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Critical dynamics of anisotropic antiferromagnets in an external field
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We numerically investigate the nonequilibrium critical dynamics in three-dimensional anisotropic antiferro-
magnets in the presence of an external magnetic field. The phase diagram of this system exhibits two critical lines
that meet at a bicritical point. The nonconserved components of the staggered magnetization order parameter
couple dynamically to the conserved component of the magnetization density along the direction of the external
field. Employing a hybrid computational algorithm that combines reversible spin precession with relaxational
Monte Carlo updates, we study the aging scaling dynamics for the model C critical line, identifying the critical
initial slip, autocorrelation, and aging exponents for both the order parameter and the conserved field, thus also
verifying the dynamic critical exponent. We further probe the model F critical line by investigating the system
size dependence of the characteristic spin wave frequencies near criticality and measure the dynamic critical
exponents for the order parameter including its aging scaling at the bicritical point.
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I. INTRODUCTION

Classical anisotropic antiferromagnets governed by
Heisenberg spin exchange in an external magnetic field
exhibit a rich phase diagram with multiple thermodynamic
ground states separated by continuous and discontinuous
transition lines that meet at a multicritical point [1,2].
This paradigmatic model system describes various
magnetic compounds including MnF2 [3], GdAlO3 [4],
and NiCl2 · 6H2O [5] and, thus, has been extensively
investigated theoretically as well as experimentally. Early
renormalization-group [6], Monte Carlo simulation [7], and
high-temperature expansion [8] studies have systematically
explored its complex phase diagram and characterized the
properties of the different ordered phases and determined the
universality classes for its critical transition lines.

The anisotropy term along one of the crystal axes breaks
the rotational symmetry of the Heisenberg antiferromagnet
enforcing an antiparallel spin ordering along that axis in the
low-temperature, low-field ground state, i.e., the Ising anti-
ferromagnetic (AF) phase (cf. Fig. 1). As the external field
strength is tuned up while the temperature is kept low, the
ground-state switches, via a discontinuous (first-order) tran-
sition, to a spin-flop (SF) phase. At higher values of either
temperature or magnetic field, the system becomes paramag-
netic (PM). The phase transitions between the PM and the
AF and SF states are both continuous (second order). While
the associated static critical properties of the system are char-
acterized solely by the symmetry and the dimensionality of
the anisotropic Heisenberg Hamiltonian, the dynamics in the
vicinity of the phase transitions driving it from the disordered
phase to the ordered AF and SF phases, respectively, are
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distinctly different and crucially depend on the microscopic,
reversible dynamical couplings between the corresponding or-
der parameters and the conserved magnetization components.

Indeed, the transition from the AF to the PM phase is
described by the dynamic critical behavior of model C, while
the SF-to-PM phase transition belongs to the dynamical uni-
versality class of model F; here we invoke the classification
introduced by Halperin and Hohenberg in 1977 in their com-
prehensive early review of dynamic critical phenomena [9].
The presence of a nonordering field shifts the nonuniversal
parameters of the system such as the critical temperature, but
it does not change the nature of the critical point, i.e., the uni-
versal scaling exponents characterizing the critical power-law
divergences remain unaltered. Yet an intriguing distinct phys-
ical scenario results in the vicinity of the multicritical point,
where both critical lines as well as the discontinuous phase
transition meet. At the multicritical point, all three different
phases compete for the lowest free energy configuration; thus
the system’s symmetry at this special point is higher than in
the adjacent parameter space. Hence, the dynamical properties
in the vicinity of this point are expected to be characterized by
new exponents which are distinct from those of the conjoining
critical lines.

The nature of the multicritical point for anisotropic anti-
ferromagnets subject to an external magnetic field (oriented
along the z direction) has been somewhat controversial. This
special point in parameter space is characterized by two cou-
pled order parameter fields with O(n⊥) ⊕ O(n‖) symmetry;
it displays long-range order both along the magnetic-field z
axis and in the perpendicular xy plane. A series of papers
by Folk, Holovatch, and Moser employed the renormalization
group to investigate the static and dynamic critical behavior
and the stability of the associated fixed points of the system
[10–13]. They predicted the emergence of either bicritical be-
havior associated with a Heisenberg fixed point or tetracritical
behavior, in turn associated with a biconical or a decoupled
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FIG. 1. Schematic Hext-T phase diagram of an anisotropic an-
tiferromagnet in the presence of an external field showing two
ordered phases separated by a first-order transition line. The anti-
ferromagnetic and spin-flopped ordered phases are separated from
the disordered paramagnetic phase by lines of continuous phase
transitions that meet at a bicritical point.

renormalization-group fixed point. An analysis to higher order
resulted in the tetracritical point with a biconical phase to
represent the stable fixed point [14]. A recent six-loop per-
turbative dimensional ε expansion of the three-dimensional
n-vector model has shown that for n = 3, the obtained critical
exponents are very close to the Heisenberg fixed point values
even though that is not the stable fixed point in the asymptotic
infrared limit [15]. Thus, the observed critical behavior in
experiments and simulations may be indistinguishable from
the isotropic Heisenberg fixed point scaling. This has in-
deed been observed to be true in a series of detailed Monte
Carlo simulations analyzing order parameter susceptibilities,
the Binder cumulant, and associated probability distributions,
which reported that the nature of the multicritical point is in
fact bicritical with Heisenberg symmetry [16,17].

While the static critical behavior and stationary critical dy-
namics of this system have been investigated comprehensively
in the literature, we are not aware of previous computational
work addressing the nonequilibrium critical relaxation of the
anisotropic Heisenberg antiferromagnet in an external mag-
netic field either near the continuous phase transition line or
at the multicritical point. To this end, the system is initially
prepared in a disordered configuration and then quenched pre-
cisely to its critical point such that the dynamics algebraically
slowly evolves towards the asymptotic stationary state. During
this early nonequilibrium relaxation time window, the system
retains the memory of its initial state and, thus, manifests
broken time translation invariance. By studying the ensuing
aging scaling behavior of two-time quantities at these early
times, one may fully characterize the dynamics near the dis-
tinct critical points and the corresponding universality classes
[18,19].

In this work, we utilize a hybrid simulation method com-
bining relaxational Monte Carlo kinetics and reversible spin
precession processes [20] to explore the aging scaling be-
havior of the AF-to-PM model C critical line and in the
vicinity of the multicritical point. We measure the critical
aging scaling, autocorrelation decay, and initial slip expo-
nents for the model C universality class and determine the

associated dynamic critical exponent. We also investigate
the nonequilibrium dynamics of the conserved magnetization
component. Furthermore, we utilize Fourier spectral analysis
for the spin-wave excitations in the xy plane in the SF ordered
phase to verify the dynamic critical exponent for the SF-to-
PM model F critical line. Finally, we investigate the critical
order parameter dynamics at the bicritical point.

II. MODEL AND SIMULATION METHOD

The Hamiltonian of a three-dimensional antiferromagnet
with anisotropic Heisenberg exchange interactions in an ex-
ternal magnetic field is given by

H = J
N∑

〈i j〉

[
�

(
Sx

i Sx
j + Sy

i Sy
j

) + Sz
i Sz

j

] − Hext

N∑
i=0

Sz
i , (1)

where Si
x, Si

y, and Si
z represent the components of the three-

dimensional spin vector �Si at the ith site of a simple cubic
lattice of linear extension L with total spin number N = L3.
The magnitude of the spins is fixed to unit magnitude, Si2

x +
Si2

y + Si2
z = 1. J > 0 denotes the antiferromagnetic exchange

interaction along the z axis between nearest-neighbor spin
pairs 〈i j〉; we set J = +1, i.e., measure temperature in units
of J/kB and the external field in units of J . The uniaxial
anisotropy 0 < � < 1 imposes an “easy” z axis such that
the spins would order antiparallel along this direction in the
absence of an external field [16]; we choose � = 0.8. The
presence of this anisotropy explicitly breaks the O(3) rota-
tional symmetry of the Hamiltonian in spin space and splits
it into two subspaces of dimensions n‖ = 1 and n⊥ = 2. Thus
its static critical properties are governed by the universality
class with O(1) ⊕ O(2) symmetry with the associated Fisher
exponent η ≈ 0.04 [10].

Applying an external magnetic field Hext 	= 0 along the z
axis forces the uniaxially aligned spins to flop over into the xy
plane beyond some critical field strength Hc

ext. Thus, at a low
temperature T and external field Hext, i.e., in the AF phase, the
z component of the staggered magnetization

φ‖ =
L∑

i, j,k=0

(−1)pSz
i, j,k (2)

represents the nonconserved order parameter for the system;
here the indices (i, j, k) denote the three spatial directions,
and p = i + j + k ensures that the sum extends over the dif-
ferences between every alternate spin in the lattice. Upon
increasing Hext, the value of φ‖ is diminished, and instead the
staggered magnetization components in the xy plane perpen-
dicular to the applied field become appreciable. Thus in the
SF phase, an appropriate, also nonconserved, order parameter
is a two-component vector �φ⊥ = (φx, φy) with magnitude

φ⊥ =

√√√√√
(

L∑
i, j,k=0

(−1)pSx
i, j,k

)2

+
(

L∑
i, j,k=0

(−1)pSy
i, j,k

)2

. (3)
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It is important to note that Hamiltonian (1) conserves the z
component of the total magnetization

Mz =
N∑

i, j,k=0

Sz
i, j,k (4)

under the dynamics, {H, Mz} = 0; here the Poisson bracket
constitutes the classical counterpart of the quantum-
mechanical commutation relation between the spin angular
momentum and the Hamiltonian. The dynamical mode cou-
plings between conserved magnetization fluctuations and the
order parameter components decisively influence the antifer-
romagnet’s critical dynamics [9,19,21,22]. Indeed, in addition
to the irreversible, relaxational terms arising from the static
couplings in the Hamiltonian, one must account for the
reversible kinetics caused by the underlying microscopic
dynamics between the order parameter and any conserved
modes. At zero temperature, the microscopic equations of mo-
tion obeyed by each spin variable are dSα

i (t )/dt = {H, Sα
i (t )},

where the spin vector components satisfy the standard angular
momentum Poisson brackets {Sα

i , Sβ
j } = ∑

γ εαβγ Sγ
i δi j with

the fully antisymmetric unit tensor εαβγ = ±1.
In the n‖ = 1 subspace {Mz, φ‖} = 0; thus there is no re-

versible coupling term. However, in the n⊥ = 2 subspace, the
nonconserved vector order parameter �φ⊥ couples reversibly to
the conserved magnetization, (4),

{Mz, φα} = εαβzφβ , (5)

where α, β ∈ {x, y}. This nonvanishing mode coupling gives
rise to the deterministic equations of motion of the micro-
scopic spin components at T = 0 [21,23]

d �Si(t )

dt
= �Si(t ) × ∂H

∂ �Si(t )
, (6)

which describe precession of the unit spin vector in the local
effective field.

To simulate the dynamics of this system at finite tempera-
ture, one needs to implement relaxation terms as well as the
reversible microscopic equations of motion. For convenience,
we work with the two angular degrees of freedom ϑ and ϕ

that are related to the unit vector spin components through
(Sx, Sy, Sz ) = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ ). To respect the
underlying conservation property, the azimuthal angles ϑ are
updated by means of Kawasaki Monte Carlo kinetics where
two randomly picked neighboring spins exchange their ϑ val-
ues following the standard Metropolis rules [24]. In contrast,
the polar angles ϕ are evolved using Glauber dynamics where
the spin component at the selected lattice site is subjected to
a finite rotation with again Metropolis updates [25]. These
Monte Carlo update steps of the spin configurations are al-
ternated with a fourth-order Runge-Kutta integration of the
equations of motion, (6) [20]. For our simulation, the inte-
gration was performed in parallel on all spins over discrete
time increments �t = 0.01/J , with each integration step sep-
arated by 10 Monte Carlo sweeps over the entire lattice. We
determined this combination to be optimal in maintaining the
conservation laws within the truncation error bounds of the
numerical integration scheme.

III. MODEL C DYNAMICAL SCALING

The dynamical universality class conventionally labeled as
model C describes the pure relaxation dynamics of a noncon-
served n-component critical order parameter field, coupled
to a conserved density [9,19,22,26]. In the present study,
the low-temperature, low-field ground state is an Ising an-
tiferromagnet; hence n = 1, with the z component of the
magnetization density constituting the conserved scalar field
m. A two-loop renormalization group calculation demon-
strated that the scalar model C (n = 1) is governed by a
strong-scaling fixed point with both the order parameter re-
laxation and the conserved density diffusion scaling with
the same anomalous exponent α/ν [27]. This results in the
dynamic critical exponentzz = zm = 2 + α/ν ≈ 2.185; here
ν ≈ 0.72 [28,29] describes the algebraic divergence of the
correlation length ξ ∼ |τ |−ν (τ ∼ T − Tc), and α is the spe-
cific heat critical exponent, C ∼ |τ |−α , which can be obtained
from the hyperscaling relation α = 2 − dν in d dimensions.

The nonequilibrium relaxation of model C was investigated
by Oerding and Janssen using the dynamic renormalization-
group approach [30]. Following a critical quench, the
two-time order parameter correlation function relating two
space-time points at distance r and times s < t satisfies the
scaling law

C(t, s, r, τ ) = r−(d−2+η) (t/s)θ−1 Ĉ(r/ξ, t/ξ z ) , (7)

where θ is the initial slip exponent, representing a new in-
dependent universal exponent for purely dissipative systems
with a nonconserved order parameter [31]. It also describes
the power-law growth of the order parameter in the early-time
universal regime which sets in right after the microscopic time
during the nonequilibrium relaxation process. At the criti-
cal temperature T = Tc (τ = 0), the two-time autocorrelation
function (r = 0) assumes the simple-aging scaling form [18],

C(t, s) ∼ s−b (t/s)−λ/z , (8)

with the static and dynamic exponents related to the scaling
collapse exponentb via

b = (d − 2 + η)/z (9)

and to the autocorrelation exponent λ according to

λ = d − 2 + η + z(1 − θ ) = z(1 + b − θ ) . (10)

For model C with n = 1, a second-order perturbative renor-
malization calculation predicts θ ≈ 0.27 in three dimensions,
if one boldly extrapolates the dimensional expansion in ε =
4 − ε to ε = 1 [30].

To numerically study the critical relaxation and the ag-
ing scaling regime we initialized the system in a disordered
spin orientation configuration corresponding to a very high
temperature and subsequently performed critical quenches to
a point (Tc = 1.5, Hc

ext = 3.0) on the model C critical line.
As shown in Fig. 2(a), we obtain an aging scaling window
for waiting times s = 120 . . . 200 simulation time steps. The
inset demonstrates that time translation invariance is broken,
as the two-time correlation function for the order parameter
Cz

SM(t, s) is not simply a function of the time difference t − s,
as it would be in the stationary limit, but evolves differently
for the distinct waiting times s in this temporal window. By
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FIG. 2. (a) Aging scaling plots for the two-time spin autocorrelation function Cz
SM(t, s) of the Ising antiferromagnetic order parameter on

a simple cubic lattice of linear system size L = 40 with periodic boundary conditions. The system is quenched from an initially disordered
configuration to the critical point at Tc = 1.5, Hc

ext = 3.0. Double-logarithmic rescaled graphs for different waiting times s collapse with
the scaling exponent b = 0.6. Inset: Autocorrelation plots as a function of t − s (in simulation time steps) for s = 200, 120, and 40 (top to
bottom), demonstrating broken time translation invariance. Statistical errors are indicated in the graph for the shortest waiting time, s = 40.
(b) Finite-size extrapolation analysis for the aging exponent b(L) plotted vs 1/L for six system sizes, L = 16 . . . 40. A linear extrapolation to
the infinite system size limit L → ∞ yields b∞ = 0.482 ± 0.02.

collapsing the data for Cz
SM(t, s) for several waiting times s

plotted as a function of the time ratio t/s in accordance with
Eq. (8), one can obtain the collapse exponent b for which
we find b ≈ 0.6 for linear system extension L = 40. The data
collapse is noticeably improved for both later waiting times
s and longer observation times t . This is expected since the
simple-aging scaling form, (8), is supposed to hold only for
sufficiently large t � s and s.

However, in our finite simulation domain, data for large
times are inevitably hindered by finite-size effects. Thus, in
order to better estimate the asymptotic collapse exponent, we
perform a systematic finite-size extrapolation analysis by plot-
ting b vs 1/L for system sizes L = 16, 20, 24, 30, 36, and 40
[cf. Fig. 2(b)]. Linear extrapolation to an infinite system size
L → ∞ leads to b∞ = 0.482 ± 0.02. We then obtain from
Eq. (9) the dynamic exponent for the order parameter in model
C in d = 3 dimensions, zz = (1 + η)/b = 2.158 ± 0.09. This
result agrees well within our errors with the theoretically
predicted value zz ≈ 2.185. The autocorrelation exponent λ/zz

can be extracted from the power-law tails of Cz
SM(t, s), appar-

ent in double-logarithmic plots vs t/s for times t � s. Figure 3
displays the data for five system sizes, from which we obtain
the mean value 〈λ/zz〉 = 1.342 ± 0.06. Using Eq. (10), one
may obtain the initial slip exponent θ = 0.14 ± 0.08. This
value shows a trend similar to that of the theoretical prediction
but, unsurprisingly, differs in magnitude by a factor of about 2
from the naive extrapolation of the second-order results of the
perturbative ε expansion about the mean-field value θ = 0.

We further explore the nonequilibrium dynamics of
the conserved magnetization component Mz which is re-
versibly coupled to the ordered parameter. This noncritical
conserved field undergoes diffusive relaxation with corre-
lations Cm(�q, ω) ∼ q−2Ĉ(ω/qz ) or, equivalently, Cm(�r, t ) ∼

r−(d−2)C̃(r/t z ). The asymptotic long-time scaling form for
the temporal magnetization correlation function at the critical
temperature thus becomes

Cm(t ) ∼ t−(d−2)/z . (11)

In the data depicted in Fig. 4(a), we discern an intermediate
power-law region in the decay of the spin autocorrelation
function before the graphs fall off exponentially due to finite-
size effects. As expected, this algebraic regime becomes more
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FIG. 3. Double-logarithmic plots of the two-time staggered mag-
netization autocorrelation function vs t/s for different linear system
sizes L = 20, . . . , 40 (top to bottom) taken at an early waiting time,
s = 40, exhibit power-law decays in the long-time limit t � s. The
mean value of the autocorrelation exponent is determined to be
〈λ/zz〉 = 1.342 ± 0.06.
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FIG. 4. (a) Double-logarithmic plots of the autocorrelation function for the conserved magnetization component Mz vs time t for different
linear system sizes L display an intermediate regime governed by algebraic decay. The system was quenched to the critical point at Tc =
1.5, Hc

ext = 3.0. (b) Finite-size extrapolation analysis for the decay exponent plotted vs 1/L for six system sizes, L = 16 . . . 40. A linear
extrapolation to the infinite system size limit L → ∞ yields 1/zm = 0.381.

prominent upon increasing the linear system size L. We again
perform a systematic finite-size extrapolation to obtain the
asymptotic value of the decay exponent, find (1/zm)∞ ≈
0.381, and thus infer zm ≈ 2.62 ± 0.01. This value, how-
ever, differs from the order parameter dynamic exponent
zz ≈ 2.148 ± 0.1, indicating that likely the time-scale ratio
between the staggered magnetization relaxation and the mag-
netization diffusion still has not reached its asymptotic fixed
point, and the strong dynamic scaling hypothesis cannot be
validated. In this context, we direct the readers to previous
work by Koch and Dohm discussing the effect of finite system
size on the relaxation and diffusion time scales of model C
[32].

One can also obtain the aging scaling data from the two-
time autocorrelation function for the conserved magnetization
(cf. Fig. 5). We note, though, that for long waiting times we
observe another power-law region at later times which is dis-
tinctly different from the previously obtained algebraic decay
in the intermediate relaxation regime of the single-time auto-
correlation function. It is at these later times that the rescaled
plots for different waiting times collapse with an exponent
bm ∼ −0.3 and a decay exponent equal to 0.239 ± 0.01.
Earlier analyses of conserved spin systems have predicted
two regimes with different power laws, with a new length
scale governing the crossover between both algebraic regimes
[33,34]. Ultimately in the long-time limit, however, the decay
of the autocorrelations is determined by only one length scale,
independent of the waiting time s. In a similar vein, the non-
critical conserved magnetization here displays the signature
of two distinct scaling regimes. Yet unlike in the conserved
spin systems, we observe an early relaxation regime with a
faster power-law decay, prominent in the single-time auto-
correlation plots in Fig. 4, which subsequently crosses over
to a slower algebraic decay until ultimately finite-size effects
dominate. Moreover, the negative value of the exponent bm
suggests the presence of long-lived metastable states. The
precise nature of the crossover scaling for the conserved
magnetization in our system thus remains open for future
investigation.

IV. MODEL F DYNAMICAL SCALING

The continuous phase transition between the spin-flop and
the paramagnetic phases is described by the dynamic univer-
sality class model F [9,22]. Also known as the “asymmetric
planar spin model” [35], this universality class describes the
critical dynamics of a two-component vector order parame-
ter coupled reversibly to a conserved scalar density in the
presence of an external Z2 symmetry-breaking field. The
only other known and prominent physical system described
by model F is the normal fluid–to–superfluid transition in
4He [36]. In anisotropic antiferromagnets, the nonconserved
components of the planar staggered magnetization φx and φy
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FIG. 5. Aging scaling plots for the two-time autocorrelation
function Cm(t, s) of the conserved magnetization for linear system
size L = 40. Double-logarithmic rescaled plots for different wait-
ing times s collapse with exponent bm ≈ −0.3 and decay exponent
≈0.239 ± 0.1. Inset: Autocorrelation plots as a function of t − s for
s = 200, 120, and 40 (top to bottom), demonstrating broken time
translation invariance.
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FIG. 6. (a) Fourier spectrum of the staggered magnetization correlation function in the xy plane for different linear system sizes, L = 20,
24, and 30, for a nonzero wave vector �q vs the frequency ω. Inset: Propagating spin waves in the spin-spin correlation function with spatial
separation �r as a function of time. (b) Double-logarithmic plot of the relaxation time τrel vs linear system sizes L = 16 . . . 32. Fitting the data
for large L > 20 yields the dynamic critical exponent z = 1.46 ± 0.15.

couple reversibly through the nonvanishing Poisson brackets
to the conserved magnetization component Mz, resulting in
the precession motion, (5), of the spin vectors around a local
field produced by their exchange interaction with their nearest
neighbors and the external field.

One may view the conserved magnetization components
acting as the infinitesimal rotation generators for the order
parameter components, resulting in propagating spin waves
in the ordered phase [19,37]. The spin-wave damping �c

decreases as the critical temperature is approached, with the
associated relaxation time τrel = 1/�c diverging at Tc. Hence
procuring the aging scaling data by probing the conventional

two-time correlations turns out not to be a viable approach at
the model F critical line. Moreover, owing to the reversible
mode couplings between the conserved magnetization and
the nonconserved order parameter components, the initial
slip exponent θ and hence the autocorrelation exponent λ

are expected to be nonuniversal in this case; specifically,
these exponents should depend on the initial distribution of
the magnitudes of the conserved modes [20,38].

However, one can extract the dynamic exponent from the
temporal evolution of the stationary correlation function in
the vicinity of the critical parameters in the ordered phase.
Near the critical temperature, the spin-wave oscillations have
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FIG. 7. (a) Aging scaling plots for the two-time spin autocorrelation function Cz
SM(t, s) of the Ising antiferromagnetic order parameter on

a simple cubic lattice of linear system size L = 30 with periodic boundary conditions. The system is quenched from an initially disordered
configuration to the bicritical point at Tc = 1.025, Hc

ext = 3.825. Double-logarithmic rescaled graphs for different waiting times s collapse
with the scaling exponent b ≈ 0.75. Inset: Autocorrelation plots as a function of t − s for s = 200, 80, and 40 (top to bottom), demonstrating
broken time translation invariance. (b) Finite-size extrapolation analysis for the aging exponent b plotted vs 1/L for five linear system sizes, L =
16 . . . 36. A linear extrapolation using the data from the four largest systems to the infinite system size limit L → ∞ yields b∞ = 0.53 ± 0.03.
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an exponentially decreasing amplitude ∼e−�ct ∼ e−t/τrel . In a
finite system near Tc, the stationary relaxation time diverges
with the linear system size, with the dynamic critical expo-
nent z characterizing its critical slowing-down: τrel ∼ Lz. We
have obtained the relaxation time via measuring the half-peak
width �c of the Fourier transform of the spin-spin correlation
function [39], Cxy

SM(�q, ω) = ∫
Cxy

SM(�r, t )eiωt dt [see Fig. 6(a)].
The asymptotic value of the dynamic exponent for model F
is known exactly from the dynamic renormalization group,
zxy = d/2 in d � 4 dimensions [35,40]. From our relaxation
time data as a function of the linear system size, we find that
for the five largest L values the best-fit line gives zxy ≈ 1.46,
within our error bars, in agreement with the theoretical pre-
diction 1.5 [cf. Fig. 6(b)]. As one would expect, with larger
system sizes zxy tends towards the asymptotic value.

V. BICRITICAL DYNAMICAL SCALING

The two continuous phase transition lines described by
models C and F meet at a bicritical point which is described
by a different dynamical universality class. In their field-
theoretical analysis, Folk, Holovatch, and Moser found that
irrespective of whether the static behavior of the system is
described by the Heisenberg or the biconical renormalization-
group fixed point, the parallel and perpendicular order
parameter components scale similarly in time, with dynamic
critical exponents zz ∼ zxy ≈ 2.003 and zm ≈ 1.542 in the
asymptotic limit [13]. However, strong nonasymptotic effects
originating from the mode coupling terms in the vicinity of
the bicritical point lead to very different crossover dynamical
exponents which exhibit weak dynamical scaling.

Similarly to the model C analysis, we obtain a dynamic
aging scaling window for waiting times s = 80 . . . 200 for
the easy-axis scalar order parameter at the bicritical point.
Figure 7 depicts the scaling collapse of the two-time au-
tocorrelation plots for different waiting times for a system
with linear size L = 30 with aging exponent b ≈ 0.75. A
subsequent system size extrapolation yields the asymptotic
value b∞ = 0.53 ± 0.03. Using Eq. (9), one can then infer
the dynamic critical exponent zz = 1.962 ± 0.15, which is
in agreement with the theoretical prediction within our error
bars. From the mean value of 〈λ/zz〉 = 1.265 ± 0.03 over five
system sizes (cf. Fig. 8), we also obtain the bicritical initial
slip exponent θ = 0.265 ± 0.05 for the staggered magnetiza-
tion along the z axis.

VI. CONCLUSION

We have utilized a hybrid numerical method that in-
corporates reversible spin precession dynamics through a
deterministic integration scheme with relaxational Monte
Carlo kinetics to investigate both the stationary critical
dynamics and the nonequilibrium critical relaxation in three-
dimensional anisotropic antiferromagnets in an external
magnetic field. From the aging scaling data of the order pa-
rameter spin autocorrelation function at the model C critical
line, we obtained the aging and autocorrelation exponents.
A systematic finite-size extrapolation analysis allowed for
the extraction of the asymptotic value of the aging collapse
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FIG. 8. Double-logarithmic plots of the two-time staggered mag-
netization autocorrelation function vs t/s for different linear system
sizes, L = 16, . . . , 36 (top to bottom), taken at an early waiting
time, s = 40, exhibit power-law decays in the long-time limit t � s.
The mean value of the autocorrelation exponent is determined to be
〈λ/zz〉 = 1.265 ± 0.03.

exponent b ≈ 0.482, which leads to the dynamic exponent
zz ≈ 2.148. This is in very good agreement with the theo-
retical prediction. Further, we report the value of the initial
slip exponent θ ≈ 0.14. Additionally, we extract the dynamic
exponent for the conserved magnetization zm ≈ 2.62 and ob-
serve two distinct time scales in the decay of its two-time spin
autocorrelation function.

In the vicinity of the model F critical line, the presence
of spin waves hindered the aging scaling analysis. However,
from the Fourier transform analysis of the spin waves we ob-
tained the critical relaxation times that increase algebraically
with the system size, with the dynamic critical exponent zxy ≈
1.46, which agrees with the theoretical value zxy = 3/2 within
our systematic and statistical errors. Finally, we performed an
aging scaling analysis for the scalar order parameter compo-
nent along the direction of the external field at the bicritical
point. We thus verified that the dynamic exponent at this point,
zz ≈ 1.962, is different from the corresponding values at both
the model C and the model F critical lines, contrasting with
the nature of the dynamical universality class at the bicritical
point.
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