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Asymmetric stochastic resetting: Modeling catastrophic events
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In the classical stochastic resetting problem, a particle, moving according to some stochastic dynamics,
undergoes random interruptions that bring it to a selected domain, and then the process recommences. Hitherto,
the resetting mechanism has been introduced as a symmetric reset about the preferred location. However, in
nature, there are several instances where a system can only reset from certain directions, e.g., catastrophic events.
Motivated by this, we consider a continuous stochastic process on the positive real line. The process is interrupted
at random times occurring at a constant rate, and then the former relocates to a value only if the current one
exceeds a threshold; otherwise, it follows the trajectory defined by the underlying process without resetting.
An approach to obtain the exact nonequilibrium steady state of such systems and the mean first passage time
to reach the origin is presented. Furthermore, we obtain the explicit solutions for two different model systems.
Some of the classical results found in symmetric resetting, such as the existence of an optimal resetting, are
strongly modified. Finally, numerical simulations have been performed to verify the analytical findings, showing
an excellent agreement.
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I. INTRODUCTION

Ecosystems regularly undergo either environmental or an-
thropogenic disturbances which alter the number of species
as well as the size of their populations. Natural disasters or
catastrophes, such as droughts, fires, epidemics, or invasions,
may cause major declines. In the aftermath of these, depleted
populations have to recover from low population sizes with an
increased risk of extinction [1,2]. Similarly, financial crashes
affect gross domestic product, asset prices, consumptions, and
investments and therefore strongly modify typical business
cycles [3,4].

These two examples show that, besides being rare and
extreme, such events are not followed by episodes of compara-
ble large increases in the corresponding variables. Explaining
abrupt crashes is challenging, especially when trying to find
a general tool applicable to a large class of stochastic models.
Indeed, these crises have the potential to alter the temporal dy-
namics of state variables as well as the steady-state properties
of the system.

In this work, we introduce a toy framework which can
be applied to a large class of stochastic processes and can
account for abrupt changes in some state variable. It deals with
the effects of sudden drops by introducing random resetting
events to a nonvanishing value within a diffusive stochastic
process.

As it stands today, stochastic resetting was originally intro-
duced in the context of search processes [5–10]. Remarkably,
its foundation has brought also a collection of appealing re-
sults that include the nonequilibrium steady state [11–19],
optimization of the mean first passage time [20–22], and fluc-
tuation theorems [23–27].

Stochastic resetting has been used in a plethora of appli-
cations [7]. In the context of population dynamics, resetting
is known as catastrophe and mimics the effects of natural

disasters in the ecosystem. Indeed, some of the primordial
notions of stochastic resetting for the modeling of catastrophic
events can be found in the literature [28–34]. However, these
models have been usually described through a dynamics based
on jump processes in which resetting is added. The main goal
of this paper is to apply a comprehensive theoretical frame-
work provided by Markov processes with reset to population
dynamics described through diffusion processes.

Mimicking the perturbation produced by a natural disaster
or a sudden financial drop using stochastic resetting forces us
to redefine the assumptions of the relocations. More specifi-
cally, the reset events have to be asymmetric, i.e., albeit the
population size (or the particle position) may plummet owing
to a catastrophic event, it is nevertheless impossible that an
offsetting positive increment of the variable occurs owing to
another similar event.

Motivated by this, we present an approach to a general
problem of asymmetric stochastic resetting in diffusive pro-
cesses. We apply it to two paradigmatic examples which
exemplify the main features and consequences of such asym-
metry. Herein, we tackle the following two relevant questions:
(i) What is the hallmark of such a resetting mechanism at
stationarity? In other words, how is the nonequilibrium sta-
tionary state modified due to resetting? (ii) How does the mean
lifetime of a population change under asymmetric stochastic
resetting?

The remaining of the paper is organized as follows. In
Sec. II, we discuss the basis of our model to mimic population
dynamics involving catastrophic events. The nonequilibrium
steady state and the mean first passage time, respectively, are
discussed in Secs. III and IV. Therein, we introduce a gen-
eral formalism that afterwards particularized to two specific
situations of interest. Finally, we present the main conclusion
of our work in Sec. V. Some technical details and lengthier
auxiliary calculations are shown in Appendices.
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FIG. 1. Sketch of asymmetric stochastic resetting process. The
system evolves over time (zigzag curve) with interrupting events
(horizontal arrows) which bring the former to a certain value xr > 0
with rate r(x) = r�(x − xr ).

II. MODEL

We approximate the evolution of the population size, i.e.,
the number of individuals, of a given species by a continuous-
state stochastic process defined on the positive real line.
Starting with a positive population size, at later times the num-
ber of individuals, x, is governed by the following Langevin
dynamics:

dx

dt
= A(x) +

√
2B(x)η(t ), (1)

where A(x) and B(x) [A(0) > 0 and B(0) = 0 in population
dynamics], respectively, are the state-dependent drift and dif-
fusion terms. Also, η(t ) is a Gaussian white noise with zero
mean and delta correlated, i.e., 〈η(t )〉 = 0 and 〈η(t )η(t ′)〉 =
δ(t − t ′). The above stochastic differential equation has to be
interpreted according to the Itô scheme [35]. Diffusive models
have been proven to be very useful to capture emergent pat-
terns in population dynamics [36–39]. Remarkably, Eq. (1)
is very general, allowing the study of generalized models in-
volving heterogeneous diffusion, which are processes of great
interest in the field of anomalous diffusion [40–44].

In addition to the dynamics described by Eq. (1), we as-
sume that there is a stochastic resetting to a constant value
xr > 0. The resetting events occur at random times with a
constant rate r, but only if the population size is above the
resetting threshold xr . The schematic representation of such a
composed process is shown in Fig. 1.

Of course, different choices of A(x) and B(x) lead to
completely different stochastic models, with very different
physical properties. Nevertheless, it is possible to study some
relevant features of the process with a unified approach, which
we develop here. Later, we will look into two more specific
cases, which have important applications: (I) pure homoge-
neous diffusion and (II) simple population dynamics with
demographic stochasticity.

The resetting mechanism introduced above is a par-
ticular but relevant case of resetting. It corresponds to
regular stochastic resetting with a state-dependent rate r(x) =
r�(x − xr ), where �(·) is the Heaviside function that guaran-
tees that resetting only occurs when population size is larger
than xr , in contrast to standard symmetric resetting mecha-
nism. This is another appealing aspect of our modeling since
the formulation of state-dependent resetting rates has been
already introduced [6,45,46] but the applications have been,
to the best of our knowledge, quite scarce.

The dynamics of the propagator p(x, t |x0), which is the
probability of reaching the state x at time t departing from
initial state x0 at time zero, is captured by the master equation:

∂ p(x, t |x0)

∂t
= − ∂J (x, t |x0)

∂x
− r�(x − xr )p(x, t |x0)

+ rδ(x − xr )
∫ ∞

xr

dy p(y, t |x0), (2)

where J (x, t |x0) := A(x)p(x, t |x0) − ∂x[B(x)p(x, t |x0)] is the
probability flux that stems from the resetting-free dynamics in
Eq. (1). The second term on the right-hand side corresponds to
the loss rate of the probability from x due to resetting, while
the third term represents the corresponding gain rate of the
probability at x = xr coming from the resetting of all positions
larger than xr . Note that the resetting term into Eq. (2) is a
particularization of the general term for state-dependent reset-
ting rate, first introduced in Ref. [6], for our specific choice of
asymmetric resetting.

III. NONEQUILIBRIUM STATIONARY STATE

As stated in the Introduction, the nonequilibrium steady
state for the symmetric resetting has been already studied
in the literature [7,11–19]. However, in this paper, we study
the models where the resetting is asymmetric with respect to
its resetting location. Herein, we focus on the study of the
nonequilibrium stationary state of Eq. (2), pss(x), subject to
reflecting boundary conditions at x = 0. We can obtain pss(x)
by setting the left-hand side of the Eq. (2) to zero and solving
for the distribution. Since we have to deal with a discontinuity
in the equation (2), it is handy to define PL(x) and PR(x)
as the stationary solutions to the left and to the right of xr ,
respectively. Therefore, the corresponding fluxes JL(x) and
JR(x) obey the following equations:

∂xJL(x) = 0, 0 < x < xr, (3a)

∂xJR(x) = −rPR(x), x > xr . (3b)
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Note that, in our problem, it is convenient to study the
current contributions explicitly in this way. These equations
have to be complemented with the boundary conditions

JL(0) = 0, (4a)

lim
x→∞ JR(x) = 0, (4b)

and the matching conditions

PR(xr ) = PL(xr ), (5a)

JR(xr ) = JL(xr ) + r
∫ ∞

xr

dx PR(x). (5b)

Equation (5a) is the continuity condition for our solution,
whereas the kink condition in Eq. (5b) is obtained by inte-
grating Eq. (2) from xr − ε to xr + ε and then taking the limit
ε → 0+.

Since there is no probability leakage from the boundaries,
the normalization is preserved over the whole evolution,∫ xr

0
dx PL(x, t ) +

∫ ∞

xr

dx PR(x) = 1. (6)

It could seem that we have an excess of conditions, since we
have two second-order ODEs (3) and five conditions to fulfill,
i.e., Eqs. (4), (5), and (6). This apparent paradox is resolved
when studying carefully the kink condition (5b). Integrating
Eq. (3b) from xr to ∞, using the boundary conditions (4b),
and taking into account that JL(x) = 0, one obtains the match-
ing condition (5b). Thus, the kink condition becomes a trivial
identity that always holds.

Let us first focus on the region 0 < x < xr . We have to
solve Eq. (3a) with the reflecting boundary condition defined
in (4a). This is a first-order linear ODE for PL(x) whose
solution is determined up to an arbitrary constant N1:

PL(x) = fL(N1, x), (7)

where

fL(N1, x) = N1

B(x)
exp

[∫ x

dy
A(y)

B(y)

]
, (8)

that is, the equilibrium solution [35] of the stochastic model
without resetting.

When x is larger than xr , we solve Eq. (3b) with a reflecting
boundary at infinity, i.e., Eq. (4b). Thus, the general solution
is given by

PR(x) = fR(N2, x), (9)

determined up to another arbitrary constant N2. The constants
N1 and N2 can be found using conditions (5a) and (6).

Hitherto, we have outlined a procedure to obtain the solu-
tion for arbitrary smooth functions A(x) and B(x). Clearly, the
choice of a specific stochastic model is crucial and could lead
to computational difficulties in the determination of an ex-
plicit solution, especially in the calculation of fR (9). In order
to appreciate analogies and differences with processes with
symmetric resetting, in the following, we have considered
two prototypical cases of stochastic processes submitted to
asymmetric resetting. As well as being of intrinsic theoretical
importance, they are also relevant in applications.

In the first case (I), we consider a particle which undergoes
pure diffusion with diffusive constant D on the real positive
line. When hitting the origin, it bounces back to the positive
domain, whereas when (and only when) its position is larger
than xr , it is relocated at x = xr at random times with a
constant rate r. One obtains the stationary distribution (see
Appendix B for details):

pss(x) =

⎧⎪⎪⎨
⎪⎪⎩

1

xr + √
D/r

for 0 � x � xr,

exp [−√
r/D(x − xr )]

xr + √
D/r

for x > xr .

(10)

Note that the probability of finding the particle at positions
smaller than xr is uniform, whereas there is an exponential
decay for x > xr . The exponential decay is the hallmark of
standard diffusion [5] with symmetric resetting, whereas, in
the region without resetting, we recover the uniform solution.

In the second case (II), we consider an ecological model
defined by A(x) = b − x and B(x) = x. The details of its
derivation are presented in Appendix A. The drift term ac-
counts for immigration and net death rate of individuals in a
certain region. Instead, B(x) is linear on the population size,
because the model assumes that the source of stochasticity is
only due to individual random births and deaths. This model
has been used to explain some macroecological patterns in
species-rich ecosystems [36,47]. In this case the asymmetric
resetting describes how the population size plummets to a
smaller size in the aftermath of environmental catastrophic
events. The solution for the stationary distribution of this
ecological model reads

pss(x) =
⎧⎨
⎩
N x−1+be−x for 0 � x � xr,

N x−1+be−x U (r, b, x)

U (r, b, xr )
for x > xr,

(11)

where N is a normalization constant (see Appendix B for
further details) and U (α, β, x) is the confluent hypergeometric
function of the second kind [48]. Remarkably, pss(x) is a very
well-known function in theoretical ecology, which is used to
quantify the total number of species with a given number of
individuals within some spatial region. In diffusive models
of population dynamics, this empirical pattern is usually well
approximated by a gamma distribution [36–39] when there is
no resetting.

In Fig. 2, we compare the theoretical prediction (solid
curve) of the steady-state distribution pss(x) given in Eqs. (10)
and (11) with the distribution obtained by numerical simula-
tions (circles, squares, and triangles) at three different times.
Herein, we have taken the initial condition equal to xr , but
this has no effect on the final stationary state. Notice that, as
the observation time increases, the difference between theory
and finite time simulations decreases, to becoming negligible
within the plotted range, since simulations have reached the
stationary regime.

IV. MEAN FIRST PASSAGE TIME

To study the mean first passage time (MFPT) to reach
x = 0, we have to assume that the origin of the real axis is
an absorbing boundary. If the probability to hit that boundary
is one as t → ∞, then the equation for the MFPT departing
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FIG. 2. Relaxation to the steady-state distribution pss(x). (a) (I)
Pure diffusion. (b) (II) Ecological model. The solid curve stands
for the stationary theoretical prediction while circles, squares, and
triangles are obtained from the numerical simulation at three dif-
ferent times. The parameters for panel (a) are x0 = xr = 2, r = 0.5,
and D = 1 and for panel (b) b = 0.9, x0 = xr = 0.25, and r = 0.5.
In each case, the vertical dashed line corresponds to the resetting
location xr .

from x, τ (x), is

−1 = A(x)∂xτ (x) + B(x)∂2
x τ (x)

+ r�(x − xr )[τ (xr ) − τ (x)]. (12)

A comprehensive derivation of the above equation based
on the backward master equation (2) is reserved in
Appendix C. This equation has to be complemented with the
boundary conditions

τ (0) = 0, (13a)

lim
x→∞ τ (x) is finite. (13b)

Note that the presence of resetting entails a finite MFPT as
x → ∞, since the reset connects any value of x > xr with xr .

In order to find the solution of Eq. (12), we follow a strat-
egy similar to before: solving the equation to both sides of xr

separately and then imposing the proper boundary and match-
ing conditions. In the following, we present the solutions for
the two cases of interest we have introduced previously. The
detailed derivation is relegated to the Appendix D.

In the case of pure diffusion the MFPT reads

τ (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− x2

2D
+ x

(
xr

D
+ 1√

rD

)
0 � x � xr,

1 − e−√
r/D(x−xr )

r
+ x2

r

2D
+ xr√

rD
x > xr .

(14)

On the other hand, the mean lifetime in the ecological case
equals to

τ (x) = τL(x)�(xr − x) + τR(x)�(x − xr ), (15)

where

τL(x) =
∫ x

0
dy y−bey

[

(b, y) − 
(b, xr )

+ U (1 + r, 1 + b, xr )

U (r, b, xr )
xb

r e−xr

]
, (16a)

τR(x) = τL(xr ) + 1

r

[
1 − U (r, b, x)

U (r, b, xr )

]
. (16b)

FIG. 3. Asymptotic of [τ (x) − τ (xr )] with respect to x. Clearly,
we can see that [τ (x) − τ (xr )] approaches r−1 (horizontal red dashed
line) as x → ∞. The parameters used in the above plots for diffusion
model (a) are D = 1, xr = 5, r = 0.1 and for ecological one (b) are
xr = 1.0, b = 0.8, r = 2.0.

Note that limx→∞ τ (x) − τ (xr ) = 1/r in both cases, as
shown in In Fig. 3. Indeed, this general property can be
derived from Eq. (12), when considering Eq. (13b) and taking
the limit x → ∞.

We plot the theoretical MFPT [Eqs. (14) and (15)] with
respect to the initial location x in Fig. 4 for both cases. For
a fixed r, it is clear that the MFPT reaches asymptotically
a constant value as x increases. Moreover, we highlight that
τ (x) monotonically decreases as r increases for a fixed x (see
Fig. 5). This is because the asymmetric resetting brings the
system to xr only when x is larger than xr . Hence, our results
depart from the ones obtained in Ref. [6], since the asymmetry
in the resetting makes the dependence monotonic and removes
any possibility of an optimal resetting rate, which stemmed
from the combined effect of resetting to both sides of xr .
Finally, we compare the analytical results of MFPT [Eqs. (14)
and (15)] with the numerical simulations in Fig. 5 for both
model systems, and they have excellent agreement.

In Fig. 6, the behavior of the mean first passage time
τ (x) is shown for two different models: diffusion system
[Fig. 6(a)] and ecological model [Fig. 6(b)]. It is clear that
the τ (x) is monotonically decreasing with the resetting rate r
for given x. This is because the (asymmetric) resetting always
brings the system close to the absorbing location in stark con-
trast to the symmetric resetting where system can also reset
to the opposite direction to the absorbing location leads to

FIG. 4. Mean first passage time τ (x). (a) (I) Pure diffusion.
(b) (II) Ecological model. It is observed that τ (x) reaches a constant
value for large x, and it increases with the initial location of the
system. As it is reasonable, the mean first passage time decreases
with resetting rate r for given x. The vertical dashed line indicates
the resetting location xr . The parameters for panel (a) are xr = 5 and
D = 1 and for panel (b) b = 0.5 and xr = 5. In each case, the vertical
dashed line corresponds to the resetting location xr .
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FIG. 5. Mean first passage time τ (xr ) as a function the resetting
rate r. (a) (I) Pure diffusion. (b) (II) Ecological model. In both cases,
solid curve is the analytical prediction given by Eqs. (14) and (15),
whereas the squares are obtained from numerical simulations. The
parameters for the panel (a) are xr = x0 = 0.1 and D = 1 and for the
panel (b) xr = x0 = 0.1 and b = 0.5.

nonmonotonic behavior as shown in the seminal work by
Evans and Majumdar [5].

V. CONCLUSIONS

In this work, we have studied an asymmetric state-
dependent resetting mechanism for diffusive processes on the
positive real line. This model has allowed us to obtain both
(i) the stationary state when the system is subject to reflect-
ing boundary conditions and (ii) the mean first passage time
to the the origin. We have exactly derived these quantities
in detail for two different model systems: the paradigmatic
homogeneous diffusion process and an ecological model for
species-rich ecosystems. In both cases, numerical simulations
are in perfect agreement with our theoretical predictions, val-
idating our results.

An important motivation to study this class of models with
asymmetric resetting relies on ecological applications. We
have modeled the effect of a catastrophic event as a sudden
drop of the population to a fixed value xr > 0. Such extreme
events, owing to environmental changes, may have disruptive
consequences on ecosystems. This is of course a caricature of
reality, but this toy model is nevertheless a good starting point
that allows exact mathematical treatment and initial investiga-

FIG. 6. Mean first passage time τ (x) [given in (14) and (15)]
with respect to resetting rate r for given x. Herein we show τ (x) for
diffusion model in panel (a) and the ecological model in panel (b). As
it is reasonable, the mean first passage time decreases with resetting
rate r for given x. For r → 0, τ (x) diverges only for the diffusion
model while it stays finite [indicated by filled circles in panel (b)]
for the ecological setting, and is in agreement with the mean first
passage time in the absence of resetting. The parameters for panel
(a) are D = 1, xr = 5 and for panel (b) b = 0.5, xr = 5.

tions of ecological or economic crashes. We have obtained
that the MFPT, which is the average time for a species to
become extinct, always decreases with the disaster rate r. This
is an intuitive result that contrasts with the usual symmetric
resetting in Brownian dynamics [6], where the optimal re-
setting rate can be derived. However, in our framework with
asymmetry, the reset event always drives the system closer to
the absorbing position, thus decreasing the first passage time
on average.

As well as developing new interesting theoretical aspects of
nonequilibrium statistical mechanics, asymmetric stochastic
resetting is an appealing tool for understanding fundamental
features of natural disaster dynamics in different systems, in-
cluding ecosystems. A good deal of realism could be achieved
by considering xr a quenched random variable. The final
stationary distributions and the MFPT should be averaged
over the probability density function of xr , thus increasing the
variability of the final distributions.

The presented model is also applicable to other fields
beyond ecology and statistical mechanics. For instance, the
ecological model we have previously outlined is known as the
Cox-Ingersoll-Ross model [49] in the mathematical finance
literature. Such a paradigmatic model with asymmetric reset-
ting could be considered a first approximation when including
the effects of sudden financial crises.
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APPENDIX A: ECOLOGICAL MODEL IN
DIMENSIONLESS VARIABLES

The ecological model used in our work was introduced and
studied in detail in Ref. [38]. This model stems from a contin-
uous description of a birth and death process. Specifically, the
drift and diffusion coefficients, respectively, are given by

A(x) = b − μx, B(x) = Dx. (A1)

Herein, there are three biological parameters, namely μ, b, and
D. First, μ is the inverse of the characteristic time associated
with species turnover. Second, b takes into account the effects
from immigration. Finally, D accounts for the demographic
stochasticity.

It is handy to use a dimensionless description defined by
new variables x̃ = μx/D, t̃ = μt , and parameters b̃ = b/D,
r̃ = r/μ. Of course, the new timescale enters also in the
definition of the mean first passage time, τ̃ = μτ . For the sake
of simplicity, in our notation we drop the tildes from now on.
Using these dimensionless variables and parameters, we have
the drift and diffusion terms:

A(x) = b − x, B(x) = x. (A2)

Remarkably, once we define proper scales the stochastic
model without resetting reduces the number of parameters
from three to one parameter.
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APPENDIX B: EXPLICIT SOLUTION FOR THE
STATIONARY STATE

For the general case, the equation for the stationary distri-
bution in presence of asymmetric resetting is the solution of
the integrodifferential equation,

0 = − ∂x[A(x)pss(x)] + ∂2
x [B(x)pss(x)]

− r�(x − xr )pss(x) + rδ(x − xr )
∫ ∞

xr

dy pss(y), (B1)

submitted to (i) natural boundary conditions in zero and in-
finity, and the matching conditions discussed in the main text;
(ii) the matching condition at xr ; and (iii) the normalization
from zero to infinity.

1. Case (I): Pure diffusion

First, we consider the simplest homogeneous diffusive pro-
cess, i.e., B(x) = D in the absence of any drift A(x) = 0.
Hence, this is a pure diffusion process on the positive side
of x axis subjected to an asymmetric resetting mechanism.
In this case, the probability flux is given by −D∂x pss(x) [see
Eq. (B1)]. Therefore, the solutions to the left and to the right
of xr can be computed. Specifically, we find that

fL(N1, x) = N1, (B2a)

fR(N2, x) = N2 e−x
√

r/D, (B2b)

where N1 and N2 are the constants that can be determined
using the matching and normalization conditions discussed in
the main text, and we obtain

N1 = 1

xr + √
D/r

,

N2 = exr
√

r/D

xr + √
D/r

. (B3)

Finally, substituting these N1,2, we find the stationary proba-
bility density function given in Eq. (10).

2. Case (II): Ecological model

Now we focus on solving the stationary distribution in the
ecological model defined in (A2). The solutions to the left and
to the right of xr can be computed, and we get

fL(N1, x) = N1x−1+b e−x, (B4a)

fR(N2, x) = fL(N2, x)U (r, b, x), (B4b)

where U (a, b, x) is the confluent hypergeometric function of
the second kind also known as Tricomi’s function. Imposing
the matching and normalization conditions, we obtain value of
constants N1 and N2 in terms of the parameter of the model,

N1 = 
(1 + r)
(1 + r − b)U (r, b, xr )

× [
xb

r 
(−b)
(1 + r) 1F1(b − r, 1 + b,−xr )

+
(1 + r − b){
(b) 1F1(−r, 1 − b, xr )

+
(1 + r)U (r, b, xr )[
(b) − 
(b, xr )]}]−1
, (B5a)

N2 = N1

U (r, b, xr )
, (B5b)

where 1F1(α; β; x) is the Kummer confluent hypergeo-
metric function, and 
(z) := ∫ ∞

0 dt e−t t z−1 and 
(z, a) :=∫ ∞
a dt e−t t z−1, respectively, are the gamma and the incom-

plete gamma functions. Thus, we obtain the final distribution
as shown in Eq. (11), where for simplicity, we write N = N1.

APPENDIX C: DERIVATION OF THE EQUATION FOR THE
MEAN FIRST PASSAGE TIME

In this section, we obtain the mean first passage time for the
system to hit the target x = 0 (i.e., the absorbing boundary)
for the first time during the evolution. It is always convenient
to write the backward master equation. With this, we study
the probability density function p(x, t |x0, t0) for the system
to be in x at time t starting from x0 at time t0 as a function
of x0 and t0. Note that in the backward equation, both x0

and t0 are the variables in contrast to the case of forward
formalism where they play the role of parameters with x and t
being the variables. Our starting point to derive the backward
framework is the Chapman-Kolmogorov equation [35],

p(x, t |x0, t0) =
∫ ∞

0
dx1 p(x, t |x1, t1)p(x1, t1|x0, t0), (C1)

where t1 ∈ (t, t0) is an intermediate time. If we differentiate
the above Eq. (C1) with respect to t1, introduce the forward
equation for p(x1, t1|x0, t0), carry out integration by parts, and
evaluate it at the end for t1 = t0, we finally arrive at

−∂ p(x, t |x0, t0)

∂t0
=

[
A(x0)

∂

∂x0
+ B(x0)

∂2

∂x2
0

]
p(x, t |x0, t0)

+ r�(x − xr )

× [p(x, t |xr, t0) − p(x, t |x0, t0)]. (C2)

The above equation is the desired backward master equation.
Integrating the above equation (C2) over x from 0 to ∞,

shifting t0 by changing the variable t − t0 to t , and then,
differentiating with respect to time t , we obtain the evolution
equation for the first passage distribution F (t, x) for a system
departing from x and arriving at x = 0 for the first time,

∂F (t, x)

∂t
=

[
A(x)

∂

∂x
+ B(x)

∂2

∂x2
0

]
F (t, x)

+ r�(x − xr )[F (t, xr ) − F (t, x)]. (C3)

Note that in order to simplify the notation we have dropped
the subindex 0 in x0. The above equation is subjected to
the boundary conditions F (0, x) = 0 and limt→∞ F (t, x) = 0,
where the latter condition ensures that

∫ ∞
0 dt F (t, x) is finite.

Now we define the probability of exiting through x = 0
departing from x regardless of the time required

�(x) :=
∫ ∞

0
dt F (t, x), (C4)

where the boundary conditions for �(x) are

�(0) = 1, (C5a)

lim
x→∞ �(x) is finite. (C5b)

While the first condition ensures the total exit probability
of the system started from the absorbing boundary is one,
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the second one says that there is a finite probability of the
system to reach the absorbing boundary at x = 0 started
from x → ∞.

This quantity follows the following differential equation:

0 = A(x)∂x�(x) + B(x)∂2
x �(x)

+ r�(x − xr )[�(xr ) − �(x)]. (C6)

The solution of Eq. (C6) given the boundary conditions (C5)
for the two cases of interest we have already introduced in this
paper is simply �(x) = 1 since the system eventually reach
the absorbing boundary.

Now, the mean first passage time τ (x) for exiting through
x = 0 is defined as

τ (x) :=
∫ ∞

0 dt t F (t, x)

�(x)
. (C7)

Multiplying equation (C3) by t and integrating over time from
0 to ∞, we obtain the differential equation for τ (x),

−�(x) = A(x)∂x[�(x)τ (x)] + B(x)∂2
x [�(x)τ (x)]

+ r�(x − xr )[�(xr )τ (xr ) − �(x)τ (x)], (C8)

where we have made use of limt→∞ tF (t, x) = 0. The bound-
aries condition in this case are

τ (0) = 0, (C9a)

lim
x→∞ τ (x) is finite. (C9b)

Note that the presence of resetting provides that the mean
first passage time has to be finite for x → ∞ since the reset
connects any value of x > xr with xr .

Equations (C6) and (C8) can be solved to the left and to the
right of xr separately. Boundary conditions (C5a) and (C9a)
apply to the left solution, whereas the (C5b) and (C9b) apply
to the right solution. The full solution of the both �(x) and
τ (x) can be obtained using matching condition at xr (i.e., both
functions and their first derivatives should be continuous at
x = xr). However, these are difficult to obtain for general drift
and diffusive coefficient. In the following section, we study
in detail the two cases of interest taking into account that
�(x) = 1 therein.

APPENDIX D: EXPLICIT SOLUTION FOR THE MEAN
FIRST PASSAGE TIME

The equation for the mean first passage time in the general
case is given by (C8) submitted to boundary conditions in (C9)
and the matching condition. Below, we study the two cases of
interest reported in the main text.

1. Case (I): Pure diffusion

In the case of pure diffusion, the differential equation for
τ (x) becomes simply

−1 = D∂2
x τ (x) + r�(x − xr )[τ (xr ) − τ (x)]. (D1)

We solve the above differential equation using the boundary
conditions (C9) and matching conditions and get the solution

reported in the main text

τ (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− x2

2D
+ x

(
xr

D
+ 1√

rD

)
0 � x � xr

1 − e−(x−xr )
√

r/D

r
+ x2

r

2D
+ xr√

rD
x > xr

.

(D2)

2. Case (II): Ecological model

In the ecological case, we find again that �(x) = 1.
Thus, the mean first passage time τ (x) obeys the differential
equation

−1 = (b − x)∂xτ (x) + x∂2
x τ (x)

+ r�(x − xr )[τ (xr ) − τ (x)]. (D3)

It is possible to solve the above differential equation using
the boundary conditions (C9) and the matching conditions at
x = xr . That yields the solution

τ (x) = τL(x)�(xr − x) + τR(x)�(x − xr ), (D4)

where

τL(x) =
∫ x

0
dy y−bey

[

(b, y) − 
(b, xr )

+ U (1 + r, 1 + b, xr )

U (r, b, xr )
xb

r e−xr

]
, (D5a)

τR(x) = τL(xr ) + 1

r

[
1 − U (r, b, x)

U (r, b, xr )

]
, (D5b)

which is the solution reported in the main text. The integral
in Eq. (D5a) can be explicitly carried out. Nevertheless, we
have chosen to keep the integral form in order to avoid clutter.
Note that the above solutions is well defined for b < 1, as also
happened in absence of resetting for the absorbing solution in
the original model [38].

APPENDIX E: SIMULATION METHOD

Herein, we put forward the method of numerical simulation
we have used along this work. Specifically, all simulations are
based on the the discretization of the Langevin equation (1)
which is complemented with the stochastic resetting.

To obtain the distribution at time t , we discretize the time
t = n �t , where n is an integer and �t stands for the unit time
step. Our choice for the initial condition is x(0) = xr . On the
one hand, if x(t ) > xr ,

(i) with probability 1 − r�t , where r is a constant reset-
ting rate, the system evolves according to

x(t + �t ) = x(t ) + A(x(t )) +
√

2B(x(t ))�t ζ , (E1)

where ζ is the Gaussian random variable with mean 0 and
variance 1.

(ii) Whereas it is abruptly reset to xr with probability r�t .
On the other hand, if x(t ) < xr , then the system undergoes

the stochastic evolution as illustrated in the step 1. The process
iterates until time t is achieved. We obtain the distribution
building the histogram after repeating the stochastic process
R realizations.
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For the results of the MFPT, we assume an absorb-
ing boundary at the origin x = 0, and observe the first
time the system hits the absorbing boundary following dis-

cretized scheme of the dynamics as illustrated above. We
repeat the process for R number of realizations and compute
the MFPT.
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