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Nonequilibrium phase transition in an Ising model without detailed balance
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We study a two-dimensional ferromagnetic Ising model in which spins are updated using modified versions
of the Metropolis and Glauber algorithms. These update rules do not obey the detailed balance condition. The
steady-state behavior of the model is studied using molecular field theory and Monte Carlo simulations. This
model is found to exhibit a nonequilibrium phase transition from a “paramagnetic” state with zero magnetization
to a “ferromagnetic” state with nonzero magnetization as the variable that plays the role of temperature in the
spin updates is decreased. From detailed Monte Carlo simulations using the modified Metropolis algorithm, we
demonstrate explicitly the nonequilibrium nature of the transition and show that it cannot be described as an
equilibrium transition with an effective temperature different from the temperature used in the spin updates. The
critical exponents that characterize the singular behavior near this continuous phase transition are calculated from
finite size scaling of specific heat, magnetization, susceptibility, and correlation length. We find that the values
of these exponents are the same (within error bars) as those of the equilibrium Ising model in two dimensions.
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I. INTRODUCTION

The critical behavior near continuous phase transitions in
systems in equilibrium is fairly well understood at present [1].
A similar understanding is not available for phase transitions
in nonequilibrium systems [2–5]. Nonequilibrium phase tran-
sitions are found in a wide variety of systems. These include
driven diffusive systems [6–18], kinetic Ising models with
competing dynamics [19–28], stochastic models of driven
interfaces and growing surfaces [29–32], reaction-diffusion
models [5,13,33–36], and models of depinning transition [37].

In recent years, a lot of attention has been focused on stud-
ies of collective properties of “active” systems [38] consisting
of self-propelled objects that generate systematic motion from
internal or ambient sources of energy. Some of these out-
of-equilibrium systems exhibit interesting phase transitions
[39–41]. For example, many active systems exhibit motility
induced phase separation [41] in which the system sponta-
neously breaks up into a dilute, gaslike phase and a dense
liquidlike phase even if there is no attractive interaction be-
tween the particles. The liquid-gas phase boundary exhibits
a critical point similar to the equilibrium liquid-gas critical
point that is known to be in the Ising universality class. Other
Ising-like critical points are found in systems with scalar
activity, consisting of two kinds of particles with different
temperatures [42–44] or diffusivities [45]. Some of these sys-
tems [42,43,45] exhibit phase separation and a critical point
similar to the liquid-gas critical point in equilibrium systems.
These phase transitions are not completely understood. There
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have been a few numerical investigations [43,46,47] of the
critical behavior near the critical point in these systems. While
two of these studies [43,46] suggest that the critical point
belongs in the Ising universality class, the third one [47]
concludes that the universality class is different from that of
the equilibrium Ising model.

Further, a rich variety of critical behavior has been ob-
served in nonequilibrium Potts-like models with q absorbing
states [48–50] in which the nature of phase transitions depends
on the value of q and the dimension d . In these studies, the
absorbing states are obtained by imposing a restriction in the
dynamics that no spin flips are allowed when all neighbors of
a given spin are in the same state as that of the given spin. Such
models in d = 1 with a single absorbing state (q = 1) [34,51]
or with infinitely many absorbing states [52,53] are known
to lie in the universality class of directed percolation (DP)
[33,37,54]. While in d = 2, these models with two symmetric
absorbing states (q = 2) are shown to belong to a new univer-
sality class called a voter universality class [49,50]. Moreover,
for an extended range of interactions, the critical point has
been shown in [48] to split into Ising and DP universality
classes. Additionally, a change of symmetry among different
absorbing states is also known for altering the universality
class [55–57]. Thus it has become clear that there is a diversity
in the universality classes of out-of-equilibrium systems and
so the problem of classifying nonequilibrium phase transitions
is far from complete [5].

In this paper, we consider the phase transition in a
two-dimensional Ising-like model in which “activity” is incor-
porated by changing the rules of updating the spin variables.
Ising spins do not have any intrinsic dynamics. The time
evolution of Ising spins is often modeled by Monte Carlo
dynamics with the Metropolis algorithm [58] that satisfies the
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detailed balance condition (DBC) and is therefore guaran-
teed to generate spin configurations distributed according to
equilibrium Boltzmann probabilities. In the model considered
here, “activity” is introduced by modifying the update rules in
a way that makes the probability of occurrence of spin flips
higher than that in the equilibrium Ising model. These update
rules do not satisfy the DBC. Hence the spin configurations
in the steady state of this model are not distributed with
equilibrium Boltzmann probabilities. The opposite case in
which spin flips are less likely to occur than in the equilibrium
model is also considered. We call this model a “persistent
Ising model” because the update rule tends to increase the
persistence time of spin configurations.

We have studied the steady-state properties of this nonequi-
librium Ising model using molecular field theory and Monte
Carlo simulations. We find that this system exhibits a phase
transition between paramagnetic (zero spontaneous magneti-
zation) and ferromagnetic (finite spontaneous magnetization)
phases as a temperaturelike variable is changed. While molec-
ular field theory predicts certain unusual phase behavior,
our Monte Carlo simulation using a modified version of the
Metropolis algorithm shows that this model exhibits a con-
tinuous phase transition. The critical behavior near this phase
transition is studied using finite-size scaling. Within the ac-
curacy of our calculations, the critical exponents are found
to have the same values as those in the ferromagnetic Ising
model in two dimensions.

The rest of the paper is organized as follows. The model
considered in our study is introduced and the details of
our Monte Carlo simulations are described in Sec. II. In
Sec. III, we present analytical arguments for the occurrence
of a nonequilibrium phase transition in this model. Section IV
describes the phase diagram of this model in the molecular
field approximation. In Sec. V, we present detailed numerical
results of our simulations and investigate the critical behavior
of the model. Finally, in Sec. VI, we conclude with a summary
of the main results and discussion.

II. MODEL AND METHODS

The two-dimensional ferromagnetic Ising model with
nearest-neighbor interactions is described by the Hamiltonian

H = −J
∑
〈i j〉

sis j, (1)

where〈i j〉 represents nearest-neighbor sites on a square lattice
and {si}, i = 1, . . . , N are Ising spins taking the values ±1.
The system is placed in a contact with a heat bath that gener-
ates stochastic spin flips [59]. In the equilibrium Ising model,
the probabilities of spin flips are chosen such that the system
reaches thermal equilibrium after a sufficiently long time and
the distribution in the steady state is given by the Boltzmann
distribution. The Metropolis [58] and Glauber or heat bath
algorithms [60,61] are the two most common choices of the
transition rates, given respectively as

W = min[1, exp(−βΔE )] (2)

and

W = 1

2

[
1 − tanh

(
βΔE

2

)]
(3)

= 1

1 + exp(βΔE )
,

where W is a rate of transition from an old state to a new
one, ΔE = Enew − Eold is the change in energy due to this
transition, and β = 1/kBT . These algorithms satisfy the de-
tailed balance condition (DBC) which implies microscopic
reversibility [62] with each elementary process balanced with
its reverse process, i.e.,

Wold→newPeq(old) = Wnew→oldPeq(new), (4)

where Peq(old) ∝ exp(−βEold ), and therefore

Wold→new

Wnew→old
= exp(−βΔE ). (5)

The DBC is a sufficient—but not necessary—condition
to ensure equilibration [4]. In this paper, our motive is to
intentionally break the DBC in a way that causes the system to
go out of equilibrium and to study whether or not the system
exhibits an order-disorder transition. If it does, then is the
transition different from the equilibrium phase transition or
equivalently do the critical exponents differ from the equilib-
rium ones? The DBC is violated when ΔE in the transition
probabilities is replaced by ΔEeff defined as

ΔEeff = ΔE + E0, (6)

where E0 a nonzero parameter. Then, for E0 > 0, ΔEeff > ΔE
and it becomes less probable for spins to flip. Similarly, for
E0 < 0, ΔEeff is lower than ΔE and that promotes the flipping
of spins. Therefore, in this way the active and persistent limits
can be modeled in an Ising system. Spins under these flipping
rates effectively experience different temperatures compared
to spins with the original Metropolis or Glauber rates. For
E0 > 0 (E0 < 0), the spins may be thought of as being coupled
to a thermal bath at a lower (higher) effective temperature and
the effective temperature is not the same for all the spins in the
system (see below). Hence the system is not in equilibrium
and a phase transition, if it occurs, is a nonequilibrium one.
This transition would be a property of the nonequilibrium
steady state of the system in which the distribution of mi-
crostates is not described by the Boltzmann distribution. We
continue to call T the “temperature” in spite of the fact that the
temperature is not a well-defined quantity in a nonequilibrium
system.

We perform a Monte Carlo (MC) simulation of a two-
dimensional Ising model using the modified Metropolis rule.
The simulations are done on a square lattice of linear size L
with periodic boundary condition applied in both directions.
The total number of spins in the system is N = L2. We discard
the first 105 Monte Carlo steps per spin (MCS) to obtain a
nonequilibrium steady state of the system, and then perform
another 105 MCS for measuring averaged quantities. We aver-
age all measured quantities over 100 realizations of different
random initial conditions and determine the error bars in a
quantity from its fluctuations over different realizations. To
perform a finite-size scaling (FSS), we use a python program
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named autoscale.py, developed by Melchert [63]. This pro-
gram uses a minimization procedure to optimize the scaling
parameters via a downhill simplex algorithm [64].

III. OCCURRENCE OF A PHASE TRANSITION

In the modified Metropolis algorithm considered here, the
transition rate for flipping a spin si → −si is

Wsi→−si =
{

e−β(ΔE+E0 ), if ΔE + E0 > 0,

1, otherwise,
(7)

where

ΔE = 2Jsi

∑
ni

sni . (8)

Here ni refers to the nearest neighbors of the ith site. Similarly,
the transition rate for flipping spins −si → +si is

W−si→si =
{

e−β(−ΔE+E0 ), if − ΔE + E0 > 0,

1, otherwise.
(9)

It is straightforward to check that this algorithm [Eq. (7)]
satisfies the DBC only for E0 � ΔEmax and E0 � −ΔEmax,
where ΔEmax = 2zJ (z is the number of nearest neighbors
of a spin) is the largest possible value of ΔE . This can be
explained as follows. Consider first E0 � ΔEmax meaning that
±ΔE + E0 � 0. Therefore, the transition rates are

Wsi→−si = e−β(ΔE+E0 ), W−si→si = e−β(−ΔE+E0 ), (10)

and thus the ratio
Wsi→−si

W−si→si

= exp(−2βΔE ). (11)

Hence DBC is satisfied, albeit at an effective temperature
Teff = T/2 and, therefore, the critical temperature at which
an equilibrium transition takes place is given by

Tc(E0 � ΔEmax) = 2T 0
c , (12)

where T 0
c = Tc(E0 = 0) is the critical temperature of the

nearest-neighbor Ising model on a square lattice.
For E0 � −ΔEmax, ±ΔE + E0 � 0, which implies that

Wsi→−si = W−si→si = 1, and thus the ratio

Wsi→−si

W−si→si

= 1. (13)

Therefore, in this case, DBC is satisfied in the limit of Teff →
∞, implying that the system is effectively at an infinite tem-
perature for all T and there is no phase transition.

For |E0| < ΔEmax, the DBC is not satisfied because
it is not possible to find a unique effective tem-
perature for which the transition probabilities for all
possible values of ΔE satisfy detailed balance. This
can be shown as follows. First, let us consider 0 <

E0 < ΔEmax. Then for ΔE > 0, Wsi→−si = e−β(ΔE+E0 ) and
W−si→si = min[1, e−β(−ΔE+E0 )]; and for ΔE < 0, Wsi→−si =
min[1, e−β(ΔE+E0 )] and W−si→si = e−β(−ΔE+E0 ). In both cases,
the ratio of the transition probabilities will depend upon the
value of ΔE and, therefore, it is not possible to define a
unique effective temperature. If a phase transition takes place
in the system, then the transition temperature Tc should satisfy
T 0

c < Tc < 2T 0
c . Similarly, following the same arguments for

−ΔEmax < E0 < 0, it can be shown that Tc should lie in the
interval (0, T 0

c ). To sum up, Tc = 0 for E0 � −ΔEmax, it
increases from 0 as E0 is increased from −ΔEmax to +ΔEmax,
and becomes 2T 0

c for E0 � ΔEmax.
For the Glauber algorithm, the ratio of two transition

rates is

Wsi→−si

W−si→si

= 1 + eβ(−ΔE+E0 )

1 + eβ(ΔE+E0 )
. (14)

Notice that here the DBC is satisfied only in the limit of E0

approaching ±∞. For E0 → +∞,

Wsi→−si

W−si→si

= e−βE0 + e−βΔE

e−βE0 + eβΔE
→ e−2βΔE , (15)

and for E0 → −∞,

Wsi→−si

W−si→si

→ 1. (16)

For any finite value of E0 the DBC is not satisfied. The Tc is
expected to increase (decrease) with increasing (decreasing)
E0. For a positive finite value of E0, Tc lies in the interval
(T 0

c , 2T 0
c ) and approaches 2T 0

c in the limit of E0 → ∞. For
E0 < 0, Tc ∈ (0, T 0

c ), and it approaches zero as E0 → −∞.

IV. MOLECULAR FIELD THEORY

In molecular field (MF) theory, a spin is replaced by its
mean value, i.e., the magnetization m. So Eq. (8) in this
approximation is

ΔE = 2Jzmsi, (17)

where z = 2d is the number of neighbors in a hypercubic
lattice in d dimensions. Thus, in the MF approximation, each
spin interacts with the net internal field arising from its inter-
action with all the neighboring spins.

Using Eq. (17) for ΔE in Eq. (7), the transition rate for
Metropolis dynamics in the MF approximation becomes

Wsi→−si =
{

e−β[2zJmsi+E0], 2zJmsi + E0 > 0,

1, 2zJmsi + E0 � 0.
(18)

We will now construct a self-consistent equation for the
magnetizations m under this MF approximation, and then
solve it numerically. If a site i has si = +1, then W+1→−1

in above equation (18) gives the probability of it flipping
to si = −1 and, similarly, W−1→+1 gives the probability of
flipping from si = −1 to si = +1. Let p(+1) [p(−1)] be the
probability of si being in the +1 (−1) state in the steady state
of the system. The ratio of these probabilities is given by

p(−1)

p(+1)
= W+1→−1

W−1→+1
≡ r(β, m, E0), (19)

where r defines the probabilities ratio, which is a function of
parameters β, m, and E0.

Then the magnetization m in terms of r is

m =
∑

si=±1 p(si )si∑
si=±1 p(si )

= 1 − r(β, m, E0)

1 + r(β, m, E0)
. (20)

This is a self-consistency equation, which can be solved eas-
ily for a few special values of E0 for which the DBC is
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satisfied. In the case of equilibrium dynamics with E0 = 0,
r(β, m, E0 = 0) = e−2βzJm. Consequently,

m(E0 = 0) = 1 − e−2βzJm

1 + e−2βzJm
= tanh[βzJm], (21)

which is the well-known self-consistency equation for the
magnetization of the equilibrium Ising model in MF theory.
For E0 � 2zJ , 2zJmsi + E0 is always nonnegative and the
ratio r(β, m, E0) = e−4βzJm. Therefore, from Eq. (20) the MF
magnetization satisfies the self-consistency condition

m(E0 � 2zJ ) = tanh[2βzJm]. (22)

This is the same as the self-consistency equation for m in the
equilibrium Ising model at temperature T/2. For E0 � −2zJ ,
2zJmsi + E0 is always nonpositive. Hence r(β, m, E0) = 1
and therefore m = 0.

For positive values of E0 in the range 0 < E0 < 2zJ , the
transition probabilities given in Eq. (18) take the following
forms for m � 0:

W+1→−1 = e−β[2zJm+E0], (23)

W−1→+1 =
{

e−β[−2Jzm+E0], −2zJm + E0 > 0,

1, −2zJm + E0 � 0.
(24)

Then, for 2zJm > E0, W−1→+1 = 1. This gives the following
self-consistency equation for m:

m(2zJm > E0) = tanh[β(Jzm + E0/2)]. (25)

On the other hand, using W−1→+1 = exp[−β(−2zJm + E0)]
for 2Jzm < E0 will give

m(2zJm < E0) = tanh(2βJzm), (26)

which is identical to the self-consistency equation (22) for
E0 � 2zJ . Therefore, m is obtained from Eq. (25) as long
as 2zJm > E0, and then switches to values obtained from
Eq. (26) for smaller values of m. This leads to a discontinuity
in the derivative of m with respect to T at the value of T for
which 2zJm = E0. The transition temperature is 2zJ for all
positive values of E0 and the transition is continuous, similar
to the equilibrium transition for E0 = 0.

The behavior for E0 < 0 is quite different. We consider
values of E0 in the range 0 < |E0| < 2zJ because there is no
transition for |E0| � 2zJ . For such values of E0, the transition
probabilities in Eq. (18) take the following forms for m > 0:

W+1→−1 =
{

e−β[2zJm−|E0|], 2zJm − |E0| > 0,

1, 2zJm − |E0| � 0,
(27)

W−1→+1 = 1. (28)

It is clear from Eqs. (27) and (28) that both W+1→−1 and
W−1→+11 are equal to 1 for m � |E0|/(2zJ ). Thus there is no
self-consistent solution for nonzero m with m � |E0|/(2zJ ).
The self-consistent solution for m > |E0|/(2zJ ) is

m(2zJm > |E0|) = tanh[β(Jzm − |E0|/2)]. (29)

This equation admits a physical solution with m > |E0|/(2zJ )
for temperatures less than T ∗ that is determined from the
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E0 = 8

FIG. 1. Magnetization |m| in MF theory vs temperature T for
various values of E0 for Metropolis dynamics.

implicit equation√
1 − kBT ∗/(Jz) = tanh{[Jz

√
1 − kBT ∗/(Jz)

− |E0|/2]/(kBT ∗)}, (30)

which results from the condition of stability of the fixed point
solution of Eq. (29). Thus MF theory for negative values
of E0 with |E0| < 2zJ predicts a first order transition at the
temperature T ∗ that decreases as |E0| is increased and goes to
zero for |E0| = 2zJ .

For the Glauber algorithm, Eq. (14) with the MF approxi-
mation of Eq. (17) gives

r(β, m, E0) = 1 + eβ(−2zJm+E0 )

1 + eβ(2zJm+E0 )
, (31)

and therefore, from Eq. (20), we obtain

m = e2βzJm − e−2βzJm

2 e−βE0 + e2βzJm + e−2βzJm

= sinh[2βzJm]

e−βE0 + cosh[2βzJm]
. (32)

For E0 → ±∞ where DBC holds, this equation gives m =
tanh[2βzJm] for E0 → ∞ and m = 0 for E0 → −∞. Sim-
ilarly for E0 = 0, Eq. (32) yields m(E0 = 0) = tanh[βzJm].
Thus, when the DBC is satisfied, both Glauber and Metropolis
algorithms yield the same self-consistency equations for the
MF magnetization m and therefore the same T MF

c . For other
values of E0, Eq. (32) predicts a continuous transition similar
to that in the equilibrium model. This would mean that, for
general nonzero values of E0, MF theory predicts very differ-
ent behavior for Metropolis and Glauber update rules. This is
not surprising because these two update rules are guaranteed
to lead to the same (equilibrium) distribution in the long time
limit only when DBC is satisfied. Since DBC is not satisfied
for a general nonzero value of E0, the two algorithms can lead
to steady states with different statistical properties.

Results obtained from numerical solutions of the MF equa-
tions for a square lattice with z = 4 are shown in Fig. 1 and
Fig. 2. Figure 1 shows plots of the MF magnetization |m| in
the Metropolis algorithm as a function of temperature T (in
units of J/kB) for various values of E0 (in units of J). For
E0 = 0, the MF critical temperature is T MF

c = 4 as expected.
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FIG. 2. Magnetization |m| in MF theory vs temperature T for
various values of E0 for Glauber dynamics.

For E0 < 0, a first order transition takes place at T ∗(E0) that
decreases with decreasing E0 and goes to zero as E0 → −8.
For E0 > 0, the magnetization curves of E0 < 8 coincide with
the magnetization curve for E0 = 8 at m = E0/8, and then
follow m(E0 = 8, T ) for all m < E0/8. Thus, for E0 > 0, T MF

c
in the Metropolis dynamics is 8.

Figure 2 shows plots of the MF magnetization in the
Glauber dynamics as a function of T for various values of
E0. At E0 = 0, T MF

c = 4. For E0 > 0, T MF
c increases with

increasing E0 and approaches 8 for very large values of E0.
For E0 < 0, T MF

c decreases with decreasing E0, and goes to 0
as E0 → −∞.

V. DETAILED NUMERICAL RESULTS

In this section, we present the results of Monte Carlo
simulations of the model for different values of E0 using
the Metropolis algorithm. We calculate physical quantities
such as the magnetization per spin m, the Binder-cumulant
U4 associated with the distribution of the magnetization, the
specific-heat per spin c (in units of kB), and the magnetic sus-
ceptibility χ (in units of 1/J). These quantities are defined as

m(T, L) = 〈m̂〉, m̂ = 1

N

∑
i

si, (33)

U4(T, L) = 1 − 〈m̂4〉
3〈m̂2〉2 , (34)

c(T, L) = 1

NT 2

(〈E2〉 − 〈E〉2
)
, (35)

χ (T, L) = 1

NT

(〈M2〉 − 〈M〉2
)
, (36)

where N is the number of spins, 〈· · · 〉 denotes an average
in the steady state at a temperature T , E = −∑

<i j> sis j is
the total energy, and M = Nm̂. Note that we have defined
the specific heat and the susceptibility in terms of correlation
functions, in the same way as these quantities are defined
in an equilibrium system. However, in our nonequilibrium
system, these quantities do not satisfy the usual relations with
response functions (the derivative of the energy with respect to
T for the specific heat and the derivative of the magnetization
with respect to a magnetic field for the susceptibility) that are
satisfied in a system in thermal equilibrium.

0 1 2 3 4 5
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0

100

200

χ

E0 = -4
E0 = -2
E0 = 0
E0 = 2
E0 = 4
E0 = 6
E0 = 8

-4 -2 0 2 4 6 8
E0

0
1
2
3
4
5

T c(E
0)

L = 64

FIG. 3. Plot of susceptibility χ (E0, T ) as a function of tempera-
ture T for L = 64 with varying E0 (see keys). The position of a peak
gives an estimate of Tc(E0). The inset is a plot of Tc(E0) vs E0.

We use finite-size scaling (FSS) to analyze the dependence
of these quantities on the system size N = L2. We assume that
the FSS forms for these quantities are the same as those for a
system in thermal equilibrium:

m(T, L) = L−β/νM((T − Tc)L1/ν ), (37)

U4(T, L) = U ((T − Tc)L1/ν ), (38)

c(T, L) = Lα/νC((T − Tc)L1/ν ), (39)

χ (T, L) = Lγ /νX ((T − Tc)L1/ν ), (40)

where M,U , C,X are the scaling functions and α, β, γ

and ν are the critical exponents for specific heat, magneti-
zation, susceptibility, and correlation length, respectively. As
described below, our results for these quantities satisfy these
FSS forms within the accuracy of our numerical computation.

To begin with, we present in Fig. 3 the plots of χ (E0, T ) as
a function of T for L = 64 and various values of E0 to show
qualitatively the dependence of the transition temperature
Tc on E0. The peak positions of χ give estimates of Tc(E0).
Notice the shifting of Tc to higher values with increasing
E0. The inset of this figure shows a plot of Tc(E0), estimated
as the value of T at which χ (E0, T ) peaks, as a function
of E0. For E0 = 0, the model has an equilibrium phase
transition at Tc(E0 = 0) 
 2.269. It is clear from the plot in
the inset that Tc approaches zero for large negative values of
E0 and it is 
2Tc(E0 = 0) for E0 = 8. This is in agreement
with the results in Sec. III. We now study the nature of
the nonequilibrium transitions for nonzero values of E0 in
the range −8 < E0 < 8. For a detailed numerical study, we
choose E0 = ±2 and perform large-scale MC simulations
only for these two values of E0.

A. Numerical results for E0 = −2J

We start with a demonstration of the nonequilibrium nature
of the model for E0 �= 0. In an equilibrium system, the specific
heat defined as the derivative of the internal energy 〈E〉 with
respect to the temperature T , i.e., C = d〈E〉/dT , is exactly
the same as the specific heat obtained from energy fluctuations
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FIG. 4. Plot of the specific heat per spin c =
1/(NT 2)(〈E 2〉 − 〈E〉2) (shown by the solid curves) and the
derivative of the energy with respect to temperature, N−1d〈E〉/dT
(shown by the dashed curves), for (a) E0 = −2 and (b) E0 = +2.
Numerically, the derivative is calculated using first-order finite
difference and it is taken at the midpoint of the interval instead of
either end point. Results are shown for three values of L. Data for
same L are plotted with the same color.

[Eq. (35)], i.e.,

d〈E〉
dT

= 1

T 2
(〈E2〉 − 〈E〉2). (41)

This relation does not hold for a nonequilibrium system. As
shown in panel (a) of Fig. 4, this relation is not satisfied
for E0 = −2. In this figure, the solid curves represent the
specific heat per spin from energy fluctuations and the dotted
curves represent the derivative 1/Nd〈E〉/dT (the derivative
is calculated from first-order finite difference). The difference
between the solid and dashed curves for each value of L is
strong evidence for the nonequilibrium nature of the system.

To establish conclusively the nonequilibrium nature of the
model, it is also necessary to show that the difference between
the two curves corresponding to the two definitions of the
specific heat cannot be removed by scaling one of the curves
by a constant numerical factor ε. If this were the case, then the
factor ε could be absorbed by simply scaling the temperature
by the same factor. To check this possibility, we have chosen
the value of ε for which the heights of the peaks of the two
curves coincide. Plots of εc and N−1d〈E〉/dT for this choice
of ε are shown in panel (a) of Fig. 5 for the largest value of L
(=256) considered. Clearly, the two curves move away from
each other as the temperature is changed from the value at the
peak. This confirms the nonequilibrium nature of the system
for E0 = −2. Similarly the panels (b) of Figs. 4 and 5 show
the nonequilibrium nature of the system for E0 = +2, the case
which we discuss later.

Having established the nonequilibrium nature of the transi-
tion for E0 = −2, we now proceed to use FSS to examine the
critical behavior. Figure 6 shows a plot of the Binder cumulant
U4(T, L) as a function of T for various values of L. From the
FSS relation for U4(T, L) [Eq. (38)], it is clear that U4 for
different L converge to the same value as T → Tc. In Fig. 6,
the cumulant curves for different L intersect at a point and this
intersection point gives an estimate of the critical temperature,
Tc 
 1.36.

Next, in Fig. 7(a), we show a plot of the specific heat
per spin (c) vs temperature T for various values of L. In

2.9 3 3.1 3.2 3.3 3.4
T

0.5

1

1.5

2

c

L = 256

1.25 1.3 1.35 1.4 1.45 1.5
T

2

4

6

c

L = 256 (a) (b)E0 = -2 E0 = +2

FIG. 5. Plot of N−1d〈E〉/dT (shown by the dashed curves) and
ε/(NT 2)(〈E 2〉 − 〈E〉2) (shown by the solid curves) for (a) E0 = −2
and (b) E0 = +2. The ε value is 0.454 for E0 = −2 and 1.632 for
E0 = +2. Data are shown only for the largest L = 256.

Fig. 7(b), we plot the susceptibility (χ ) vs temperature T for
various values of L. The specific heat c shows a peak at an
L-dependent pseudocritical temperature T ∗(L) which shifts to
smaller values with increasing L, and the height of the peak
grows with increasing L. To obtain the location and the height
of the peak at a particular value of L, we fit the data near the
peak with a parabolic function y = a(x − x0)2 + h, where x0

gives the position of the peak T ∗(L) and h gives the height of
the peak cmax(L). Similarly χ also shows peaks which shift to
lower T with increasing L. If the FSS function C(x) or X (x) in
Eqs. (39) and (40) peaks at some value, say x0, then the peak
position T ∗(L) for a particular value of L varies with L as

T ∗(L) = Tc + x0L−1/ν, (42)

and the maximum value of the singular part of c, χ in a finite
size system varies as

cmax ∝ Lα/ν (43)

and

χmax ∝ Lγ /ν . (44)

Figure 8 shows a plot of cmax(L) vs L in a double-
logarithmic scale, where one can clearly see the negative
curvature in the data points. This indicates that cmax(L) has a

1.3 1.32 1.34 1.36 1.38 1.4
T

0.45

0.5

0.55

0.6

0.65

0.7

U
4(T

, L
)

L = 16
L = 32
L = 48
L = 64
L = 96
L = 128
L = 256

E0 = -2

FIG. 6. Binder cumulant U4(T, L) for different values of L vs
temperature T for E0 = −2. The intersection point for different
values of L gives the critical temperature Tc 
 1.36.
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FIG. 7. (a) Specific-heat per spin c(T, L) vs temperature T for
E0 = −2. (b) Susceptibility χ (T, L) vs temperature T on a log-linear
scale for E0 = −2.

weaker than power-law dependence on L. Therefore, expect-
ing α = 0, as in the equilibrium two-dimensional Ising model,
we plot cmax(L) on a semilog scale in the inset of Fig. 8, where
the L axis is logarithmically scaled. Here a linear behavior is
clearly visible with no curvature and a straight line is the best
fit to the behavior,

cmax(L) = A + B ln L, (45)

where A is the regular part of the specific heat. The logarith-
mic divergence of cmax(L) implies that α = 0.

Next, in Fig. 9, we plot χmax(L) vs L in a double-
logarithmic scale. Here we can clearly observe a linear

10 100 1000
L
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16
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ax

(L
)

10 100
L

4

12

8

16

cm
ax

(L
)

E0 = -2

FIG. 8. Maximum value of the specific heat per spin cmax(L) vs
L in a log-log plot. The inset shows the same data in a semilog scale.
The red solid line shows the best fit to the function A + B ln L with
A = −1.63 and B = 2.96.

10 100
L

10
1

10
2

10
3

χm
ax

(L
)

E0 = -2

FIG. 9. Maximum value of the susceptibility χmax(L) vs L in a
log-log scale. The red solid line is the best fit to the form ALγ /ν with
A = 0.095 and γ /ν = 1.73 ± 0.01.

behavior which agrees with the power-law form of χmax(L)
given in Eq. (44). The solid line is the best power-law fit that
gives γ /ν = 1.73 ± 0.01.

In Fig. 10, we show plots of the peak positions of c and
χ , i.e., the pseudocritical points T ∗(L) as a function of L−1,
marked by the point symbols. We jointly fit this data to the
function y = a0 + a1xa2 suggested in Eq. (42) with the com-
mon values of a0 and a2, where a0 gives Tc and a2 gives 1/ν.
The two solid lines in red are the result of the best joint fit to
this function for c and χ . The quality of fit is very high, with
a value of goodness-of-fit parameter Q = 0.9, and produces
the estimates 1/ν = 0.98 ± 0.03 and Tc = 1.3604 ± 0.0003.
Figure 11 shows the scaling of χ by plotting χL−γ /ν against
[T − T ∗(L)]L1/ν . Clearly, the data collapse is excellent. The
exponent values used here are γ /ν = 1.73 and 1/ν = 0.98.

Figure 12 shows a plot of the absolute value of the magne-
tization per spin |m| as a function of T for various values of
L. As suggested in the FSS of the magnetization, Eq. (37), we
plot mLβ/ν vs (T − Tc)L1/ν and obtain the critical exponents
β/ν that give the best scaling collapse, using the values of

0 0.01 0.02 0.03 0.04 0.05 0.06
L-1

1.36

1.38

1.4

1.42

1.44

T* (L
)

c
χ

E0 = -2

FIG. 10. Plot of pseudocritical points T ∗(L) where c and χ attain
their maxima. The black and green symbols are the peak positions of
c and χ , respectively. The red lines are the best simultaneous fit of the
form Eq. (42), in which the values of Tc and 1/ν are shared during the
fitting procedure. This fit yields Tc = 1.3604 ± 0.0003 and 1/ν =
0.98 ± 0.03.
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FIG. 11. FSS of the susceptibility: plot of χL−γ /ν vs [T −
T ∗(L)]L1/ν with γ /ν = 1.73 and 1/ν = 0.98.

Tc and 1/ν estimated above. This FSS data collapse of the
magnetization is shown in Fig. 13. The value of exponent β/ν

obtained from this FSS analysis is 0.123 ± 0.005. All calcu-
lated exponents are tabulated in Table I, showing all critical
exponents α, β/ν, γ /ν, and 1/ν for E0 = −2 to be consistent
with those for E0 = 0, i.e., the case of an equilibrium 2D
Ising model on a square lattice. However, as expected, the
critical temperature is reduced from Tc = 2.269 for E0 = 0 to
Tc 
 1.36 for E0 = −2.

This value of Tc can be understood from the following
argument. As in the equilibrium Ising model on a square
lattice, ΔE in our model can take a value from the set
{−8,−4, 0, 8, 4} in units of J . With positive ΔE , from
Eqs. (7) and (9), Wsi→−si = e−β(ΔE−2) and W−si→si = 1, and
thus the ratio of these two transition probabilities is e−β(ΔE−2).
Equating this with the ratio of transition probabilities for
the equilibrium system (E0 = 0) at temperature T 0 = 1/β0,
we get

β0ΔE = β(ΔE − 2). (46)

Similarly for ΔE < 0, we get

β0|ΔE | = β(|ΔE | − 2). (47)

These equations allow us to relate T to a temperature T 0 of
the equilibrium Ising model. Since this relation is different for

1.2 1.3 1.4 1.5 1.6
T

0
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0.4
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0.8

1

|m
| L = 16

L = 32
L = 48
L = 64
L = 96
L = 128
L = 256

E0 = -2

FIG. 12. Absolute value of the magnetization per spin m(T, L) vs
temperature T for E0 = −2. The data are shown for various L values.
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0.75

1

1.25

1.5

|m
| L
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ν L = 24
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L = 48
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FIG. 13. Finite size scaling of the magnetization data by plotting
mLβ/ν vs (T − Tc )L1/ν . The exponent value from the best data col-
lapse is β/ν = 0.123 ± 0.005, after using our estimates for 1/ν =
0.98, and Tc = 1.3604.

different values of ΔE , it is not possible to map the probability
distribution in the steady state of our model to the equilib-
rium distribution at a unique temperature T 0. This, again,
confirms the nonequilibrium nature of our model for E0 �= 0.
At the critical point, Eqs. (46) and (47) imply βc(|ΔE | − 2) =
β0

c |ΔE |, where β0
c = 1/T 0

c , with T 0
c = 2.269 being the critical

temperature of the equilibrium Ising model on a square lattice.
This gives Tc = 1.135 if we take |ΔE | = 4 and Tc = 1.702 for
|ΔE | = 8.

To get an approximate unique value for Tc, it is necessary
to average over the different values of Tc obtained for different
choices for ΔE . The Ising model Hamiltonian in terms of ΔE
can be written as

H = −1

4

∑
i

ΔE (si → −si ). (48)

Thus the equilibrium average, 〈ΔE〉, of ΔE is equal to
−4〈E〉/N . From the exact solution of the 2D Ising model
[65–67], the energy per spin 〈E〉/N at the critical point (T 0

c ) is
equal to −√

2, which means at criticality, 〈ΔE〉 ∼ 4
√

2. Then,
from Eq. (46), we get

Tc(E0 = −2) ∼ T 0
c

(
1 − 2

4
√

2

)
= 1.467. (49)

TABLE I. Summary of the values of the critical temperature
Tc, and the critical exponents α, β/ν, γ /ν, and 1/ν for E0 = ±2
obtained from FSS. We also show the known values of these expo-
nents for E0 = 0 for reference. The numbers in parentheses are error
estimates for the last significant digits.

Tc α β/ν γ /ν 1/ν

E0 = 0 2.269 0 0.125 1.75 1
(known results)
E0 = 2 3.1267(4) 0 0.122(5) 1.72(3) 0.97(3)
(This work)
E0 = −2 1.3604(3) 0 0.123(5) 1.73(1) 0.98(3)
(This work)
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FIG. 14. Binder cumulant U4(T, L) vs temperature T for E0 =
2. The intersection point for various values of L gives the critical
temperature Tc 
 3.127.

This approximate estimate of Tc ∼ 1.467 is close to the value,
Tc 
 1.36, obtained from our simulations. The difference
arises from considering 〈ΔE〉 instead of the average of 1/ΔE ,
and neglecting the possibility of having ΔE = 0, etc., in the
calculation of Tc.

B. Numerical results for E0 = +2J

We now present the numerical results for E0 = 2J . The
nonequilibrium nature of the model for E0 = +2 has already
been established in panel (b) of Figs. 4 and 5. To examine the
critical behavior, let us start to get an estimate of Tc by plotting
U4(T, L) vs T , which are shown in Fig. 14. These U4 curves
intersect at a point and predict Tc 
 3.127. The specific-heat
c and susceptibility χ show peaks that are shifted towards
lower T with increasing L (data not shown). The finite-size
behavior of the peak heights cmax(L), χmax(L) is similar to
that found for E0 = −2, as shown in Fig. 15, which confirms
a logarithmic divergence of cmax with α = 0 and a power-law
divergence of χmax(L) with γ /ν = 1.72 ± 0.03.

00101
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FIG. 15. Maximum of the specific heat per spin cmax(L) vs L on a
semilog scale. The red solid line shows the best fit to the function A +
B ln L with A = 0.17 and B = 0.195. The inset shows the maximum
of the susceptibility χmax(L) vs L on a log-log scale. Here the red
solid line is the best fit to the form ALγ /ν with A = 0.037 ± 0.005
and γ /ν = 1.72 ± 0.03.
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FIG. 16. Plot of the pseudocritical temperature T ∗(L) where c
and χ attain their maxima. The black and green symbols are the peak
positions of c and χ , respectively. The red lines are the simultaneous
fit of the form Eq. (42), which yield Tc = 3.1267 ± 0.0004, and
1/ν = 0.973 ± 0.028.

In Fig. 16, the pseudocritical temperatures T ∗(L) obtained
from the specific heat and the susceptibility are plotted in
point symbols as functions of L−1. Again, we perform a joint
fit to the function of the form of Eq. (42), where the values
of Tc and 1/ν are shared in the fit. The two solid lines show
the result of this joint fit that gives 1/ν = 0.973 ± 0.028,
and Tc = 3.1267 ± 0.0004 with the value of goodness-of-fit
parameter Q = 0.7, which is very high. Figure 17 shows the
best data collapse for χ in a plot of χL−γ /ν against [T −
T ∗(L)]L1/ν . The exponent values corresponding to the best
scaling collapse are γ /ν = 1.72 and 1/ν = 0.97. Figure 18
shows a scaling plot for the magnetization, where the best
data collapse after using the above estimated values for Tc

and 1/ν gives β/ν = 0.122 ± 0.005. Arguments identical to
those for E0 = −2 yield the following estimate for the critical
temperature:

Tc(E0 = +2) = T 0
c

(
1 + 2

|ΔE |
)


 T 0
c

(
1 + 2

4
√

2

)
= 3.071. (50)
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FIG. 17. FSS of the susceptibility: plot of χL−γ /ν vs [T −
T ∗(L)]L1/ν with γ /ν = 1.72 and 1/ν = 0.97.
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FIG. 18. FSS of the magnetization: mLβ/ν is plotted vs (T −
Tc )L1/ν . The exponent value from the best data collapse is β/ν =
0.122 ± 0.005, after using previous estimates of 1/ν = 0.97(3) and
Tc = 3.1267 for E0 = +2.

This estimate is close to the value, Tc 
 3.127, obtained from
simulations.

The final results for the critical temperature and all expo-
nents are listed in Table I. For both E0 = −2 and E0 = +2,
all the critical exponents α, β/ν, γ /ν, and 1/ν are found
to be consistent with those for the equilibrium Ising model
(E0 = 0), which establishes that our nonequilibrium model
falls in the Ising universality class. This is in line with the
several other nonequilibrium models that do not obey DBC
[8,25,26,68–74].

VI. SUMMARY AND DISCUSSION

We have studied the nature of the phase transition and
critical behavior of a nonequilibrium Ising model in d = 2,
where modified versions of the Metropolis and Glauber dy-
namics, which do not satisfy the DBC, are used to update
the spins. The violation of DBC in the model is character-
ized by nonzero values of a parameter E0. For E0 �= 0, the
system reaches the nonequilibrium steady states which are
not described by Boltzmann statistics. We presented the re-
sults of a MF theory that predicts interesting phase behavior
for E0 �= 0. We find that the predicted phase diagrams for
(modified) Metropolis and (modified) Glauber dynamics are
quite different. In the former case, we find a first order phase
transition for E0 < 0 and a continuous phase transition for
E0 > 0 that takes place at the same temperature for different
values of E0. In the latter case, we find a continuous phase
transition for both positive and negative values of E0 at a
temperature that increases continuously with E0. This strong
dependence on the microscopic dynamics is unusual, but not
entirely unexpected because the steady states reached by the
system under different update rules that do not satisfy the
DBC may very well be different.

We have also performed a comprehensive numerical study
of the phase behavior of the model in two dimensions for
E0 = ±2 via MC simulations using the modified Metropolis
dynamics. We calculated physical quantities such as magneti-
zation, Binder cumulant, specific heat (obtained from energy
fluctuations), and susceptibility (obtained from fluctuations of

the magnetization), and carried out a FSS analysis. The critical
exponents for both values of E0, summarized in Table I, are
found to be consistent with those of the equilibrium case.
Thus, contrary to the predictions of MF theory, the phase
transition in the nonequilibrium model in two dimensions
appears to be in the same universality class as that of the
equilibrium Ising model. This is in agreement with previous
studies [8,23–26,69–75], which have shown that the critical
properties of the nonequilibrium systems considered there
fall in the universality class of the equilibrium Ising model.
However, in nonequilibrium driven diffusive systems (e.g.,
lattice gas) of attractive (ferromagnetic) interparticle inter-
action [9,14,76–78] and reaction-diffusion systems [13,16],
etc., the critical behavior is found to be in the different
universality classes.

An interesting question in this context is whether the
nonequilibrium model for E0 �= 0 has an upper critical di-
mension du such that the critical behavior is described by
MF theory for physical dimensions higher than du. In most
equilibrium systems, one finds that the behavior for d < du

is more complex than that for d > du, whereas the opposite
seems to be true for the nonequilibrium model with Metropo-
lis dynamics considered here. The prediction of MF theory is
particularly different from simulation results for E0 < 0 for
which MF theory predicts a strong first order transition, but
simulations show a continuous transition. This is unusual in
equilibrium systems, although some examples of similar be-
havior do exist. For example, MF theory predicts a first order
transition for the three-state Potts model, but it exhibits a con-
tinuous transition in two dimensions [79]. Another possibility
that we cannot rule out is that the first-order transition found
for E0 < 0 in the MF theory is an artifact of the single-site
approximation and a more sophisticated MF treatment could
lead to a continuous phase transition.

Another interesting direction is to study the dynamical
properties of such models that violate DBC. In the litera-
ture [80–86], several Markov-chain Monte Carlo (MCMC)
methods without DBC (often also called nonreversible or ir-
reversible algorithms) have been proposed which are shown
to make the relaxation towards the target steady state very
fast and to reduce the effect of critical slowing down. How-
ever, these methods still satisfy the global balance, only
locally the DBC is violated, which is not the case in our
model for E0 �= 0. Also, it is not well understood how the
irreversible MCMC methods affect the dynamical critical ex-
ponent. Therefore, further work in this direction would be
useful.
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