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Quantum devices are systems that can explore quantum phenomena, such as entanglement or coherence,
for example, to provide some enhancement performance concerning their classical counterparts. In particular,
quantum batteries are devices that use entanglement as the main element in their high performance in powerful
charging. In this paper, we explore quantum battery performance and its relationship with the amount of
entanglement that arises during the charging process. By using a general approach to a two- and three-cell
battery, our results suggest that entanglement is not the main resource in quantum batteries, where there is a
nontrivial correlation-coherence tradeoff as a resource for the high efficiency of such quantum devices.
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I. INTRODUCTION

Recently, the idea of quantum batteries (QBs) was pro-
posed to exploit quantum effects in order to gain the charging
time and charging power compared to their classical counter-
parts. The concept of quantum batteries was first introduced
as two-level systems for energy storage and transmission to
consumer centers [1]. Therefore, the issue of efficient and
operational quantum batteries is always an essential subject.
In most scenarios, quantum batteries are considered as N
independent systems that are charged by a temporary field.
However, so far there have been many efforts to model proto-
cols to extract more work from a quantum battery, in particular
by employing quantum entanglement [2–5].

As an alternative approach, the concept of quantum batter-
ies has been developed as many-body systems, where N cells
of a QB are charged locally [6,7], different from previous pro-
cesses in which the cells are jointly charged by using global
operations. In this model, the quantum battery is presented
as a one-dimensional Heisenberg spin chain composed of N
spins, which provides the intrinsic interactions between the
spins and the possibility of entanglement. In a spin chain,
we can consider a coupling given by the XXZ Heisenberg
model, where an anisotropic parameter � develops a role in
the dynamics of such a system. It is known that the XXZ
Heisenberg chain has been applied to quantum batteries [6],
but the role of the quantum correlations, e.g., entanglement
and coherence, is still an open question. Moreover, since it
has been shown that entanglement is not necessary for optimal
work extraction [8], this leads us to ask whether the quantum
supremacy of QBs is due to the entanglement.
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To address this question, one needs to consider a suitable
approach in which the collective charging process can be done
without entanglement generation. In this paper, we consider a
two-qubit QB (a two-qubit cell), where we display the battery
charge dynamics for both collective and noncollective (paral-
lel) charging processes. Our results suggest that entanglement
is not always the best resource to charge QBs, where in this
scenario the coherence generation is the quantum resource for
optimal charging of QBs. Finally, we investigate the relation
between entanglement and coherence with the performance of
three-qubit QBs.

II. ERGOTROPY AND CHARGING PROCESS OF
QUANTUM BATTERIES

The work extraction from quantum batteries is well defined
by the ergotropy [9], where we can define the notion of passive
states, which are states in which no amount of work can be
extracted from them by unitary transformations. It is impor-
tant to highlight the nonuniqueness of the passive states, in
general [10]. However, for pure states, the passive state can
be well defined as the ground state of the system because it is
the lowest-energy state of the system [11]. Here, we focus on
processes in which the system is thermally isolated so that
no heat is exchanged at any point during the process. We
also consider cyclic processes, in the sense that the driving
Hamiltonian is the same at the beginning and at the end
of the dynamics. Since the system is thermally isolated, the
evolution of state ρ can be described by a unitary operator.
Therefore, the extracted work is given by

E = Wmax = Tr(ρH0) − max
U∈U

Tr(UρU †H0), (1)

where U is the set of all accessible unitary evolutions, and
the internal (time-independent) Hamiltonian H0 of the system
can be decomposed as H0 =∑

i εi|εi〉〈εi|, with εi+1 � εi. It is
possible to show that the work can be extracted from a system
if and only if the system is nonpassive, where a passive system
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FIG. 1. Schematic diagram of a two-cell QB, e.g., a two-spin
system, being charged through the parallel and collective charging,
respectively. Local fields act on the cells, and the cells interact with
each other along a collective charging. In collective charging, the
system can evolve through an entangled state (gray balls).

has the form σρ = ∑
i pi|εi〉〈εi|, where pi+1 � pi [9,12]. That

is, passive states are diagonal in the energy basis and do not
have population inversions. Then, any unitary acting on ρ can
only increase its energy, hence no work can be extracted from
it. It easily follows that given a pure state, the passive state
reads σ

pure
ρ =ρg =|ε f 〉〈ε f |, with |ε f 〉 being the fundamental

state of H0 [5,11]. Therefore, the available energy of a QB
that is unitarily charged reads

E = Wmax = Tr(ρH0) − Tr(ρgH0). (2)

Throughout the analysis presented here, we are deal-
ing with unitary processes. Therefore, the above equation
corresponds to the internal energy variation of the system
concerning the energy scale defined by H .

III. TWO-CELL QB

First, we start by introducing our physical model (as il-
lustrated in Fig. 1), i.e., the two-qubit cell QB consisting of
two coupled two-level systems. At the same time, in order
to charge the QB, we need to consider that each cell couples
individually with local fields. Without loss of generality [5],
we consider the driving Hamiltonian for our model in the in-
teraction picture as H =Hch + Hint, where Hch = h̄�

∑2
n=1 σ x

n ,
with σ x

n being the Pauli X -matrix acting on the nth spin. The
second Hamiltonian is the interaction one given by the XXZ
Heisenberg Hamiltonian,

Hint = Jh̄
(
σ x

1 σ x
2 + σ

y
1 σ

y
2 + �σ z

1σ z
2

)
, (3)

where σ i (i = x, y, z) are the Pauli matrices, J is the strength
of two-body interaction, and � is a dimensionless parameter
associated with the anisotropy of the chain.

The status of the battery charging depends on the system
state concerning the spectrum of the reference Hamiltonian H0

considered here as H0 = h̄ω0
∑2

n=1 σ z
n , with identical Larmor

frequency ω0 for both qubits. Here, as |↑〉 and |↓〉 are the
ground and excited states of a single spin, respectively, we de-
fine the fully charged state of the battery as |full〉=|↑↑〉 with
energy Efull =2h̄ω0, and the empty one as |emp〉=|↓↓〉 with
low energy Eemp =−2h̄ω0. Therefore, the maximum energy
that can be stored in the battery reads Emax =4h̄ω0.

Now, we investigate the charging process in two different
situations. As sketched in Fig. 1, we can drive the system with
interaction between the cells (collective) and without interac-
tion (parallel), where different results are expected [2–4]. To
study both processes, we will start from the most general cases
in which interaction is considered. Since the Hamiltonian is
time-independent, the system dynamics is given by

|ψ (t )〉 =
4∑

n=1

cne− i
h̄ Ent |En〉, (4)

where En are the eigenenergies of H associated with the
eigenstate |En〉, and cn are the coefficients of the expansion
of the initial state of the system in the basis {|En〉}. The
eigenenergies of H are given by E1 =J�h̄, E2 =−J (� + 2)h̄,
E3 = (J − β )h̄, E4 = (J + β )h̄ with their respective eigenstates

|E1〉 = (|↓↓〉 − |↑↑〉)/
√

2, |E2〉 = (|↓↑〉 − |↑↓〉)/
√

2,

|E3〉 = γ1(|↓↓〉 + |↑↑〉) − γ2(|↓↑〉 + |↑↓〉),

|E4〉 = γ2(|↓↓〉 + |↑↑〉) + γ1(|↓↑〉 + |↑↓〉), (5)

with

γ1 = 2 �√
2(α + β )2 + 8 �2

, γ2 = α + β√
2(α + β )2 + 8 �2

, (6)

where we defined β =
√

J2(�−1)2 + 4 �2 and α=J (�−1).
As a first analysis, let us consider the parallel charging pro-

cess of the battery (J =0), where each cell will independently
evolve driven by the charging field. Therefore, from the above
equations, we find the instantaneous ergotropy given by

E‖(t ) = Emax sin2(�t ). (7)

Immediately from this result, we establish the maximum
average power for the parallel charging as P̄‖

max = 2Emax�/π ,
where we used that tmin = π/2� is the minimum time interval
to get the maximum charge Emax. For the sake of complete-
ness, from Eq. (7) we find the instantaneous power as

P‖(t ) = dE‖(t )

dt
= P‖

max sin(2t�), (8)

with P‖
max = Emax� being the maximum instantaneous charg-

ing power. As we shall see, the quantities P‖
max and Emax will

be useful to study the role of the quantumness of the battery
for a parallel and collective charging process.

On the other side, the instantaneous ergotropy and charg-
ing power for the collective charging process (J 	=0) reads,
respectively (see Appendix A),

Ecol(t )

Emax
= 1

2
− γ 2

1 cos[(β + Jα)t] − γ 2
2 cos[(β − Jα)t] (9)

and

Pcol(t ) = 2P‖
max� cos(αJt ) sin(βt )/β. (10)

Now, as a first remark, we explore the role of the anisotropy
parameter � in the special limit �→1, where we have α→0
and β →2�, so Eqs. (9) and (10) give Ecol(t )|�→1 = E‖(t )
andPcol(t )|�→1 = P‖(t ), thus recovering results for the paral-
lel charging process of a two-cell quantum battery. This quick
remark allows us to conclude that the choice of � is relevant
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to the performance of QBs. This leads us to ask the following:
What is an effective collective charging process?

Entanglement, coherence, and charging power

The study of the quantumness of the two-cell QB will be
addressed here from the standpoint of the amount of entan-
glement Q and normalized coherence C0 of the system state.
Given a pure state written in the reference basis as |ψ〉=
α↑↑|↑↑〉 + α↓↑|↓↑〉 + α↑↓|↑↓〉 + α↓↓|↓↓〉, we consider the
entanglement given by the Wootters’ measure of entanglement
of a pair of qubits as [13]

Q = 2|α↑↑α↓↓ − α↓↑α↑↓|. (11)

The energy content of the battery and the change in its energy
distribution are of great interest in the context of quantum
batteries. From this perspective, it is very useful to compute
the coherence in the eigenstates of a bare Hamiltonian H0 as
the energy battery basis. As we shall see, this choice leads to a
better understanding of the relationship between coherence as
a quantum resource and the efficiency of quantum batteries.
In addition, coherence in an energy battery basis has been
considered in recent works [14,15]. Therefore, we define the
coherence in the empty and charged basis of the battery as

C0(t ) = (1/Cmax)
∑

i, j 	=i

|ρi j (t )|, (12)

where the quantity Cmax is the maximum coherence of the
system. For example, for a two-qubit state one has Cmax =
3, which corresponds to the case |ψCmax〉 = (1/2)(|↑〉 +
|↓〉)(|↑〉 + |↓〉). We define the above quantity by normalizing
the definition of the l1 norm of coherence [16–18], so that
0 � C0 � 1. Then, from Eqs. (11) and (12) one can study how
“quantum” the QB is. In addition, we are interested here in
analyzing the role of entanglement for the charging process of
the battery.

As previously discussed, through a parallel charging of the
QB, the maximum charge state is achieved for the minimum
time interval tmin. Therefore, we will analyze here the dynam-
ics of charging within the interval t ∈ Tmin = [0, tmin]. For
our discussion, the time interval Tmin under consideration is
appropriate, since we want to investigate both the role of cor-
relations and the internal battery interaction. In this scenario,
because tmin is the minimum charging time of a parallel charg-
ing process, quantum correlations develop an important role
if we can achieve the maximum charge for some time smaller
than tmin. Otherwise, quantum correlations are not a resource.
For completeness, it is worth mentioning that different values
of tmin have been considered in the literature. For example, we
can consider the minimum time given by the instant where
we get maximum instantaneous power tmaxP [6]. However,
as we want to consider situations in which we fully charge
the battery, considering tmaxP as a reference is not appropriate
because tmaxP is not associated with the maximum charge in-
stant. Actually, from the definition of instantaneous power for
the parallel charging [see Eq. (8)], the instantaneous time tmin

of maximum values for E(t ) is associated with instantaneous
power zero, because tmin corresponds to a critical (maximum)
point of E(t ) in time. Therefore, by considering the collective
charging process J 	= 0, Fig. 2 shows the instantaneous power

of the quantum battery for different choices of the anisotropy
parameter �. We highlight here the case with � = 1, in which
no entanglement is present [as we can see in Fig. 2(c)] and the
charging power is better than the other cases with � = 0 and
−1. However, such zero entanglement production does not
mean the battery is classical. As we can see from Fig. 2(d), the
maximum coherence is obtained when � = 1. Different from
other works [15], here we stress that the maximum ergotropy
is not stored in the system coherence (the full charged state
is |↑↑〉), but coherence works as a resource to speed up the
charging process of the QB. It is worth mentioning that when
we consider the case in which the effects destroy coherence
(the decoherence process), the battery performance for the op-
timal configuration � = 1 becomes negatively affected, and
maximum charge is not achieved (see Appendix B). For this
reason, we identify coherence as a resource to enhance the QB
performance.

The role of the parameter � for the charging process can
be better understood by defining the average quantities for
charge, power, entanglement, and coherence. In other words,
one can define P̄(�), Q̄(�), and C̄(�) in the interval t ∈
[0, tmin], given by X̄ (�) = (1/tmin)

∫ tmin

0 X (t )dt . In general,
the average power is an important tool to investigate the charg-
ing performance of a quantum battery. However, in batteries
in which spontaneous discharging is present [5,11], we can
get ambiguous results because the average power depends on
the entire time window considered in the integration. For this
reason, our analysis takes into account averaged values and
the instantaneous quantities shown in Fig. 2, so that a robust
analysis can be done [19]. It is worth mentioning the physical
meaning of Q̄(�) and C̄(�), which can be understood as the
average amount of entanglement and coherence, respectively,
generated in the battery along the charging process. For com-
pleteness, we compute the value for the ergotropy at the end
of the evolution Efin(�) = E(t = tmin) for different values of
�. From these sets of quantities, one can characterize the role
of quantumness in the QB. In Fig. 3 we present the results for
each quantify Efin(�), P̄(�), Q̄(�), and C̄(�) as a function
of �.

By remarking that the collective charging for the case in
which �=1 is identical to the parallel charging process, Fig. 3
suggests that entanglement-like quantum correlations in the
QB are not beneficial for the performance of the QB consid-
ered in our study. It is indeed possible to see that the difference
in the QB performance becomes enhanced for the situation in
which the amount of entanglement generated along the entire
evolution is vanishing. The quantum characteristic of the two-
cell QB considered here is maintained due to the system state
coherence, as we can see in Figs. 2 and 3.

It is worthwhile to study the effect of parameter J by
creating different regimes to identify the optimal charging
protocols for the QBs. Then, we compute the relevant quan-
tities introduced in Fig. 3 as a two-variable function for �

and the relative strength coupling J/�, as shown in Fig. 4.
By comparing Fig. 4, we can identify situations in which,
by decreasing the coupling strength, the average work and
power increases that converge to the values given in the � = 1
region (where the coherence plays an effective role in the
charging process) become optimal in all situations for values
of J/�. Physically, this means that whether we are increasing

052109-3



KAMIN, TABESH, SALIMI, AND SANTOS PHYSICAL REVIEW E 102, 052109 (2020)

(a) (b) (c) (d)

FIG. 2. Time evolution for (a) ergotropy, (b) instantaneous charging power, (c) entanglement, and (d) coherence of the two-cell QB for
different values of the anisotropy parameter �. The coupling regime between the qubits is J = �.

the pumping field intensity (�) or we are just turning off
the internal battery interactions, we are close to the charging
process with � = 1, which is independent of the coupling
strength. Again, our regime of observation is given by t ∈
[0, tmin], providing the optimal time window for our study.
We remark that the behavior of the coherence in the system,
Fig. 4(d), seems to be in agreement with the behavior of the
power and charge, Figs. 4(a) and 4(b), for all values of J/�,
while the entanglement (average) behavior does not explain
the increasing battery efficiency in the regimes considered
here. It is worth highlighting that our results are consistent
with the specific case of the strong-coupling limit J � � in
Ref. [6]. Moreover, one can observe that there is a significant
reduction in the work and power of the battery when the
coupling constant J for other values of � 	= 1 is increased.
In other words, these quantities tend to the maximum value in
the limit J → 0.1 �. Consequently, this implies that nonzero
anisotropy has no effect on the charging process of many-body
quantum batteries in this regime. In fact, it means that we
have an intense charging field, and we expected that no inter-
nal interactions in the battery would become relevant for the
charging process. In the same way, in the low-intensity regime
of the charging field (J → 10 �), the dynamics is drastically
governed by interaction, and we can see the relevant role that
anisotropy plays in the battery charging performance.

IV. THREE-CELL QB

As an immediate application, let us now discuss the quan-
tumness of a three-cell QB. It can be achieved by adding
a new cell to the battery, and the new interaction Hamil-
tonian reads H ′

int = Jh̄
∑2

n=1(σ x
n σ x

n+1 + σ
y
n σ

y
n+1 + �σ z

nσ z
n+1).

Then, for this case we numerically solve the system
dynamics ρ(t ) and compute the quantities E(t ) and C0(t ) as

FIG. 3. Graph for the quantities Efin(�) (in units of Emax), P̄(�)
(as a multiple of P‖

max), Q̄(�), and C̄(�) as a function of �. The
coupling regime between the qubits is J =�.

was done previously, but the quantities P(t ) and Q(t ) need to
be computed in a different way. Due to the numerical solution,
P(t ) is computed here from the energy current operator P̂ as
P(t ) = Tr(P̂ρ(t )), where [5]

P̂ = (1/ih̄)[H0, H ′
int]. (13)

As for the correlation Q(t ), we cannot use Eq. (11) in this
case because we have a tripartite system [20–22]. Therefore,
one defines a quantity based on the average purity of each
subsystem as Qav = ∑N

n=1 Qn/N , where Qn = Tr(ρ2
n ), with ρn

being the reduced matrix density of the nth cell. We stress
here that the above quantity cannot be taken as a measure of
correlations for a general ρ(t ), but in the case in which ρ(t )
is a pure state it can be used as a measure of nonseparability
(correlations) of the system state. In fact, for a separable state
of N qubits, Tr(ρ2

n )=1 for all N , we get Qav =1 for a fully
uncorrelated state of N qubits. Otherwise, in the case in which
the system is correlated (even for nearest-neighbor qubits) we
shall find Tr(ρ2

n ) 	=1 for some n, thus revealing a correlated
system.

Figure 5 shows the relevant quantities for the three-cell
quantum battery. From Figs. 5(a) and 5(c) it is possible to see
that an entanglement charging process implies a nonoptimal
charging process, since the case without correlation achieves
maximum charge at t = tmin. Furthermore, we remark that this
case corresponds to the situation in which maximum coher-
ence is created in the system during its evolution. A detailed
analysis of Fig. 5 shows that it is not evident that we have a
trivial tradeoff between correlations and power, but if we take
the coherence into account we gain a better understanding of
the system.

V. CONCLUSIONS

In this work, we studied the relation between entanglement
and coherence with the performance of two- and three-cell
quantum batteries. By using a system of coupled two-level
systems, we explore the role of an anisotropy parameter of
the XXZ Heisenberg linear chain. Through a counterexample,
we have shown that the generation of entanglement along the
charging process of QBs can negatively contribute to the per-
formance of QBs. Our results suggest that a nontrivial relation
between the amount of entanglement and high-performance
QBs is not universal and depends on the system with which
we are dealing. On the other hand, coherence develops a
relevant role as a resource for the efficiency of the system
considered in our study. As a general conclusion, we highlight
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(a) (b) (c) (d)

FIG. 4. Graphs for the quantities Efin(�) (in units of Emax), P̄(�) (as a multiple of P‖
max), Q̄(�), and C̄(�) as a function of � and J/� (in

log scale). The regime of values for J varies from J = 0.1 � [log10(J/�) = −1] to J = 10 � [log10(J/�) = 1] and � ∈ {−1, −0.5, 0, 0.5, 1}.

a correlation-coherence tradeoff in the optimal performance of
QBs, so that the high charging efficiency of the QBs adopted
here cannot be explained by correlations only.

We recognize the validity of the large number of works
in the literature showing the role of collective charging pro-
cesses for scalable N-cell QBs. However, we highlight here
the requirement of a detailed analysis of the real role of quan-
tum correlations in the collective charging of such devices.
By considering the results present in this paper and previ-
ous discussion on the work extraction from the coherence of
quantum states [14,15,23], we stress that a possible “quantum
supremacy” of QBs needs to be investigated in more detail.
In addition, the definition of a class of different devices and
charging processes would be a consequence of this study. The
extension of this work to a scenario of N-cell QBs is content
for future research, where a study of which physical quantity
can be a good resource for optimal performance of QBs can
be appropriately provided.
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APPENDIX A: ANALYTICAL SOLUTION FOR THE
SYSTEM DYNAMICS

The most general state of two qubits reads

|(0)〉 = μ|↑↑〉 + ν|↑↓〉 + η|↓↑〉 + δ|↓↓〉. (A1)

With the help of Eqs. (5) and (6), its time evolution will be

|(t )〉 = μ(t )|↑↑〉 + ν(t )|↑↓〉 + η(t )|↓↑〉 + δ(t )|↓↓〉,
(A2)

where

μ(t ) = − (δ − μ)

2
e−iE1t + (δ + μ)

(
γ 2

1 e−iE3t + γ 2
2 e−iE4t

)

+ γ1γ2(ν + η)(e−iE4t − e−iE3t ),

ν(t ) = − (η − ν)

2
e−iE2t + (η + ν)

(
γ 2

2 e−iE3t + γ 2
1 e−iE4t

)

+ γ1γ2(δ + μ)(e−iE4t − e−iE3t ),

δ(t ) = (δ − μ)e−iE1t + μ(t ),

η(t ) = (η − ν)e−iE2t + ν(t ). (A3)

At this point, let us consider the most general state of two
nonentangled qubits,

μ = sin[θ1] sin[θ2]ei(ϕ1+ϕ2 ),

ν = sin[θ1] cos[θ2]eiϕ1 ,
(A4)

η = cos[θ1] sin[θ2]eiϕ2 ,

δ = cos[θ1] cos[θ2],

where we can consider θ1, θ2 ∈ [0, π ] and ϕ1, ϕ2 ∈ [0, 2π ].
Also, we find the energy tr(ρ(t )H0)

U (t ) = −2ω0
[
�1

(
γ 2

1 cos[(E3 − E1)t] + γ 2
2 cos[(E4 − E1)t]

)

+�2
(
γ 2

1 sin[(E3 − E1)t] + γ 2
2 sin[(E4 − E1)t]

)

+�3(sin[(E4 − E1)t] − sin[(E3 − E1)t])

+�4(cos[(E4 − E1)t] − cos[(E3 − E1)t])
]
, (A5)

(a) (b) (c) (d)

FIG. 5. Time evolution for (a) ergotropy, (b) instantaneous charging power, (c) average entanglement, and (d) coherence of the three-cell
QB for different values of the anisotropy parameter �. The coupling regime between the qubits is J = �, and for the three-cell QB we find
Emax = 6h̄ω and P‖

max = Emax�.
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with

�1 = 2(cos2[θ1] cos2[θ2] − sin2[θ1] sin2[θ2]),

�2 = (sin[2θ1] sin[2θ2] sin[ϕ1 + ϕ2]),

�3 = (sin[2θ1] sin[ϕ1] + sin[2θ2] sin[ϕ2]),

�4 = γ1γ2[(sin[2θ1] cos[2θ2] cos[ϕ1]

+ sin[2θ2] cos[2θ1] cos[ϕ2])]. (A6)

In addition, we define the instantaneous charge (ergotropy) as

E(t ) = U (t ) − Eemp, (A7)

and the instantaneous power

P(t ) = d

dt
E(t ). (A8)

At the beginning of the charging process, the battery is as-
sumed to be empty, i.e., ρ(0) = |emp〉〈emp|. This is achieved
when we have θ1 = θ2 = 0 in Eq. (A4), which leads to �1 = 2
and �2 = �3 = �4 = 0 in Eq. (A6). Therefore, we have

E(t ) = −4ω0
(
γ 2

1 cos[(E3 − E1)t] + γ 2
2 cos[(E4 − E1)t] − 1

2

)

(A9)

and

P(t ) = 4ω0
(
γ 2

1 (E3 − E1) sin[(E3 − E1)t]

+ γ 2
2 (E4 − E1) sin[(E4 − E1)t]

)
. (A10)

APPENDIX B: DEPHASING EFFECTS ON BATTERY
PERFORMANCE

To discuss the performance of the battery with regard to
decoherence and to describe how the coherence is a resource
of the charging process, in this Appendix we briefly present
some results of the performance of a two-qubit QB driven
by the Hamiltonian H =Hch + Hint, where Hch = h̄�

∑2
n=1 σ x

n ,
and Hint is given by Eq. (3). Because we are interested in
understanding the role of quantum coherence for the charging
process, it is worthwhile to study battery performance in the
presence of dephasing. For this purpose, we investigate our
charging protocol driven by the Lindblad master equation for
dephasing as

dρ(t )

dt
= − i

h̄
[H, ρ(t )] + γ

∑

i=1,2

(
σ z

i ρ(t )σ z
i − ρ(t )

)
, (B1)

(a) (b)

FIG. 6. (a) Instantaneous ergotropy and (b) coherence for the dis-
sipative charging process of the two-cell QB driven by Eq. (B1) for
different values of the dissipative charging process. The Hamiltonian
parameters are J = �, tmin = π/2�, and � = 1.

with the local Lindblad operators σ z
i (i = 1, 2) acting on each

qubit with an identical dephasing rate γ .
Now, because the dynamics is not unitary and leads the

system to a nonpure density matrix, the ergotropy cannot be
computed from internal energy, as we did in Eq. (2). In fact,
for a general density matrix ρ with dimension N , the ergotropy
given in Eq. (1) reads [9,15]

E =
N,N∑

i,n

xnεi(|〈xn|εi〉|2 − δni ), (B2)

where |xn〉 and xn are the eigenvectors and eigenvalues of ρ,
so that x1�x2� · · ·�xN , which is obtained from the spectral
decomposition of ρ, and εi are eigenvalues of the reference
Hamiltonian H0 with eigenstates |εi〉, with ε1�ε2� · · ·�εN .
Therefore, in Fig. 6 we present the ergotropy and coherence
for different dissipative rates γ for the case in which we have
the anisotropy parameter �=1 and t ∈ [0, tmin], which leads
to the optimal parallel charging process of the battery. As
one can see, concerning the absence of dephasing effects, i.e.,
γ =0, by increasing γ we have a destructive impact on battery
performance such that the extractable work becomes smaller.
This occurs due to the amplification of dephasing effects in the
charging process, as we can see from the graph for ergotropy
and coherence in Figs. 6(a) and 6(b), respectively. Conse-
quently, the coherence plays the role of a quantum advantage
in the QBs.
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