected relative
entropy, which is then shown to be equivalent to the funda-
mental postulate. In Sec. III we redevelop thermodynamics
and in particular the different statistical ensembles using rel-
ative entropy. In this context we also explore how relative
entropy can be used to obtain an expression for the probability
of thermal fluctuations. Finally, we present a new formulation
of the third law of thermodynamics in terms of relative en-
tropy and draw conclusions in Sec. IV.

II. ENTROPY PRINCIPLES

Let us consider a macroscopic quantum system in a finite
volume V . We are interested in stationary situations so that
the Hamiltonian H is time-independent. Moreover, we can
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introduce energy eigenstates |i〉 such that

H |i〉 = Ei |i〉 . (8)

The energy eigenvalues Ei are in general degenerate and the
corresponding eigenstates can be assumed to form an or-
thonormal basis for the Hilbert space H,

〈i| j〉 = δi j . (9)

Oftentimes one is interested in a reduced space of (micro-
)states that are compatible with a set of (macroscopic)
constraints, for example, constant energy, particle number or
similar. This subspace may itself be a Hilbert space H′ and we
denote its dimension dim H′ = N .

A density operator describing any stationary state ρ can
be taken to be block diagonal in the energy eigenbasis as a
consequence of von Neumann’s equation 0 = ∂tρ = i[ρ, H].
If there were no degeneracy in energy eigenvalues, the density
operator would become fully diagonal and one could write

ρ =
N∑
j=1

p j | j〉〈 j|. (10)

Note that two density operators that are diagonal in the same
basis commute so that this can also be understood as a kind
of classical limit. In the following we will sometimes start
from this simplifying assumption but ultimately aim for a
fully quantum description. Equation (10) also implies that the
von Neumann entropy of the state ρ is equal to the Shannon
entropy of the classical distribution p of the compatible mi-
croscopic configurations

S(ρ) = S(p) = −
∑

j

p j ln p j . (11)

Any sensible state σ that is supposed to be a model for
ρ has to be stationary too, such that the same argumentation
holds and we can write it as σ = ∑

j q j | j〉〈 j|. Consequently,
the quantum relative entropy of the state ρ relative to its
model σ reduces to the classical Kullback-Leibler divergence
between the two distributions p and q,

S(ρ‖σ ) = S(p‖q) =
∑

j

p j ln(p j/q j ). (12)

Let us emphasise again that stationary states are not necessar-
ily of the diagonal form Eq. (10) if energy eigenvalues are
degenerate and it becomes then necessary to work directly
with the quantum relative entropy in Eq. (7).

A. Principle of maximum entropy

The most prominent conceptual approach to statistical me-
chanics in thermal equilibrium goes through Jaynes’ principle
of maximum entropy [32,43–45]. One starts with a set of
macroscopic observables or state characteristics such as, for
example, energy, particle number, or magnetization. Many
microscopic quantum states might be compatible with these
macroscopic characteristics. Among them, one state (i.e., a
density matrix) should be preferred as having maximum en-
tropy or minimum information by Jaynes’ principle.

Why is this particular state distinguished? Take two dis-
tinct probability distributions p and q, which both fulfill the

macroscopic conditions, such that S(p) > S(q). This means
that the uncertainty or missing information of p is greater
than that of q or, in other words, that q contains additional
information, which is not determined by the macroscopic state
characteristics. Since one does not want to perform additional
experiments or include information that is not available, the
distribution p is preferred. This is essentially the principle of
minimum information or maximum entropy.

B. Principle of minimum expected relative entropy

We will now attempt to formulate a principle similar to
the Jaynes’ maximum entropy principle, but based entirely on
relative entropy. Typically, relative entropy is used to compare
a model σ with a true distribution ρ.

Thus, in terms of relative entropies, a reasonable question
is: What is the best model σ given some macroscopic state
characteristics but no detailed information about the micro-
state? It is important in this context that the true state ρ (or
the corresponding probability distribution p) is not known,
otherwise the best model would of course be the true state
itself.

The idea we will pursue in the following is to consider an
average on the space of probability distributions or density
matrices and to define the best model as the one that has
smallest relative entropy to all possible states on average. It
is then the model from which others are least distinguishable.
As a prerequisite we first need to find sensible measures on
the space of probability distributions and density matrices.

1. Measure on space of probability distributions

In the following we will first consider the space of possible
probability distributions p or diagonal density matrices as in
Eq. (10). We will subsequently extend this to nondiagonal
density matrices, as well. We want to define a sensible integral
measure on this space. What is immediately clear is that the
distribution should be normalized,

N∑
j=1

p j = 1. (13)

Moreover, in practice there are typically additional con-
straints, such as compatibility with a set of macroscopic state
characteristics. These constraints still leave a large degener-
acy of possible micro-states, or probability distributions, of
course. We construct now a measure on the space of probabil-
ity distributions, which we denote by∫

Dp. (14)

We use here a functional integral notation because eventu-
ally we will be interested in infinite dimensional probability
spaces. The set of normalized probability distributions is a
manifold and one can integrate on it in terms of suitable
coordinates. For example, the set of allowed distributions p(ξ )
may be parameterized by a set of parameters or coordinates
ξ = {ξ 1, ..., ξm}, such that we can write∫

Dp =
∫

dξ 1... dξm μ(ξ 1, ..., ξm). (15)
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We want the integral measure to be invariant under a change
of coordinates ξ → ξ ′(ξ ),

μ(ξ 1, ..., ξm) = det

(
∂ξ ′α

∂ξβ

)
μ′(ξ ′1, ..., ξ ′m). (16)

One such measure is given by Jeffreys prior as integral
measure [45,65]

μ(ξ ) = const × √
det gαβ (ξ ), (17)

where gαβ (ξ ) is the Fisher metric associated with p(ξ ). This
metric serves as Riemannian metric on the space of probabil-
ity distributions and is given by [66]

gαβ (ξ ) =
∑

j

∂ p j (ξ )

∂ξα

∂ ln p j (ξ )

∂ξβ
. (18)

Based on this metric, one can define the volume form or
integral measure Eq. (15) with Eq. (17). We note, how-
ever, that the measure in Eq. (17) is not unique. Indeed,
one could multiply this by any function that is invariant un-
der reparametrizations, such as, for example, e−S(p‖q) with
some reference distribution q, and the measure would still be
acceptable.

With the measure we just constructed one can also integrate
functionals of the probability p, for example,∫

Dp f (p) =
∫

dmξ μ(ξ ) f [p(ξ )]. (19)

For later purpose we want to show an invariance prop-
erty of expressions of this type, namely under the maps
{p1, . . . pN } → {p
(1), . . . p
(N )}, where j → 
( j) is a per-
mutation.1 We will abbreviate this map as p → 
(p). The
statement we want to show reads then∫

Dp f (p) =
∫

Dp f [
(p)], (20)

for any functional f of the probability distribution and any
permutation 
.

To show Eq. (20), it is particularly convenient to
parametrize the probabilities by their square roots, i.e., to
write

p j =
{

(ξ j )2 for j = 1, . . . ,N − 1,

1 − (ξ 1)2 − . . . − (ξN−1)2 for j = N .

(21)
For the Fisher metric one finds then

1

4
gαβ = δαβ + ξαξβ

1 − (ξ 1)2 − . . . − (ξN−1)2
. (22)

The right-hand side is in fact the metric induced on the surface
of a unit sphere SN−1 from the N -dimensional Euclidean
space it is embedded in [67,68].

1Note that this assumes a discrete probability space.

The measure in Eq. (14), normalized to
∫

Dp = 1, can be
written as∫

Dp = 2

�N

∫ 1

−1
dξ 1 · · · dξN−1

√
det

(
1

4
g

)

× �

(
1 −

N−1∑
α=1

(ξα )2

)

= 1

�N

∫ 1

−1
dξ 1 · · · dξN δ

⎛
⎝1 −

√√√√ N∑
α=1

(ξα )2

⎞
⎠. (23)

Here �N = 2πN /2/�(N /2) is the surface area of the unit
sphere in N dimensions. In this representation it is now ex-
plicit that the integral measure is invariant under permutations
p → 
(p) as we wanted to show.

2. Measure on space of density matrices

Let us now extend our considerations to density matrices
ρ. We want to integrate over all such operators that are nor-
malized, Tr{ρ} = 1.

The construction is very similar as for probability distribu-
tions. We write the measure as∫

Dρ =
∫

dmξ μ(ξ ) = const ×
∫

dmξ
√

det gαβ (ξ ), (24)

where gαβ (ξ ) is now a Riemannian metric on the space of
density matrices. The analog of Eq. (18) for density matrices
is the quantum Fisher metric (e.g., Refs. [69–76]; see Ref. [77]
for a recent overview),

gαβ (ξ ) = Tr

{
∂ρ(ξ )

∂ξα

∂ ln ρ(ξ )

∂ξβ

}
. (25)

A careful consideration shows that the logarithmic derivative
of a density matrix as it appears in Eq. (25) must be defined
such that

1
2ρ(d ln ρ) + 1

2 (d ln ρ)ρ = dρ, (26)

(it is therefore known as symmetric logarithmic derivative)
and accordingly Tr{ρ(d ln ρ)} = Tr{dρ} = 0. One can also
confirm from Eqs. (26) and (25) that gαβ (ξ ) = gβα (ξ ).

The quantum Fisher metric arises in fact as a limit of the
relative entropy for density matrices that approach each other,

S(ρ(ξ + dξ )||ρ(ξ )) = 1
2 gαβ (ξ )dξαdξβ + . . . , (27)

where the ellipses stand for terms of cubic and higher order
in dξ . Equation (27) shows also that unitary transformations
of the density matrix induce isometric transformations with
respect to the quantum Fisher metric. To see this, consider a
unitary map

ρ(ξ ) → ρ ′(ξ ) = Uρ(ξ )U † = ρ(ξ ′). (28)

In the last equation we have used that Uρ(ξ )U † is also a
normalized density matrix, but at some other coordinate point
ξ ′(ξ ). Now, from

S(ρ(ξ + dξ )||ρ(ξ )) = S[Uρ(ξ + dξ )U †||Uρ(ξ )U †]

= S[ρ(ξ ′ + dξ ′)||ρ(ξ ′)], (29)
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and Eq. (27) it follows that gαβ (ξ )dξαdξβ = gαβ (ξ ′)dξ ′αdξ ′β
so that the induced map ξ → ξ ′(ξ ) is indeed an isometry.

With the integral measure Eq. (24) one can now integrate
functionals of a density matrix, similar to Eq. (19). We want
to show that this measure is invariant under unitary transfor-
mations, ρ → UρU †, specifically,∫

Dρ f (ρ) =
∫

dmξ ′ μ(ξ ′) f (ρ(ξ ′))

=
∫

dmξ μ(ξ ) f (Uρ(ξ )U †) =
∫

Dρ f (UρU †).

(30)

In the second step we have used Eq. (28) together with a
change of coordinates ξ ′ → ξ .

3. Minimizing expected relative entropy on
probability distributions

Let us now come back to the task of finding a replacement
for Jaynes’ principle of maximum entropy in terms of relative
entropy. What we suggest is to find a state σ that is central
within the space of possible states ρ in the sense it has smallest
expected or average relative entropy S(ρ||σ ). It is then the
state that is least distinguishable from all states, weighted
by the measure or prior distribution Eq. (14), in the sense
determined by relative entropy.

More concretely, when stated for diagonal density matrices
or probability distribution, our principle of minimum expected
relative entropy for the optimal model q is to minimize the
following functional:

B(q, λ) =
∫

Dp

[
S(p‖q) + λ

(∑
i

qi − 1

)]
. (31)

Here λ is a Lagrange multiplier ensuring normalization of the
model distribution q. The variation of the expression Eq. (31)
with respect to the model distribution q can be done under the
functional integral

0
!= δB =

∑
j

∫
Dp

[
− p j

q j
+ λ

]
δq j . (32)

Fortunately the integration does not have to be executed ex-
plicitly to find an expression for q j . We can simply use the
invariance under permutations Eq. (20), which shows that∫

Dp pj is independent of the index j. This immediately im-
plies also that the optimal distribution is independent of j and
must be given by the uniform distribution,

q j = 1

N , (33)

which is equivalent to the well-known fundamental postulate
of statistical physics and the microcanonical ensemble.

The argument leading to Eq. (33) is based on the permu-
tation invariance Eq. (20) and holds for discrete probability
distributions. More general, Eq. (32) is solved by q = 〈p〉
where the expectation value is with respect to the measure in
Eq. (15).

4. Minimizing expected relative entropy on density matrices

Let us now extend the variational principle Eq. (32) to
density matrices. To that end we compare ρ(ξ ) to σ (ζ ), where
ξ and ζ provide convenient coordinates on the space of nor-
malized density operators. The functional Eq. (31) gets now
replaced by

B(ζ ) =
∫

Dρ S[ρ||σ (ζ )] =
∫

dmξ μ(ξ ) S[ρ(ξ )||σ (ζ )],

(34)

and the principle of minimum expected relative entropy says
that one should search for the state σ (ζ ) corresponding to the
extremum of B(ζ ) in Eq. (34).

Before searching for the extremum it is convenient to de-
compose

σ (ζ ) = U (ζ ) �(ζ )U †(ζ ), (35)

where �(ζ ) is diagonal and U (ζ ) is unitary. We can then write

B(ζ ) =
∫

Dρ S[ρ||U (ζ )�(ζ )U †(ζ )]

=
∫

Dρ S[U †(ζ )ρU (ζ )||�(ζ )] =
∫

Dρ S[ρ||�(ζ )].

(36)

In the second step we have used invariance of relative en-
tropy under unitary transformations and in the last step
the invariance property of the functional integral, Eq. (30).
Equation (36) shows that the functional B(ζ ) is in fact de-
generate for all density matrices σ (ζ ) that are related through
unitary transformations and depends therefore only on the
eigenvalues of σ (ζ ).

The right-hand side of Eq. (36) is convenient for variation,

0
!= δB =

∑
j

∫
Dρ

[
− ρ j j

� j j
+ λ

]
δ� j j . (37)

For simplicity we took now a parametrization in terms of the
diagonal values � j j themselves and introduced a Lagrange
multiplier to ensure normalization, similar as in Eq. (32). In-
terestingly, the square bracket on the right-hand side depends
only on the diagonal elements of the density operator ρ. One
can now use that the diagonal elements ρ j j can be permuted,
ρ j j → ρ
( j)
( j), by special unitary transformations2 ρ →
UρU †, and therefore it follows from Eq. (30) that

∫
Dρ ρ j j

is again independent of the index j, similar as we had it for
probability distributions. The extremum is then the uniform
density matrix

σm = 1

N 1. (38)

Incidentally, in light of Eq. (36) this is anyway the only possi-
bility to have a unique extremum because it is the only density
matrix that remains unchanged by all unitary transformations
σ → UσU †.

To summarize, the uniform distribution Eq. (33) and den-
sity matrix Eq. (38) can also be obtained through a variational

2An example for two-dimensional matrices is U = iσ2.
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FIG. 1. Left panel: Curves of relative entropies S(p‖q) for a two-state system with probabilities p1 = p, p2 = 1 − p with respect to
different model distributions q1 = q, q2 = 1 − q as parametrized by the value of q. Right panel: Entropy S(q) and area function B(q) of
the model q. The maximum of entropy and the minimum of B(q) are both at the uniform distribution, q = 1/2.

principle that is entirely based on relative entropy instead of
entropy. We now close this subsection with a simple example.

5. Example: Two-state system

Here we want to present the explicit form of the functional
B(q, λ) in Eq. (31) for a simple example, the two-state system.
Then the parametrization Eq. (21) reads p1 = ξ 2 and p2 =
1 − ξ 2, which leads to the Fisher information

1

4
g(ξ ) = 1 + ξ 2

1 − ξ 2
. (39)

At the extremum with respect to λ, the distribution q1 = q,
q2 = 1 − q is normalized and we obtain for the remaining
function B(q) the simple expression

B(q) = 1 − 2 ln 2 − 1
2 ln [q(1 − q)]. (40)

But what is the interpretation of this function? Let us have
a look at relative entropies with respect to different models
first (left panel of Fig. 1). If we consider the best model the
resulting relative entropy curve takes its minimum at p = 1

2 .
For other models one gets asymmetric curves. In this simple
case B(q) is actually the area under the curve given by the
corresponding relative entropy with respect to a fixed model
q. One can directly see that the area under a relative entropy
curve is minimized for q = 1

2 and goes to infinity for q → 0
and q → 1, which is also visible in the right panel of Fig. 1.
Thus, the area function is indeed minimized where the entropy
of the corresponding model is maximized.

C. Updating knowledge with expectation values

The principle of minimum expected relative entropy intro-
duced above is enough to describe besides the microcanonical
ensemble also the canonical and the grand-canonical ensem-
ble. We will discuss this in more detail in Sec. III.

Here we want to mention for completeness also a related
principle used in statistical inference, typically to update an
ensemble with additional knowledge in the form of expecta-
tions values. This is the principle of minimum discrimination
information or principle of minimum cross entropy [28,30]. It
has many applications in the context of Monte Carlo simula-
tions, optimization problems and machine learning [78,79].

The idea (translated to physics) is as follows. Suppose
we have found some model probability distribution q for
some physical situation. Then somebody gives us additional
information in the form of k expectations values, which

is not already taken into account by our current model q.
Now we want to improve our model by implementing this
additional information, which should lead to a new model
distribution p.

It is now sensible to do this with minimal gain of knowl-
edge, or, in terms of relative entropy, through minimizing
S(p‖q) with respect to p under k + 1 constraints (the updated
distribution has to be normalized as usual, the prior distribu-
tion is normalized by construction).

To find a general expression for the probability distribution
p we use again the technique of Lagrange multipliers. Let
us say we have observables Aj where j ∈ {1, ..., k}, where
each observable Aj has values a j,i in microstates with index
i ∈ {1, ...,N }. Then we assign k multipliers λ j to the k expec-
tation values and add one multiplier γ for normalization. The
Lagrange function is

L(p, q, λ j, γ ) = S(p‖q) +
k∑

j=1

λ j

( N∑
i=1

pia j,i − Aj

)

+ γ

(
n∑

m=1

pm − 1

)
. (41)

We want to compute the minimum

δL(p, q, λ j, γ )
!= 0, (42)

where the variation is now with respect to the improved dis-
tribution p.

Solving the above extremization problem leads to

pi = qi

Z̄
exp

(
−

k∑
j=1

λ ja j,i

)
, (43)

where Z̄ ensures normalization. So if we start with a model
q and add information from expectation values, we get an
improved model p which is effectively the prior model q times
weight factors enforcing expectation values Aj .

One notes the resemblance between Eq. (43) and
Boltzmann-type probability weights e−βE . However, the su-
perficial impression of such a connection might be a bit
misleading. Specifically, if one tries to use the principle of
minimum discrimination power following the above discus-
sion to introduce the canonical ensemble with probabilities
pi = 1

Z e−βEi , then one needs to start with prior probabilities
qi that are flat with respect to energy. This does not describe
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any physically sensible state for most systems—formally it
corresponds to a limit of the canonical ensemble with infinite
temperature.

There might be other situations, however, where the prin-
ciple of minimal discrimination information can be applied to
physics problems. As an example, let us consider a single spin
as part of a larger spin system which is in equilibrium with a
heat bath of temperature T . We take the magnetic moment
of the spin to be 
μi = γ 
si in the state i. We may consider
a ferromagnetic system at vanishing external magnetic field
H = 0. Starting point is a distribution of states according to
Boltzmann weights

qi = 1

Z̃
e−βEi . (44)

This serves as a prior model in the following. Without further
specifications, all spin directions 
si are equally likely. How-
ever, a ferromagnetic state has domains with nonvanishing
magnetization. Concentrating now on one such region with
given magnetization 
M, one may introduce a Lagrange mul-
tiplier −β 
B for the magnetic moment 
μ and the probabilities
become

pi = qi

Z̄
eβγ 
B
si = 1

Z
e−β(Ei−γ 
B
si ), (45)

where Z = Z̃Z̄ = ∑
i e−β(Ei−γ 
B
si ). This updates the model dis-

tribution for the single spin. Proceeding similarly with other
spins would lead to a mean-field type description. There the
in-medium magnetic field 
B would have to be determined in a
self-consistent way.

III. THERMODYNAMICS

In this section we will use relative entropy and the principle
of minimum expected relative entropy to discuss different
thermodynamical ensembles as well as the definition of tem-
perature and chemical potential. Eventually we will also
formulate the third law of thermodynamics in terms of relative
entropy.

A. Microcanonical ensemble

We consider a situation with fixed energy E and particle
number N . (Here and below we will always keep the volume
V fixed.) We have already seen in Sec. II B that the principle
of minimum expected relative entropy (on the space of states
in agreement with the constraints) leads to the uniform distri-
bution or microcanonical density matrix

σm = 1

Zm
δ[H − E (σm)]δ[N − N (σm)], (46)

where

Zm = Tr{δ[H − E (σm)]δ[N − N (σm)]}. (47)

We are interested in computing the relative entropy of an
arbitrary state ρ to the microcanonical state Eq. (46),

S(ρ‖σm) = Tr{ρ ln ρ − ρ ln σm}
= −S(ρ) − Tr{ρ ln σm}. (48)

The first term is simply the negative von Neumann entropy of
ρ while the second is known as the cross entropy. Using that
σm is constant in the subspace of states with energy E (σm)
and particle number N (σm) where it has support, and that both
states are normalized, leads for supp(ρ) ⊆ supp(σm) to

−Tr{ρ ln σm} = −Tr{σm ln σm} = S(σm). (49)

The support condition for ρ translates to a condition on the
fixed values of energy and particle number. Both states have to
have the same energy and particle number, otherwise the sup-
port condition is violated and their relative entropy becomes
infinite. Note that it is not enough if ρ has an energy ex-
pectation value 〈H〉ρ = Tr{ρH} that agrees with E (σm); also
the dispersion needs to vanish so that 〈H2〉ρ = Tr{ρH2} =
E (σm)2. We denote this strict condition by E (ρ) ≡ E (σm) and
similarly for particle number N (ρ) ≡ N (σm). In summary,
one finds

S(ρ‖σm) =

⎧⎪⎨
⎪⎩

−S(ρ) + S(σm) for E (ρ) ≡ E (σm)

and N (ρ) ≡ N (σm),

+∞ else.

(50)

In other words, if we model a state ρ, which has a definite
energy and particle number, with a microcanonical state σm

with the same energy and particle number, then their relative
entropy is just the difference of entropies. If the energies or
particle numbers do not agree, the relative entropy becomes
infinite. Intuitively, in that case it is rather easy to distinguish
the states, because a measurement of E or N is sufficient.

As shown in Sec. II B, the microcanonical state σm corre-
sponds to the state to which other states ρ have on average
the smallest relative entropy. Equation (50) tells that this rel-
ative entropy can then be written as a difference of entropies.
Moreover nonnegativity of relative entropy highlights that σm

is indeed the state with maximum entropy for given E and N ,
because S(ρ‖σm) � 0 is equivalent to

S(ρ) � S(σm), (51)

for all states ρ with E (ρ) ≡ E (σm) and N (ρ) ≡ N (σm).
It is instructive to consider also the differential of Eq. (50)

for dE (ρ) ≡ dE (σm) and dN (ρ) ≡ dN (σm),

dS(ρ‖σm) = − dS(ρ) + dS(σm),

= − dS(ρ) + β dE (ρ) − βμ dN (ρ). (52)

In the second step we used the standard thermodynamic
relation

dS(σm) = β dE (σm) − βμ dN (σm). (53)

Interestingly, Eq. (52) provides a possibility to define the
inverse temperature β = 1/T and chemical potential μ of a
microcanonical state σm from partial derivatives of a rela-
tive entropy, at fixed entropy S(ρ). It is important to fulfill
dE (ρ) ≡ dE (σm) and dN (ρ) ≡ dN (σm), though.

B. Thermal fluctuations

Let us discuss here also briefly the meaning of relative
entropy for the description of thermal fluctuations. Even in
a fully equilibrated state, quantities can differ from their ther-
mal equilibrium expectation values, for example, the energy
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or particle number in a subvolume. Typically, the relative
importance of fluctuations is larger when the subvolume or
subsystem they concern is smaller. The traditional theory of
such thermodynamic fluctuations goes back to Einstein’s work
on critical opalescence [2] (see also Ref. [1] and for a recent
discussion Ref. [3]) and one associates to a fluctuation of
a macroscopic variable ξ a probability proportional to eS(ξ )

where S(ξ ) is the entropy. The quantity ξ is here such that
it does not have a sharp value but fluctuates in the thermal
equilibrium state σ . The entropy S(ξ ) can be understood as
the entropy of an ensemble of microstates, or a density matrix
ρ(ξ ), for which the macroscopic variable ξ has a fixed value
but that is otherwise in agreement with conservation laws
and possibly other relevant constraints. The entropy S(ξ ) =
S[ρ(ξ )] is strictly smaller than the equilibrium entropy S(σ )
because the latter is maximal (within the constraints) and
because ρ(ξ ) is necessarily different from the equilibrium
density matrix σ . One can take the probability distribution for
a fluctuation to be proportional to eS[ρ(ξ )]−S(σ ). We note here
already the close connection to relative entropy in Eq. (50).

As we have discussed in Sec. I, in (classical) statistical
interference, e−NS(p‖q) governs the asymptotic probability to
find after N drawings relative frequencies p j = N (x j )/N for
a random variable x j that is actually distributed according q j ,
see Eq. (5) and the discussion there. This can be understood as
a fluctuation of the frequency pj around the expectation value
〈p j〉 = q j . This setup is actually closely related to the one of
thermal fluctuations. If the number of drawings N , or the size
of the relevant subsystem in the case of thermal fluctuations,
grows, the probability for sizable fluctuations (relative to the
expectation value) becomes quickly very small.

Note, however, that Eq. (5) describes the asymptotic
limit of many drawings N → ∞, while thermal fluctuations
concern in some sense finite size corrections to the ther-
modynamic limit of a subsystem. Nevertheless, the relation
motivates why the probability for finding a state ρ(ξ ) in
agreement with a macroscopic value ξ should be proportional
to e−S(ρ(ξ )‖σm ), when σm is the actual thermal state. Using
Eq. (50), we see that this indeed agrees with the traditional
theory of thermal fluctuations based on entropy. Note that we
can formally also allow ρ to violate the conditions E (ρ) ≡
E (σm) and N (ρ) ≡ N (σm); the probability for such fluctua-
tions then simply vanishes.

To achieve reparametrization invariance, one must use the
invariant volume element in parameter space and one can state
that the probability for a thermal fluctuation in the parameter
volume dmξ should be

dW = 1

Z
e−S(ρ(ξ )‖σm )

√
det gαβ (ξ ) dmξ, (54)

where gαβ (ξ ) is the Fisher metric for ρ(ξ ) as defined in
Eq. (25) and Z is defined such that

∫
dW = 1.

To make things more concrete, let us assume that the expo-
nential term in Eq. (54) has a maximum at ξ0. Let us assume
moreover, that one can approximate3 ρ(ξ0) ≈ σm and consider

3This cannot be exact because ξ is fluctuating for σ but fixed for
ρ(ξ0).

a quadratic approximation (in ξ − ξ0) to the relative entropy.
We have then

dW = 1

Z
e− 1

2 gμν (ξ−ξ0 )μ(ξ−ξ0 )ν
√

det(g) dmξ, (55)

where the Fisher information metric appears now also in
the exponent. Here we can easily determine Z = (2π )m/2.
Thermal fluctuations are in a Gaussian approximation directly
determined by the Fisher information metric of the equilib-
rium distribution. More generally, thermal fluctuations are
governed by relative entropy, though.

Before we close this subsection, let us remark that thermal
fluctuations can also be described in the canonical and grand
canonical ensemble by relative entropy. The density matrix
of the microcanonical ensemble σm in Eq. (54) is then simply
replaced by the density matrix of the canonical ensemble σc or
grand-canonical ensemble σgc, respectively. One can confirm
that the relative entropies in Eqs. (68) and (77) lead to the
same expressions as the traditional theory formulated with
entropy (see, for example, Ref. [1]).

C. Canonical ensemble

The transition from the microcanonical to the canonical
ensemble can be done by following essentially the usual con-
struction. Suppose we still have an overall isolated system
with fixed total energy E and fixed total particle number N ,
but we consider a decomposition into a small subsystem A and
a heat bath B. Furthermore the two subsystems are allowed to
exchange energy with each other. The question is now: How
can we deduce the best model σc for the small system without
using secondary fundamental principles?

The subsystem A may have an energy EA while B has
then energy EB = E − EA. However, this decomposition is not
fixed, but fluctuating. Equilibration between A and B needs an
interaction between them. However, for the equilibrium state
itself, the role of this interaction term is typically neglected
and one assumes that the Hamiltonian can be decomposed into
two independent terms, H = HA + HB. For the microcanoni-
cal state we can then write

σm ∼
∫ E

0
dEA

dW

dEA
δ(HA − EA)δ(HB − E + EA). (56)

We use here the distribution dW/dEA with
∫

dW = 1 where
all values for EA contribute that are allowed by overall energy
conservation. Note in particular that σm is not a product state.

It is nevertheless instructive to consider a class of product
states in the form

ρ(EA) = ρA(EA) ⊗ ρB(E − EA), (57)

and specifically the relative entropy [using Eq. (50)]

S[ρ(EA)‖σm] = −S[ρA(EA)] − S[ρB(E − EA)] + S(σm).
(58)

Because relative entropy is positive, there needs to be a
minimum of Eq. (58). The two negative terms on the right-
hand side are maximized when ρA(EA) and ρB(E − EA) are
microcanonical density matrices in the respective subspaces.
Searching then for a minimum by variation with respect to EA
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leads to the usual condition
∂

∂E
S[ρA(E )]

∣∣
EA

= ∂

∂E
S[ρB(E )]

∣∣
E−EA

. (59)

The inverse temperature in both subsystems needs to agree.
The latter is given by the usual relation

β = ∂

∂E
S[ρ(E )]. (60)

One may now determine a density matrix for the subsystem
A. This can be based on Eq. (54) giving the probability for
thermal fluctuations. The energy of the subsystem EA plays
here the role of a coordinate ξ . Using Eq. (58) and expanding
the relative entropy to linear order in EA leads to

S[ρ(EA)‖σm] = βEA + const. (61)

This approximation can now be inserted in Eq. (54) and EA

can be replaced by the Hamiltonian of subsystem A. One finds
that the density matrix for A must be of the canonical form

σc = 1

Z
e−βH , (62)

with normalization factor

Z = e−βF = Tr{e−βH }. (63)

Both the Hamiltonian H and the trace Tr are now restricted
to system A. Because of the possibility of energy exchange,
states of different energies can now appear, but they are
weighted by Boltzmann factors.

In a next step, let us now determine the relative entropy
of an arbitrary state ρ with respect to the canonical density
matrix Eq. (62). One finds

S(ρ‖σc) = −S(ρ) − Tr{−ρ ln Z − ρβH}
= −S(ρ) + ln Z + βE (ρ), (64)

where E (ρ) = 〈H〉ρ = Tr{ρH} was used. To evaluate the log-
arithm of the partition function we can use the relations

E (σc) = − ∂

∂β
ln Z, (65)

S(σc) = −βF (σc) + βE (σc) = ln Z − β
∂

∂β
ln Z. (66)

Combining them leads to

ln Z = −βE (σc) + S(σc), (67)

such that we end up with

S(ρ‖σc) =

⎧⎪⎨
⎪⎩

−S(ρ) + S(σc) + β [E (ρ) − E (σc)]

for N (ρ) ≡ N (σc),

∞ else.

(68)

We see that, compared to the microcanonical model in
Eq. (50), the relative entropy acquires a second term due to a
possible difference in energies. Furthermore, the support con-
dition is released somewhat. Only if the two particle numbers
do not agree, the relative entropy is still infinite. Moreover,
we get back the microcanonical result Eq. (51) if the energy
expectation values match.

The relative entropy between the state ρ and the canonical
state σc also has a very intuitive physical meaning (if the

support condition is met). Up to a factor β it describes the
so-called available energy, which is the maximum work, that
can be extracted from the system being in the state ρ, if it is in
contact with a heat bath with inverse temperature β [80–83].
In the special case where ρ = ρc is an equilibrium state with
an in general different inverse temperature β ′, the available
energy reduces to a difference of free energies.

It is instructive to consider the differential of the relative
entropy Eq. (68) [restricted to dN (σc) ≡ dN (ρ)],

dS(ρ‖σc) = − dS(ρ) + dS(σc) + [E (ρ) − E (σc)] dβ

+ β[dE (ρ) − dE (σc)]

= − dS(ρ) + β dE (ρ) − βμ dN (ρ)

+ [E (ρ) − E (σc)] dβ, (69)

where we have used that for the thermal state

dS(σc) = βdE (σc) − βμ dN (σc ). (70)

If we consider S(ρ), E (ρ), N (ρ), and the inverse temperature
β of the state σc as independent, then we can read off from
Eq. (69) that

∂S(ρ‖σc)

∂S(ρ)

∣∣∣∣
E (ρ),N (ρ),β

= −1,

∂S(ρ‖σc)

∂E (ρ)

∣∣∣∣
S(ρ),N (ρ),β

= β,
∂S(ρ‖σc)

∂N (ρ)

∣∣∣∣∣
S(ρ),E (ρ),β

= −βμ,

∂S(ρ‖σc)

∂β

∣∣∣∣
S(ρ),E (ρ),N (ρ)

= E (ρ) − E (σ ). (71)

Let us have a closer look on these relations. The first relation
tells us that if the information about the true state ρ increases
(which corresponds to a decreasing entropy), the relative en-
tropy with respect to the thermal state increases in the same
way. This is intuitively clear since the thermal state is the state
representing maximal missing information and the actual state
veers away from the thermal state if its information increases.

The relations in the second line provide an interesting
possibility to define temperature and chemical potential of a
canonical density matrix σc through partial derivatives of a
relative entropy at fixed S(ρ).

The relation in the third line has also an interesting mean-
ing. We observe that precisely if we choose the two energy
expectation values to be equal, the partial derivative with
respect to β vanishes,

∂S(ρ‖σc)

∂β
= 0 ⇔ E (ρ) = E (σ ). (72)

In other words, if we choose the model energy to be the
correct energy, then the relative entropy is minimized with
respect to the inverse temperature. Since the temperature is
the only degree of freedom of a canonical state, this choice
corresponds to the optimal canonical model; all other choices
lead to a larger relative entropy.

While we have obtained here the canonical ensemble from
the microcanonical ensemble using the standard procedure,
one may also ask whether a principle of minimum expected
relative entropy can be formulated directly in the canonical
case. Indeed this could be done similarly to the construction
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in Sec. II B, however the integral Dp over probability distribu-
tions, or Dρ over density matrices, would now have to go over
a set of states that does not have fixed energy. The detailed
properties of the appropriate functional integral measure will
have to be fixed in more detailed investigations beyond the
scope of the present work. However, there is one interesting
statement one can make on rather general terms, generalizing
the discussion in Sec. II B.

Consider a functional as in Eq. (34) but with a more gen-
eral definition of the functional integral measure Dρ. We are
interested in finding the minimal expected relative entropy and
vary therefore with respect to the density matrix σ ,

δB =
∫

Dρ Tr{ρ d ln σ } = Tr{〈ρ〉 d ln σ }. (73)

In the second equation we use 〈·〉 = ∫
Dρ(·) for the expecta-

tion value with respect to the functional integral over ρ. Our
claim is now that B is stationary for σ = 〈ρ〉. To see this we
first use the cyclic property of the trace to write

δB = 1
2 Tr{〈ρ〉 (d ln σ ) + (d ln σ ) 〈ρ〉}. (74)

The logarithmic derivative should be understood here as a
symmetric logarithmic derivative as defined in Eq. (26). One
can then see that for σ = 〈ρ〉 one has

δB = Tr{dσ } = 0. (75)

In the last step we used that Tr{σ } = 1 needs to be normalized.
These considerations show that one can obtain the canon-

ical density matrix directly from a principle of minimum
expected relative entropy when the integral measure Dρ is
such that the expectation values is the canonical density ma-
trix, 〈ρ〉 = σc.

D. Grand canonical ensemble

The same analysis can be done for a small system in
contact with a heat and particle bath. There we expect the
best model for the small system to be the grand canonical
ensemble. We abbreviate the technical steps and directly use
the well-known expression

σgc = 1

Z
e−β(H−μN ), (76)

where μ is the chemical potential, allowing for particle ex-
change between the two systems, and Z is now the grand
canonical partition sum. For the relative entropy of an arbi-
trary state ρ and the grand canonical model one finds

S(ρ‖σgc) = − S(ρ) + S(σgc) + β[E (ρ) − E (σgc)]

− βμ [N (ρ) − N (σgc)]. (77)

We see that the full relation is linear in differences of exten-
sive quantities, as may be expected from the canonical case.
Moreover the support condition is released even further. The
only case, in which the relative entropy would still be infinite
is if the two states would live in different volumes (we have
excluded this possibility so far).

The differential of the relative entropy Eq. (77) becomes
now

dS(ρ‖σgc) = − dS(ρ) + β dE (ρ) − βμ dN (ρ)

+ [E (ρ) − E (σgc)] dβ

− [N (ρ) − N (σgc)] d (βμ), (78)

which implies, for example, the relations

∂S(ρ‖σgc)

∂N (ρ)

∣∣∣∣
S(ρ),E (ρ),β,μ

= −βμ, (79)

∂S(ρ‖σgc)

∂ (βμ)

∣∣∣∣
S(ρ),E (ρ),N (ρ),β

= −N (ρ) + N (σgc). (80)

These two relations have an analogous interpretation as
before. The optimal choices of β and μ, in the sense of a sta-
tionary relative entropy correspond to choosing a model with
coinciding expectation values for energy, E (ρ) = E (σgc), and
particle number, N (ρ) = N (σgc).

E. Third law of thermodynamics

Entropy does not only appear as a thermodynamic poten-
tial, but is also central for the three laws of thermodynamics.
Of special interest here is the third law. This is because the
first law expresses simply energy conservation, which does
not have to be linked to entropy necessarily and the second law
was formulated in several ways using relative entropy already
(for an overview, see Refs. [42,84]).

There exist several possible formulations of the third law.
A popular approach is Planck’s formulation: Entropy ap-
proaches a constant value for the temperature going to zero,
T → 0, independently of all other thermodynamic parame-
ters. A quantum mechanical interpretation allows to identify
this constant with the entropy S0 of the ground state ρ0, be-
cause the state of the system ρ approaches the ground state
ρ0 as temperature decreases. If we model the actual state ρ by
either a canonical or grand-canonical thermodynamic model
σ , then we may formulate the third law as follows.

Third law of thermodynamics: The relative entropy
S(ρ0‖σ ) between the ground state ρ0 and a thermodynamic
model state σ approaches zero for T → 0,

lim
T →0

S(ρ0‖σ ) = 0. (81)

Information theoretically, the ground state becomes indis-
tinguishable from a thermodynamic state at zero temperature.
In contrast to the usual formulation based on entropy instead
of relative entropy, the case of a degenerate ground state does
not lead to a constant value on the right-hand side of Eq. (81).
Let us first comment on Eq. (81) for the case where σ = σc

is a canonical density matrix so that we can use Eq. (68).
Obviously, one needs to assume that N (ρ) ≡ N (σc), here.
Moreover, E (ρ0) − E (σc) must vanish for β → ∞ faster than
1/β, so that at zero temperature S(ρ0) = S(σc). When σ =
σgc is a grand-canonical density matrix one can use Eq. (77)
and one also needs N (ρ0) − N (σgc) to vanish faster than
1/(βμ) for β → ∞ so that S(ρ0) = S(σgc) at T = 0. In both
the canonical and the grand-canonical case, the formulation
Eq. (81) is then equivalent to Planck’s formulation.

052117-10



THERMODYNAMICS FROM RELATIVE ENTROPY PHYSICAL REVIEW E 102, 052117 (2020)

For completeness, let us now provide direct arguments for
the validity of Eq. (81), concentrating for simplicity on the
case of nondegenerate energy eigenstates and focusing on
a canonical density matrix σc. In the energy eigenbasis, the
latter reads

(σc)nm = 〈n|σc|m〉 = 1

Z
e−βEnδnm = qn δnm, (82)

where qn is the Gibbs distribution. The ground-state density
matrix ρ0 is

(ρ0)nm = δn0 δm0. (83)

Then the relative entropy becomes

S(ρ0‖σc) =
∑

n

(δn0 ln δn0) −
∑

m

(δm0 ln qm) = − ln q0,

(84)

which is actually a general result for the relative entropy of the
ground state to a density matrix that is diagonal in the energy
eigenbasis. Now one can write

lim
T →0

q0 = lim
β→∞

e−βE0∑
n e−βEn

= 1 − lim
β→∞

∑
n>0 e−βEn∑

n e−βEn

= 1 − lim
β→∞

∑
n>0 e−β(En−E0 )

1 + ∑
n>0 e−β(En−E0 )

. (85)

Note that En − E0 > 0 for all n > 0. Indeed this leads to a
confirmation of Eq. (81).

IV. CONCLUSION AND OUTLOOK

In summary, we have investigated here to which extent
the relation between thermodynamics and microscopic statis-
tical physics can conceptually be formulated on the basis of
relative entropy instead of entropy and the answer is in the
affirmative. As a replacement for the principle of maximum
entropy, which is usually taken as the conceptual starting
point for the development of equilibrium thermodynamics,
we have formulated a similar but new principle of minimum
expected relative entropy. It is based on the construction of
a (functional) integral measure on the space of probability
distributions or density matrices in the classical and quan-
tum formalism, respectively. This measure is actually Jeffreys
prior, based on the square root of the determinant of the Fisher
information metric (in the classical case) or of the quantum
Fisher metric (in the quantum case), respectively.

The microcanonical equilibrium state is then characterized
as the from which all other states allowed by the constraints
are least distinguishable—measured in terms of relative en-
tropy and Jeffreys prior. Based essentially on symmetry
properties of the integral measure, we could show that this
new variational principle leads to the standard microcanonical
ensemble in a classical as well as in a quantum description.

From the microcanonical ensemble we have then rede-
veloped also the canonical and grand-canonical ensemble,
using relative entropy instead of entropy. This also includes
alternative definitions of temperature and chemical potentials
through specific derivatives of relative entropies.

An interesting point concerns also thermal fluctuations.
While the traditional description going back to Einstein’s
work on critical opalescence is based on entropy, we have
shown that an alternative formulation based on a relative
entropy between a state with a given value of a fluctuating
parameter and the thermal state, is possible and leads to an
equivalent description. This alternative formulation has the
advantage that it can directly be used in situations where
entropy is infinite, but relative entropy is finite.

Finally, we have also shown that the third law of thermody-
namics can be formulated in terms of relative entropy instead
of entropy itself.

Taken together, our results open on the one hand side a
new perspective on foundational aspects of thermodynamics,
for example, our analysis suggests that it could be beneficial
to think more often in terms of distinguishability instead of
missing information. On the other side, the results also pave
the ground for an application of thermodynamic concepts
in situations where (entanglement) entropy is not finite, but
relative (entanglement) entropy is. What we have specifically
in mind here is the local description of a quantum field theory
and its entanglement properties. The von Neumann entropy
for the reduced density matrix of a spatial subregion (known
as entanglement entropy) has severe ultraviolet divergences,
while relative entanglement entropy is usually finite. With the
formulation of thermodynamics in terms of relative entropy
presented here, it might become possible to develop a better
understanding of quantum field theories in close-to but out-
of-equilibrium situations (see also Ref. [85]) and to connect
more directly to local thermal equilibrium approximations as
they arise in the context of (relativistic) fluid dynamics.

Other interesting questions for future work concern the op-
erational definition of relative entropy directly within a purely
thermodynamic context. In particular one may ask what is
needed to define relative entropy as thermodynamic quantity
and how this differs from the operational definition of entropy
developed in Refs. [54–64].
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